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Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9
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Recent experiments for linear magnetoelectric (ME) response in honeycomb antiferromagnet Co4Nb2O9

revealed that the electric polarization can be manipulated by the in-plane rotating magnetic field in a systematic
way. We propose the minimal model by extracting essential ingredients of Co4Nb2O9 to exhibit such ME
response. It is the three-orbital model with xy-type atomic spin-orbit coupling (SOC) on the single-layer
honeycomb structure, and it is shown to reproduce qualitatively the observed field-angle dependence of the
electric polarization. The obtained results can be understood by the perturbative calculation with respect to the
atomic SOC. These findings could be useful to explore further ME materials having similar manipulability of
the electric polarization.
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The electrons in solids containing ions with partially filled
d or f shells have orbital degrees of freedom in addition to spin
and charge ones. Strong Coulomb repulsion between electrons
with such multiple internal degrees of freedom generates much
fascinating physics [1], some of which has the potential for
novel electronic device applications, e.g., spintronics [2,3]
and valleytronics [4]. The magnetoelectric (ME) effect is a
classical example of spin-charge-orbital coupled physics [5–7]
and nonlinear ME effects have attracted much attention owing
to the discovery of the multiferroic compounds showing huge
ME response [8–14].

The linear ME effect has also gained renewed interest in
the context of the emergent odd-parity magnetic multipolar
orderings [15–26]. In linear ME materials, a proper structure
of the ME tensor α̂ determines the magnetic (electric) -field
controllability of the linear electric (magnetic) polarization.
For instance, in the archetypal ME compound, Cr2O3, the ME
tensor is diagonal, i.e., αxx = αyy �= αzz [6]. In this case, the
ME response is longitudinal. On the other hand, in Ni3B7O13

[27], the magnetic point group implies that the only αyz and
αzy components can be finite, which yields the transverse ME
response in the yz plane.

Recently, Khanh et al. have found the peculiar ME response
in honeycomb antiferromagnet Co4Nb2O9, where the induced
electric polarization changes its direction by an angle −2φ

around the trigonal axis upon rotating the magnetic field by an
angle φ [28,29]. However, the microscopic minimal conditions
for such ME response remain unclear. Motivated by these
observations, we elucidate minimal conditions to emerge such
ME response by extracting essential ingredients of Co4Nb2O9.
This could be useful to explore efficiently further ME materials
having similar manipulability of the electric polarization. In
this Rapid Communiction, we first demonstrate that the mini-
mal three-orbital model indeed exhibits the observed behavior
of the electric polarization. Then, we discuss the essential
ingredients which can be related to some aspects of the original
model for Co4Nb2O9. Lastly, we show that the obtained results
can be understood by the perturbative calculation with respect
to the atomic spin-orbit coupling (SOC).

It has long been known that Co4Nb2O9 shows linear ME
effects in the antiferromagnetic (AFM) state [30], and the
lattice structure is shown in Fig. 1(b) [31,32]. According to
the recent neutron diffraction measurements for single crystals
[28,33] and powder samples [34], the magnetic moments
on Co atoms are almost lying in the xy plane and aligned
antiferromagnetically in each honeycomb layer. These AFM
honeycomb layers are stacked ferromagnetically along the c

axis. This AFM ordering breaks both spatial inversion and
time-reversal symmetries, and it makes linear ME effects
possible below the Néel temperature, TN = 27.2 K.

Recent experimental reinvestigation revealed the ME re-
sponse of Co4Nb2O9 in detail [28,29,33,35–37]. Due to weak
magnetic anisotropy in the xy plane, the AFM moment MAFM

is almost always perpendicular to the in-plane external field
H = H (cos φ, sin φ) = H (sin φ′, − cos φ′), where φ′ = φ +
π/2 is the angle of MAFM measured from the x axis [see
Fig. 1(c)]. Figure 1(d) depicts the induced electric polarization
in the rotating magnetic field, which is characterized by P ∼
P [sin(−2φ′), − cos(−2φ′)]. From these observations, we can
deduce the corresponding ME tensor in the form

α̂(φ′) ∝ r

(− cos φ′ sin φ′

sin φ′ cos φ′

)

+ (1 − r)

(
cos 3φ′ sin 3φ′

− sin 3φ′ cos 3φ′

)
, (1)

where r is an arbitrary constant independent of the angle φ′, and
the z components are omitted. In our previous study [38], we
have successfully reproduced the observed ME response on the
basis of the realistic model derived from the density functional
band calculation. However, the essential ingredients for such
ME response remain unclear.

Let us begin with the minimal three-orbital model with
xy-type SOC on the two-dimensional honeycomb lattice under
the AFM molecular field. This model corresponds to the
simplified one, in which we take into account the partially filled
three orbitals � = eg1,eg2,a1g and the only single honeycomb
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FIG. 1. The lattice structures of (a) our minimal model and (b) the original model for Co4Nb2O9. (c) The AFM structure under the in-plane
magnetic field H . Note that MAFM is parallel to the x axis in the absence of H . (d) Schematic illustration of the induced electric polarization
P and the AFM moment MAFM by rotating magnetic field H in the xy plane.

layer composed of Co(1)O6 octahedra in the original model for
Co4Nb2O9, and neglect the buckling structure [see Figs. 1(a)
and 1(b)]. The Hamiltonian is given by

H = Hkin + HSOC + HAFM. (2)

Each term of H is explicitly given as follows:

Hkin =
∑
kσ

∑
αβ��′

H
(0)
α�β�′(k)d†

kα�σ dkβ�′σ , (3)

HSOC =λ

2

∑
kα

∑
��′σσ ′

(
lx��′σ

x
σσ ′ + l

y

��′σ
y

σσ ′
)
d
†
kα�σ dkβ�′σ ′ , (4)

HAFM = − 	
∑
kα�

∑
σσ ′

p[α]Mσσ ′(φ′)d†
kα�σ dkα�σ ′ ,

M̂(φ′) = cos φ′σ̂ x + sin φ′σ̂ y, (5)

where d
(†)
kα�σ represents the annihilation (creation) operator for

the electron on the sublattice α(= A,B) with wave vector k,
orbital �, and spin σ (=↑ , ↓), and σ̂ i (i = x,y) represents the
ith component of the Pauli matrix. H

(0)
α�β�′(k) is the kinetic

energy including the crystalline-electric-field (CEF) potential
and nearest-neighbor hopping on the two-dimensional honey-
comb lattice. Here, the Slater-Koster parametrization is used as
ddσ = −0.15 eV, ddπ = (2/3)ddσ , and ddδ = ddσ/6. The
CEF splitting is set to be εeg

− εa1g
= 0.62 eV. The magnitudes

of the SOC and the AFM molecular field are set as λ = 0.1 eV
and 	 = 2.0 eV, respectively. These values are estimated from
the density functional band calculation for Co4Nb2O9 [38].
The factor p[α] = +1(−1) for α = A (B) in Eq. (5) is used
to represent the staggered order. There are three electrons per
Co2+ ion, since we assumed that four of seven electrons in a
Co2+ ion occupy the lowest ε′

g orbitals as will be discussed
later. By the sufficiently large AFM molecular-field term
HAFM, the system becomes insulating. The explicit forms of
the orbitals and orbital angular-momentum operators are given
by Eqs. (11)–(13) and (14), respectively. By diagonalizing the

Hamiltonian in Eq. (2) at each k, we obtain the energy bands
εkζ and corresponding eigenvectors |kζ 〉 (ζ = 1–12).

We investigate the linear ME responses of the model
Hamiltonian in Eq. (2) by means of the standard Kubo formula.
Since the external magnetic field acts on both the spin and
orbital magnetic moments, the ME tensor α̂ is a sum of the
spin part α̂S and orbital part α̂L, where α̂L is expressed by the
correlation function between the velocity and orbital magnetic
moment, Q̂L(z) = 〈〈V i ; Lj 〉〉z, as follows:

α̂L = lim
ω→0

Q̂L(ω + iη) − Q̂L(iη)

iω
. (6)

Similarly, α̂S is obtained by replacing Lj with 2Sj . The
velocity, orbital magnetic moment [39], and spin magnetic
moment operators are given by

V i =
∑
kσ

∑
αβ��′

vi
α�β�′(k)d†

kα�σ dkβ�′σ , (7)

Li =
∑
kασ

∑
��′

li��′d
†
kα�σ dkα�′σ , (8)

Si = 1

2

∑
kα�

∑
σσ ′

σ i
σσ ′d

†
kα�σ dkα�σ ′, (9)

with v̂i(k) = ∂Ĥ (0)(k)/∂ki . The ME tensor αL
ij in Eq. (6) is

explicitly calculated as follows:

αL
ij = 1

iV

∑
kζ ζ ′

〈kζ |V i |kζ ′〉〈kζ ′|Lj |kζ 〉
εkζ − εkζ ′

f (εkζ ) − f (εkζ ′)

εkζ − εkζ ′ + iη
,

(10)

where f (ε) = (e(ε−μ)/T + 1)−1 is the Fermi distribution func-
tion with chemical potential μ. By the above ME tensor,
the induced electric polarization is expressed as Pi/H =
αix sin φ′ − αiy cos φ′.

Figure 2(a) shows the φ′ dependence of the electric polar-
ization P . It is found that P ∝ (− sin 2φ′, − cos 2φ′), which
is consistent with the observed behavior. The φ′ dependences
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FIG. 2. Angle φ′ dependence of P and α̂ at T = 0.01 eV.
(a) Electric polarization P , (b) total ME tensor αij = αS

ij + αL
ij , (c)

orbital part αL
ij , and (d) spin part αS

ij .

of αij , αL
ij , and αS

ij are also shown in Figs. 2(b), 2(c) and 2(d),
respectively. In our minimal model, α̂L dominates over α̂S . The
orbital part α̂L has only the fundamental φ′ rotation, which
is characterized by rL ∼ 1 in Eq. (1), while the spin part α̂S

has both φ′ and 3φ′ rotations characterized by rS ∼ 0.0244. In
total, α̂ is characterized by r ∼ 1.027, indicating that magnetic
quadrupoles play a dominant role in ME for Co4Nb2O9.

Next, we discuss the connection between our minimal
model and the realistic model for Co4Nb2O9. In Co4Nb2O9,
O2− ions form a trigonally distorted octahedron around a Co
atom as shown in Fig. 1(b). The CEF from O2− ions splits 3d

orbitals of a Co atom into the nondegenerate a1g orbital and
two sets of doubly degenerate eg and e′

g orbitals. The wave
functions of the eg and a1g orbitals are given by

|eg1〉 = 2√
6
|yz〉 − 1√

3
|x2 − y2〉, (11)

|eg2〉 = − 2√
6
|zx〉 + 1√

3
|xy〉, (12)

|a1g〉 = |3z2 − r2〉. (13)

According to the first-principles band calculations, the CEF
level scheme is as follows: εeg

> εa1g
> εe′

g
, where ε� is the

atomic energy of the orbital � [40]. By considering the electron
configuration of Co2+ ions, (3d)7, we assume that the lowest
lying e′

g orbitals are fully occupied, and the rest of the eg and a1g

orbitals are partially filled by three electrons, whose relative
occupations are almost unchanged in the rotating magnetic
field. Within this orbital space, the matrix elements of the
orbital angular-momentum operators are given by

l̂x =
√

2

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, l̂y =

√
2

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠, (14)

and l̂z vanishes. As a result, the SOC in our minimal model,
Eq. (4), is the xy type.

Up to this point, the minimal ingredients to exhibit the
in-plane ME response as Eq. (1) are given, so that further
differences between our minimal model and the realistic model
for Co4Nb2O9 do not play any important roles in the occur-
rence of the in-plane ME response. We summarize the dif-
ferences as follows. In the original lattice structure, the unit
cell contains four sets of the two inequivalent Co atoms,
Co(1) and Co(2), and the edge-shared (corner-shared) Co(1)O6

[Co(2)O6] octahedra form buckled honeycomb structures as
shown in Fig. 1(b). Here, we note that in a Co(1)O6 octahedron,
the triangle formed by three O atoms located on the upper plane
of a Co(1) atom, O(1a)–O(1c), and that formed by O atoms
on the lower plane, O(2a)–O(2c), are not equivalent to each
other as shown in Fig. 1(b). In our minimal model, we assume
that the upper triangle, O(1a)–O(1c), and the lower triangle,
O(2a)–O(2c), are equivalent, and there are additional twofold
rotational symmetries along the nearest-neighbor Co(1)-Co(1)
bonds [see Fig. 1(a)]. Accordingly, the point-group symmetry
of the single Co(1) honeycomb layer in our minimal model is
upgraded from the original C3i group to a higher D3d group.

Finally, we discuss that the obtained ME response in our
minimal model is naturally understood by the perturbative
calculation with respect to the atomic SOC. Likewise for
magnetic susceptibility, one can calculate the correlation
function Q

L(S)
ij (iνm) by the Green’s function technique in the

Matsubara framework, and obtain Q
L(S)
ij (ω + iη) in Eq. (6)

by the analytic continuation procedure, iνm → ω + iη, where
νm = 2mπT is the bosonic Matsubara frequency. By the
formal expansion of the nonperturbative Green’s function Ĝ(k)
in terms of Ĝ−1

0 (k) = (iωn + μ)1̂ − Ĥ 0(k) with respect to the
AFM molecular-field term, −	M̂(φ′)ρ̂z with ρ̂z being the z

component of the Pauli matrix in the sublattice space, we obtain

Ĝ(k) =Ĝ0 − 	Ĝ0M̂ρ̂zĜ0 + 	2Ĝ0(M̂ρ̂zĜ0)2 − · · ·
=Ĝ0[1̂ − 	2(ρ̂zĜ0)2]−1

− 	M̂Ĝ0ρ̂
zĜ0[1̂ − 	2(ρ̂zĜ0)2]−1

=ĜE(k) + M̂(φ′)ĜO(k), (15)

where we have introduced the diagonal and off-diagonal
Green’s functions, ĜE and ĜO , in the spin space as

ĜE(k) = [Ĝ−1
0 (k) − 	2ρ̂zĜ0(k)ρ̂z]−1, (16)

ĜO(k) = −	Ĝ0(k)ρ̂zĜE(k). (17)

Here, k = (k,iωn) with the fermionic Matsubara frequency,
ωn = (2n + 1)πT , and we have used the facts that ρ̂zĜ0 and
M̂ are commutable, and M̂2 = 1̂.

From Eq. (15), it is found that the angle dependence of the
AFM moment M̂(φ′) appears as the prefactor of ĜO(k). This
φ′ dependence is reflected on the ME tensor through the atomic
SOC.

Let us consider the first-order terms of the ME tensor with
respect to the atomic SOC, Q

L(S)(1)
ij (iνm), which can be ex-

pressed as products of V i , Lj (Sj ),HSOC, and the three Green’s
functions Ĝ(k). The corresponding diagrammatic representa-
tions are shown in Figs. 3(a) and 3(b). In what follows, the
symmetry arguments are useful to identify which perturbative
terms remain finite. For instance, the spin-diagonal Green’s
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FIG. 3. The diagrammatic representation of the correlation func-
tion Q

L(S)
ij (iνm). The first- and second-order terms with respect to the

atomic SOC are shown in (a) and (b), and (c)–(e), respectively. The
arrows and crosses represent the nonperturbative Green’s function
Ĝ(k) and the SOC term HSOC, respectively. QL(S)

ij (ω + iη) is obtained

by the analytic continuation, iνm → ω + iη, in Q
L(S)
ij (iνm).

function ĜE(k) is even parity, while the spin off-diagonal
ĜO(k) is odd parity due to the additional ρ̂z in the latter.
Therefore, by considering the fact that V i is odd parity, while
Li , Si , and HSOC are even parity, the perturbative terms
containing odd numbers of ĜO(k) remain finite. Moreover,
HSOC in Eq. (4), Si in Eq. (9), and M̂ in Eq. (15) contain σ̂ x

and σ̂ y , but their products appearing in the perturbative terms
must be spin independent, otherwise they vanish due to the
trace over the spin indices. As a result, Q

S(1)
ij (iνm) vanishes,

while Q
L(1)
ij (iνm) is given as

Q
L(1)
ij (iνm)

λ
= (

I x
ij + J x

ij

)
cos φ′ + (

I
y

ij + J
y

ij

)
sin φ′, (18)

I k
ij (iνm) = −

∫
k

tr
[
v̂i(k)ĜP1 (k+)l̂j ĜP2 (k)l̂kĜP3 (k)

]
, (19)

J k
ij (iνm) = −

∫
k

tr
[
v̂i(k)ĜP1 (k+)l̂kĜP2 (k+)l̂j ĜP3 (k)

]
, (20)

where we have introduced the abbreviation
∫
k

≡
(T/N)

∑
kn

∑
P1P2P3

, where Pr takes either E or O, and
k+ = (k,iωn+m). As was mentioned, the only odd number
of O in the summation (P1,P2,P3) gives finite contributions.
The trace tr[· · · ] is taken over the orbital and sublattice
indices. Furthermore, the point-group argument concludes the
following relations: −I x

xx = I x
yy = I

y
xy = I

y
yx = A(iνm), and

the other components vanish. Similar relations also hold for
J k

ij . By these arguments, the first-order contribution is purely
from the orbital part, and α̂ follows Eq. (1) with r = 1. Similar
arguments can be applied to the second-order terms as shown
in Figs. 3(c)–3(e). It is found that the orbital contribution
vanishes, while α̂S contains both φ′ and 3φ′ rotations, i.e.,
r �= 0,1 in Eq. (1).

In summary, we have proposed a minimal model to exhibit
the manipulating in-plane ME by extracting minimal ingre-
dients from the realistic model for Co4Nb2O9. The minimal
conditions are (i) three d orbitals in a trigonally distorted octa-
hedron giving rise to the xy-type SOC, (ii) single honeycomb
layer with weak in-plane magnetic anisotropy, and (iii) weak
SOC λ as compared to AFM molecular field 	. The H-angle
dependence of the electric polarization in our minimal model
is qualitatively consistent with experiments, and is understood
by the perturbative argument with respect to λ/	. Our results
can be applied to other AFMs, e.g., Co4Ta2O9, showing the
similar ME response. These findings could be useful to further
efficiently explore ME materials having similar manipulability
of the electric polarization.
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