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Weak localization of magnons in a disordered two-dimensional antiferromagnet
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We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet. We derive
the longitudinal thermal conductivity κxx for magnons of a disordered Heisenberg antiferromagnet in the
linear-response theory with the linear-spin-wave approximation. We show that the back scattering of magnons
is enhanced critically by the particle-particle-type multiple impurity scattering. This back scattering causes a
logarithmic suppression of κxx with the length scale in two dimensions. We also argue a possible effect of
inelastic scattering on the temperature dependence of κxx . This weak localization is useful to control turning the
magnon thermal current on and off.
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Introduction. The Anderson localization is an impurity-
induced localization of electrons [1]. Its effects depend on the
dimension of the system and the symmetry of the Hamiltonians
[2–5]. The understanding has been advanced substantially by
the theory in the weak-localization regime where the effects of
impurities can be treated as perturbation [3–7]. For example,
the weak-localization theory of a disordered two-dimensional
electron system demonstrates the logarithmic temperature
dependence of the resistivity, the negative magnetoresistance,
and the antilocalization due to the spin-orbit coupling; those
are experimentally confirmed [8–10]. That theory also reveals
the Anderson localization originates from the critical back
scattering due to the multiple electron-electron scattering under
time-reversal symmetry [6].

Since the similar argument may be applicable to magnons,
quasiparticles in a magnet, the weak localization of magnons
has the potential for a new avenue in spintronics. Among sev-
eral possibilities, antiferromagnets are suitable because global
time-reversal symmetry holds and because even nondisordered
antiferromagnets have several applications [11]. (In contrast
to electron systems, local time-reversal symmetry is broken in
any magnet due to the magnetic ordering.) Then the knowledge
for disordered antiferromagnets will be useful for others, such
as disordered ferromagnets, which break global time-reversal
symmetry. As well as antiferromagnets, ferromagnets are
useful for carrying information and energy [12–14].

Despite the above potential, it is unclear how impurities
affect magnon transport even in the weak-localization regime.
In particular, the weak-localization theory of magnons under
global time-reversal symmetry will be highly desirable because
the previous theories [15–18] about the magnon localization
analyze ferromagnetic cases, in which global time-reversal
symmetry is broken. Although there is a previous theory [19]
about the magnon localization in an antiferromagnetic case,
that does not study magnon transport. Since the existence of
the back scattering is not sufficient to justify the localization,
it is necessary to study magnon transport in disordered anti-

*naoya.arakawa@sci.toho-u.ac.jp

ferromagnets. In particular, it is essential to clarify whether
the weak localization occurs or not in the presence of global
time-reversal symmetry without local time-reversal symmetry
and how the weak localization of magnons is characterized by
an observable quantity.

In this Rapid Communication we formulate the longitu-
dinal thermal conductivity κxx of magnons in a disordered
Heisenberg antiferromagnet and show disorder effects in the
weak-localization regime. Our formulation is based on the
linear-response theory [20–22] with the linear-spin-wave ap-
proximation [23]. In our model, disorder is induced by partial
substitution for magnetic ions [Fig. 1(b)], and its main effect is
considered as changing the value of the Heisenberg interaction.
We show that the particle-particle-type multiple impurity
scattering of magnons causes the critical back scattering for any
dimension and any spin quantum number S. Most importantly,
this critical back scattering drastically suppresses the magnon
thermal flow in two dimensions. We also argue a possible
temperature dependence of κxx in the presence of inelastic
scattering. We finally discuss the validity of our theory and
implications of experiments and theories. Throughout this
Rapid Communication we set kB = 1 and h̄ = 1.

Model. We begin to construct a model for a disordered
antiferromagnet. Our model Hamiltonian is Ĥ = Ĥ0 + Ĥimp,
where Ĥ0 is the Hamiltonian without impurities and Ĥimp is
the impurity Hamiltonian. Ĥ0 consists of the antiferromagnetic
Heisenberg interaction between nearest-neighbor sites and the
magnetic anisotropy,

Ĥ0 = 2J
∑
〈i, j〉

Ŝi · Ŝ j − D

⎡
⎣∑

i∈A

(Ŝz
i )2 +

∑
j∈B

(Ŝz
j )

2

⎤
⎦, (1)

where i ∈ A and j ∈ B for the A or B sublattice,
∑

〈i, j〉 =
Nz/2 with N as the number of sites, and z as the coordination
number; the numbers of A and B are equal. We assume
that J (> 0) is much larger than D(> 0). Then we construct
Ĥimp as follows. We first assume that one kind of disorder is
partial substitution for magnetic ions (see Fig. 1), and its main
effect is to modify the value of the exchange interaction; for
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(a) (b)

FIG. 1. Schematic figures of a lattice (a) without and (b) with
disorder. An orange circle represents a magnetic ion, and a blue circle
represents a different one. J, J + J ′, and J + J ′′ are the Heisenberg
interactions between orange circles, between orange and blue circles,
and between blue circles.

simplicity, we neglect the disorder effect from the magnetic
anisotropy because its magnitude will be much smaller. Thus
Ĥimp becomes

Ĥimp = 2
∑
〈i, j〉

�J
(imp)
i j Ŝi · Ŝ j , (2)

with �J
(imp)
i j = J ′ for i ∈ Aimp, j ∈ B0 or for i ∈ A0, j ∈

Bimp, and �J
(imp)
i j = J ′′ for i ∈ Aimp, j ∈ Bimp; A0 and B0

represent A and B sublattices for orange circles in Fig. 1(b),
whereas Aimp and Bimp represent those for blue ones; the
numbers of Aimp and Bimp are equal. In a similar way to
electron systems [24], we suppose that impurities are randomly
distributed. Also, we assume that J ′ and J ′′ are much smaller
than J . Thus the main terms of Eq. (2) come from the mean-
field-type terms,

Ĥimp = −
∑

i∈Aimp

VimpŜ
z
i +

∑
j∈Bimp

VimpŜ
z
j , (3)

where Vimp = 2Sz′′J ′′ with z′′ as the coordination number for
J + J ′′. Here we have neglected the other mean-field-type
terms −∑

i∈A V Ŝz
i + ∑

j∈B V Ŝz
j (V = 2Sz′J ′ with z′ as the

coordination number for J + J ′) because those lead to the
same effect as the magnetic anisotropy in the linear-spin-wave
Hamiltonian; the effect of the terms in Eq. (3) is different due
to the limit of the sum of sites.

We next express our Hamiltonian in terms of magnon
operators. For that purpose, we use the linear-spin-wave
approximation [23] for a collinear antiferromagnet. As a result,
Eq. (1) becomes

Ĥ0 =
∑

q

∑
l,l′=A,B

εll′(q)x̂†
ql x̂ql′ , (4)

where εAA(q) = εBB(q) = 2S(Jz + D) and εAB(q) =
εBA(q) = 2SJ

∑z
j=1 eiq·rj , and Eq. (3) becomes

Ĥimp =
∑
q,q ′

∑
l=A,B

V
imp
l (q − q ′)x̂†

ql x̂q ′l , (5)

where V
imp
l ( Q) = Vimp

2
N

∑
i∈limp

ei Q·i . Here
∑

q is the
sum of momentum in the first Brillouin zone; the
magnon operators fulfill x̂qA = âq and x̂qB = b̂

†
q with

âq , the annihilation operator for the A sublattice,
and b̂

†
q , the creation operator for the B sublattice.

Then we obtain the eigenvalues of Eq. (4) using the

Bogoliubov transformation [23]: Ĥ0 = ∑
q

∑
ν=α,β εq x̂

†
qν x̂qν ,

where ν is the band index for the α and β bands,
εq =

√
εAA(q)2 − εAB(q)2, x̂ql = ∑

ν=α,β Ulν(q)x̂qν with
UAα(q) = UBβ(q) = cosh θq, UAβ(q) = UBα(q) =
− sinh θq , and tanh 2θq = εAB (q)

εAA(q) .
Situation. As magnon transport in our disordered antiferro-

magnet, we consider κxx , given by jx
Q = κxx(−∂xT ). Here jx

Q
is the thermal current density, and (−∂xT ) is the temperature
gradient; for magnons the thermal current is equal to the energy
current. We focus on the thermal transport rather than the
charge transport, considered for the localization of electrons
[6,7], because the charge transport is absent in magnets,
magnetically ordered insulators. Furthermore, we consider κxx

because κxx is finite even without external magnetic fields.
To analyze κxx , we assume that the temperature gradient is
so smooth that the local equilibrium is reached, that is, the
local temperature is definable. We also assume that the local
energy conservation holds. Those assumptions are standard
ones [20–22,25].

Linear-response theory. Using the linear-response theory
[20–22,26–28], we can express κxx as

κxx = 1

T
lim
ω→0

K (R)
xx (ω) − K (R)

xx (0)

iω
, (6)

where K (R)
xx (ω) = Kxx(i�n → ω + i0+) with �n =

2πT n (n = 0, ± 1, ± 2, . . .), bosonic Matsubara frequency,

and Kxx(i�n) = 1
N

∫ T −1

0 dτ ei�nτ 〈Tτ Ĵ
x
E (τ )Ĵ x

E 〉 with Tτ , a
τ -ordering operator [25]. Since the energy current operator
can be derived by using the local energy conservation [25],
we can derive Ĵ x

E of our model [29],

Ĵ x
E =

∑
q

∑
l,l′=A,B

ex
ll′ (q)x̂†

ql x̂ql′ , (7)

with ex
AA(q) = −ex

BB (q) = ∂εAB (q)
∂qx

εAB(q) and ex
AB(q) =

ex
BA(q) = 0. Then, by using a field-theoretical technique

[24,26–28], we obtain

κxx = 1

T N

∑
q,q ′

∑
{l1}

ex
l1l2

(q)ex
l3l4

(q ′)P
∫ ∞

−∞

dε

2π

[
−∂n(ε)

∂ε

]

×〈D(A)
l4l1

(q ′,q,ε)D(R)
l2l3

(q,q ′,ε)〉, (8)

where
∑

{l1} ≡ ∑
l1,l2,l3,l4

, n(ε) is the Bose distribution func-

tion, and D
(A)
l4l1

(q ′,q,ε) and D
(R)
l2l3

(q,q ′,ε) are the advanced and
retarded Green’s functions of the magnons for Ĥ before taking
the impurity averaging. (For the derivation, see the Supple-
mental Material [29].) We have neglected the term including
〈D(R)

l4l1
(q ′,q,ε)D(R)

l2l3
(q,q ′,ε)〉 or 〈D(A)

l4l1
(q ′,q,ε)D(A)

l2l3
(q,q ′,ε)〉 be-

cause the term in Eq. (8) is primary in the weak-localization
regime [6,7].

Weak-localization theory. We formulate the weak-
localization theory of our disordered antiferromagnet. That
theory describes the disorder effects in the weak-localization
regime in which the magnitude of Vimp is smaller than the

magnon energy and the impurity concentration nimp = Nimp

N

is dilute. Since Vimp comes from J ′′, we can apply the
perturbation expansion of Ĥimp to Eq. (8). We can em-
ploy that expansion in a similar way to the longitudinal
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FIG. 2. Feynman diagrams of (a) κ (Born)
xx , (b) the Dyson equation,

(c) �κxx , and (d) the contribution from the particle-hole-type vertex
corrections. Bold arrows and thin arrows denote the magnon Green’s
functions after taking the impurity averaging and the magnon Green’s
functions without impurities; a dotted line denotes the impurity
scattering.

conductivity of electrons [6,7] and reduce Eq. (8) to
κxx = κ (Born)

xx + �κxx. κ (Born)
xx is κxx without vertex corrections

[Fig. 2(a)],

κ (Born)
xx = 1

T N

∑
q

∑
{l1}

ex
l1l2

(q)ex
l3l4

(q)P
∫ ∞

−∞

dε

2π

[
−∂n(ε)

∂ε

]

×D̄
(A)
l4l1

(q,ε)D̄(R)
l2l3

(q,ε), (9)

and �κxx is the contribution from the particle-particle-type
vertex corrections [Fig. 2(c)],

�κxx = 1

T N

∑
q,q ′

∑
{l1}

∑
l,l′

ex
l1l2

(q)ex
l3l4

(q ′)P
∫ ∞

−∞

dε

2π

[
−∂n(ε)

∂ε

]

×D̄
(A)
l4l′ (q

′,ε)D̄(R)
l2l′ (q,ε)�l′l(q + q ′,ε)

×D̄
(A)
ll1

(q,ε)D̄(R)
ll3

(q ′,ε). (10)

The contribution from the particle-hole-type vertex
corrections [Fig. 2(d)] will be negligible for our disordered
antiferromagnet because of the similar argument to
electron systems with inversion symmetry [6,7,28]. Then
the magnon Green’s functions in Eqs. (9) and (10)
are determined from the Dyson equation [Fig. 2(b)]:
D̄

(R)
ll′ (q,ε)=D

0(R)
ll′ (q,ε)+∑

l′′ D
0(R)
ll′′ (q,ε)�(R)

l′′ (ε)D̄(R)
l′′l′ (q,ε),

where D
0(R)
ll′ (q,ε) is the retarded Green’s function without

impurities and �
(R)
l (ε) is the retarded self-energy, �

(R)
l (ε) =

γimp
∑

q D̄
(R)
ll (q,ε) with γimp = 2

N
nimpV

2
imp; the advanced

quantities are determined similarly. The vertex function in
Eq. (10) is determined from the Bethe-Salpeter equation
[Fig. 2(c)]: �ll′( Q,ω) = γ 2

imp�ll′ ( Q,ω) + ∑
l′′ γimp�ll′′ ( Q,ω)

�l′′l′ ( Q,ω) with �ll′( Q,ω) = ∑
q1

D̄
(R)
ll′ (q1,ω)D̄(A)

ll′ ( Q −
q1,ω).

To proceed with the formulation as simple as possible,
we introduce two simplifications. The first one is about the
self-energy: we consider only the imaginary part. This is ap-
propriate because its effect is essential for the localization [6,7].
The other is about the Green’s functions: for positive frequen-
cies we consider only the positive-pole contribution, whereas
for negative frequencies we consider only the negative-pole

contribution. For the more precise explanation, let us consider
D

0(R)
ll′ (q,ε). That for our model is given by

D
0(R)
ll′ (q,ε) = Ulα(q)Ul′α(q)

ε − εq + iδ
− Ulβ(q)Ul′β(q)

ε + εq + iδ
, (11)

where δ → 0+. The above first and second terms provide the
positive-pole and negative-pole contributions, respectively; the
first and second terms are dominant for ε > 0 and ε < 0,
respectively. We thus approximate D

0(R)
ll′ (q,ε) for ε > 0 by

the first term of Eq. (11) and D
0(R)
ll′ (q,ε) for ε < 0 by the

second term. Combining this and the first simplification with
the Dyson equation, we obtain

D̄
(R)
ll′ (q,ε) ∼

⎧⎪⎪⎨
⎪⎪⎩

Ulα(q)Ul′α(q)

ε − εq + iγ̃ (ε)
(ε > 0),

− Ulβ(q)Ul′β(q)

ε + εq + iγ̃ (−ε)
(ε < 0),

(12)

where γ̃ (ε) = (cosh4 θq + sinh4 θq)γ (ε) with γ (ε) =
nimpV

2
impπρ(ε), ρ(ε) is the density of states, and the q of

these hypobolic functions are determined by εq = |ε|. The
advanced quantities are simplified similarly.

The above simplifications enable us to proceed with the
formulation in a similar way to the weak localization of
electrons [6,7]. First, we get a simple expression of κ (Born)

xx ,

κ (Born)
xx ∼ 1

T N

∑
q

(
∂εq

∂qx

εq

)2[
− ∂n(εq)

∂εq

]
τ̃ (εq), (13)

where τ̃ (εq) = γ̃ (εq)−1. Due to the factor [−∂n(εq)/∂εq],
the contributions for small q = |q| are dominant. Then, by
estimating �ll′( Q,ω) and �ll′( Q,ω) for small Q = | Q|, we
can demonstrate that �ll′( Q,ω) diverges in the limit Q → 0.
The brief outline of the estimates is as follows (for the details,
see the Supplemental Material [29]). First, by using Eq. (12)
and performing the momentum sum in �ll′( Q,ω), �ll′( Q,ω)
for small Q is expressed as

�ll′( Q,ω) ∼

⎧⎪⎨
⎪⎩

u2
lαu2

l′α[1−Ds(ω)Q2 τ̃ (ω)]

γimp(c4
0+s4

0 )
(ω > 0),

u2
lβu2

l′β [1−Ds(−ω)Q2 τ̃ (−ω)]

γimp(c4
0+s4

0 )
(ω < 0),

(14)

where ulν = Ulν(q0), c0 = cosh θq0
, s0 = sinh θq0

, τ̃ (ω) =
γ̃ (ω)−1 = τ (ω)

(c4
0+s4

0 )
, and Ds(ω) = 1

4d
| ∂εq0

∂q0
|2τ̃ (ω) = 1

4d
v2

q0
τ̃ (ω),

the spin-diffusion constant for d dimensions. In the above
estimate we have approximated the momentum-dependent
cosh2 θq and sinh2 θq by the typical values, cosh2 θq0

and
sinh2 θq0

; q0 is a momentum with small magnitude. This will
be sufficient for a rough estimate because the dominant contri-
butions come from the terms for small |q1|. Then, combining
Eq. (14) with the Bethe-Salpeter equation, we obtain

�ll′( Q,ω) ∼

⎧⎪⎨
⎪⎩

u2
lαu2

l′α
γimp

Ds(ω)Q2τ (ω)
(ω > 0),

u2
lβu2

l′β
γimp

Ds(−ω)Q2τ (−ω)
(ω < 0).

(15)

This demonstrates the divergence of �ll′ ( Q,ω) in the limit
Q → 0. This divergence indicates the critical back scattering
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for q ′ = −q in Eq. (10); the other terms about q ′ are nonsin-
gular. We thus put q ′ = −q in Eq. (10) except �l′l(q + q ′,ε)
to estimate the main effect of the critical contribution. Under
this simplification, we can rewrite Eq. (10) as

�κxx ∼ − 1

T N

∑
q

(
∂εq

∂qx

εq

)2[
−∂n(εq)

∂εq

]
τ̃ (εq)

× nimpV
2

imp

4Ds(εq)γ (εq)

2

N

∑
q ′

′ 1

|q + q ′|2 . (16)

The dominant contributions come from the terms for small
q = |q| due to the same reason for κ (Born)

xx . In the sum of q ′ we
have replaced the lower value of Q = |q + q ′| by a cutoff L−1,
which approaches zero in the thermodynamic limit. Also, we
have replaced the upper value of Q by L−1

m , the inverse of the
mean-free path. (The prime of the sum of q ′ represents those
replacements.)

Weak localization in a two-dimensional case. As a specific
example, we apply the above theory to a two-dimensional
case on the square lattice for arbitrary S. In this case, εll′(q)
are εAA(q) = εBB(q) = 2S(4J + D) and εAB(q) = εBA(q) =
4SJ (cos qx + cos qy). Since we have 2

N

∑′
q ′ |q + q ′|−2 =∫ L−1

m

L−1
dQ

2π
QQ−2 = 1

2π
ln ( L

Lm
) and we can approximate γ (εq)

and Ds(εq) in Eq. (16) by γ0 = γ (εq0
) and Ds0 = Ds(εq0

),
respectively, κxx = κ (Born)

xx + �κxx is reduced to

κxx = κ (Born)
xx

[
1 − nimpV

2
imp[

πv2
q0

/
(
c4

0 + s4
0

)] ln

(
L

Lm

)]
. (17)

This shows that the critical back scattering causes the log-
arithmic suppression, which diverges in the thermodynamic
limit. Thus magnons are localized at low temperatures in the
two-dimensional disordered antiferromagnet.

The above ln L dependence may indicate that the ln T

dependence emerges in the presence of inelastic scattering
because of a similar argument to the electron system [30,31].
We have considered only the elastic scattering of Ĥimp. How-
ever, if we consider the interaction between magnons, it causes
the inelastic scattering, resulting in a temperature-dependent
mean-free path. Since that is expressed as a power function
of T , the ln L dependence of κxx may result in the ln T

dependence in the presence of the inelastic scattering.
Discussion. We first discuss the validity of our theory. It

treats partial substitution for magnetic ions as impurities and
analyzes the effect on κxx in the weak-localization regime.
Such a situation may be realized by substituting some of the
magnetic ions with different ones, which belong to the same
family of the periodic table; an example is the substitution
of Ag ions for Cu ions. We have considered such partial
substitution because magnetic ions in the same family have
the same S due to the same number of electrons in the open

shell [e.g., in La2Cu1−xAgxO4, (3d)9 for Cu ions and (4d)9

for Ag ions] and because its main effect is to change the ex-
change interaction. Then our theory is applicable to disordered
Heisenberg antiferromagnets for any S and any dimension,
whereas the specific example considered here is the two-
dimensional case. Since our theory uses the linear-spin-wave
approximation, which can be appropriate at low temperatures,
our theory generally can describe the weak localization of
magnons of any disordered Heisenberg antiferromagnets at low
temperatures. In our theory the temperature effect comes from
the Bose distribution function.

We now turn to experimental implications. Our main result
shows that the magnon energy current parallel to the temper-
ature gradient is suppressed drastically in the disordered two-
dimensional antiferromagnet. This property is experimentally
testable by measuring and comparing κxx in cases without and
with partial substitution of magnetic ions; for example, this
can be performed in a quasi-two-dimensional antiferromagnet,
such as La2Cu1−xAgxO4. In addition, this property will be
useful for a thermal switch as a spintronics device because
turning the magnon thermal current on and off is controllable
by partial substitution for the magnetic ions.

Our theory also has several theoretical implications. Our
theory may provide a starting point for further studies of
magnon localization because the weak-localization theory
[2,3] for electrons under time-reversal symmetry opened up
further research in various situations [6,7]. In particular, by
using or extending our theory, it is possible to understand how
the dimension of the system and the symmetry of the Hamil-
tonians affect the weak localization of magnons in disordered
antiferromagnets. Furthermore, in a similar way to our theory,
we can construct the weak-localization theory of magnons for
another magnet, even if its Hamiltonian includes more complex
terms. That study may help understand the difference due to
the magnetic structure and exchange interactions.

Summary. We have formulated κxx of the disordered Heisen-
berg antiferromagnet in the weak-localization regime and
showed the weak localization of magnons in two dimensions.
This theory is valid at low temperatures for any S and any di-
mension. We have shown that the multiple impurity scattering
critically enhances the back scattering of magnons, resulting in
the logarithmic suppression of κxx with L in two dimensions.
Also, we have argued that this logarithmic suppression may
result in the logarithmic temperature dependence of κxx due to
the inelastic scattering. Our weak localization can be observed
experimentally by measuring κxx in a quasi-two-dimensional
antiferromagnet, such as La2Cu1−xAgxO4. Furthermore, our
weak localization may be utilized as a thermal switch. This
Rapid Communication provides a starting point for further
research of the weak localization of magnons.
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