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Controlling chiral domain walls in antiferromagnets using spin-wave helicity
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In antiferromagnets, the Dzyaloshinskii-Moriya interaction lifts the degeneracy of left- and right-circularly
polarized spin waves. This relativistic coupling increases the efficiency of spin-wave-induced domain-wall motion
and leads to higher drift velocities. We demonstrate that, in biaxial antiferromagnets, the spin-wave helicity
controls both the direction and the magnitude of the magnonic force on chiral domain walls. In this case it is
shown that the domain-wall velocity is an order of magnitude faster in the presence of the Dzyaloshinskii-Moriya
interaction. In uniaxial antiferromagnets, by contrast, the magnonic force is always propulsive, but its strength is
still helicity dependent.
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The Dzyaloshinskii-Moriya interaction (DMI) was intro-
duced to describe the weak ferromagnetism in antiferro-
magnetic (AFM) materials [1,2]. The DMI arises from the
relativistic spin-orbit coupling that occurs when there is a
broken inversion symmetry. The DMI is an antisymmetric
exchange interaction between two adjacent spins Si−1 and
Si , wDM = −∑

i(−1)i D0 · (Si−1 × Si), where D0 is a vector
with constant direction and amplitude [3]. The direction of D0

is dictated by the point-group symmetry of materials. The DMI
can originate in the bulk in noncentrosymmetric crystals. There
also can be interfacial DMIs in ultrathin films and at interfaces
with heavy metals [4–7]. The discovery of magnetic skyrmions
and chiral domain walls (CDWs) [8–13] has led to renewed
interest in the DMI. In addition to their fundamental interest,
the control of these intriguing textures may have applications
in next-generation information storage and processing devices.

AFM materials are ordered magnetic materials without any
net magnetization. Their lack of stray fields and terahertz
response are promising for novel ultradense and ultrafast
magnetic devices. Topics in AFM spintronics include spin
angular-momentum transport and transfer, spin-orbit coupling,
and the manipulation of AFM domains and solitons [14–23].
Coherent or thermal spin waves (SWs) [24–27] and currents
[21,28,29] can induce movement of AFM domain walls (AFM-
DWs). In the absence of the DMI, circularly polarized SWs
push AFM-DWs via the transfer of linear momentum [24–26]
but pull ferromagnetic (FM) domain walls (FM-DWs) via the
transfer of spin angular momentum [30–32]. The SWs in FM
systems are always right handed. By contrast, in AFM systems,
both left- (L) and right-circularly (R) polarized SWs exist
[33–35]. In the absence of the DMI, the dispersions associated
with the two helicities are degenerate, but the DMI lifts this
degeneracy [36].

The helicity degree of freedom in AFM-SWs, among
other degrees of freedom in the nature, such as the spin of
electrons and polarization of light, recently has attracted great
attention [34–40] and promises many applications in novel low
dissipation magnonic data processing.

In this Rapid Communication, we demonstrate the possibil-
ity of all-magnonic helicity-dependent AFM-DW motion in the
presence of DMI. This paves the way for faster and improved
control of AFM textures.

Model. We consider a two-sublattice AFM insulator with
equal spins SA = SB = S. The unit vectors along the directions
of the magnetic moments are mA(r,t) = SA/S and mB(r,t) =
SB/S. At equilibrium, mA(r,t) and mB(r,t) are antiparallel.
We introduce the magnetization m = (mA + mB)/2 and the
staggered order parameter n = (mA − mB)/2, where n · m =
0 and n2 + m2 = 1. We consider an effective one-dimensional
(1D) model along the x direction to describe the AFM-DW
motion.

In the exchange approximation, the total Lagrangian density
of an AFM system is

L[n,m] = LB[n,m] − U [n,m], (1)

where the Berry-phase-induced term LB and the free-energy
density U are [17,41–43]

LB[n,m] = ρ ∂t n · (n × m), (2a)

U [n,m] = m2

2χ
+ Lm · ∂xn + A

2
(∂xn)2

− Kx

2
(n · x̂)2 + wDM. (2b)

Here, ρ = h̄S/a is the spin angular-momentum density, a

is the lattice constant, χ is the magnetic susceptibility, A is the
exchange stiffness, L is the parity-breaking term amplitude
[41], and Kx > 0 is the easy axis anisotropy energy density.
The DM free-energy density in the continuum model wDM =
d · (m × n) + D · (∂xn × n) consists of homogeneous and
inhomogeneous DMIs as expressed by the first and second
terms, respectively. The magnetization is a slave variable and
can be found by solving the equation of motion χ−1m =
ρ ∂t n × n − L∂xn + d × n.

To simplify the expressions, we use natural units of
time, length, and energy: t0 = ρ

√
χ/Kx, λ0 = √

A/Kx , and
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ε0 = √
AKx where the exchange stiffness and easy axis

anisotropy are renormalized as follows: A → A − χL2 and
Kx → Kx − χd2. In this way, the contributions to the La-
grangian density as functions of the staggered order parameter
read simply as [44]

LB[n] = 1
2 (∂t n)2, (3a)

U [n] = 1
2 (∂xn)2 − 1

2 (n · x̂)2 + Dn · (x̂ × ∂xn). (3b)

The kinetic part of the AFM Lagrangian Eq. (3a) is Lorentz
invariant [45], and the effective velocity of light is the maxi-
mum velocity of magnons in isotropic systems c = 1. As in
ferromagnets [46], Eq. (3b) implies that, when D > 1, the
ground state is a helical state with a spatial period of 2π/D.
By contrast, when D < 1, there are two collinear degenerate
ground states: n0 = σ x̂, where σ = ±. A DW is a transition
between these two discrete degenerate ground states [47]. In
the following, we assume that D is smaller than the critical
value of D < 1.

By minimizing the free-energy Eq. (3b) with re-
spect to the boundary conditions n0(x → ±∞) = σ x̂, we
can find the profile of a CDW. This profile is repre-
sented by n0 = (cos θ, sin θ cos φ, sin θ sin φ) with cos θ =
tanh[(x − x0)

√
1 − D2] and φ = (x − x0)D + �, where√

1 − D2 is the effective DW width, D is the rate of DW
twisting, � is the DW tilt, and x0 is the position of the DW
center [46]. When D → 0, the DW profile is of the Néel type.
In the limit of D → 1, the system gradually approaches a spiral
state. The energy of CDW is E = 2

√
1 − D2.

DW motion in a uniaxial AFM system. We compute the SW
dispersions in uniaxial uniform domains and CDWs ωu and
ωc, respectively. In doing so, we assume that there is a small
transverse deviation of the staggered field on top of a static
ground-state n = n0(x) + δn. It is convenient to use a global
basis to express the SWs [25,26]. The orthogonal unit vectors
are ê1 = ∂n0/∂θ, ê2 = (∂n0/∂φ)/ sin θ , and ê3 = ê1 × ê2 =
n0. A SW is represented by a complex field ψ = δn · (ê1 + iê2)
[48]. We obtain the effective Lagrangian density for SWs
by expanding the total Lagrangian to the second order in
ψ . The effective SW equation is Hu(c)ψ = ω2

u(c)ψ . The SW
Hamiltonians in a uniform domain and in a CDW are

Hu = −∂2
x + i2σD∂x + 1, (4a)

Hc = −∂2
x + (1 − D2)[1 − 2 sech2(x

√
1 − D2)]. (4b)

The eigenvalues are given by

ω2
u = 1 − 2σDk + k2, (5a)

ω2
c = 1 − D2 + k2, (5b)

and the eigenfunctions are expressed as ψ(t,x) =
�ψ0(x)e−iωu(c)t+ikx , where � = |δn| is the SW amplitude
far from the AFM-DW and k is the wave number. The
eigenfunction ψ together with its dispersion relation as given
in Eq. (5) describe a circularly polarized SW. The dispersion
relation of Eq. (5) has both positive- and negative-frequency
solutions. The SWs with ω < 0 (ω > 0) are right-circularly
(left-circularly) polarized SWs. Since the phase velocity is
ω/k, the left-circularly polarized SWs are rightward moving

for k > 0 and leftward moving for k < 0, whereas the opposite
is true for the right-circularly polarized SWs.

In AFM materials, the DMI lifts the degeneracy of the
circularly polarized SWs as has recently been observed ex-
perimentally [36]. Equation (5a) shows that the SW spectrum
is nonreciprocal in uniaxial AFM domains such that ωu(k) �=
ωu(−k). However, in chiral AFM-DWs, the dispersion is
symmetric and degenerate such that ωc(k) = ωc(−k) with a
renormalized energy gap. The group velocity in a uniform
domain is vu = (k − σD)/ωu, whereas in a CDW, it is vc =
k/ωc.

The effective potential energy of a static AFM-DW, the
Pöschl-Teller potential in the SW Hamiltonian Hc of Eq. (4b),
is reflectionless. Nevertheless, a circularly polarized SW exerts
a torque on an AFM-DW. As a result, the DWs in a uniaxial
AFM material rotate and no longer remain reflectionless
[24–26]. Consequently, there is a force on the AFM-DWs; see
Fig. 1.

To capture these effects, we transform from the laboratory
frameF into a uniformly moving and precessing frame F̃ . The
new frame of reference F̃ rotates with an angular frequency
of � around the x axis and moves with a linear velocity of
V along the x direction [25,26]. In the new frame, the profile
of a CDW is described by cos θ = tanh[(x̃ − x̃0)

√
1 − D̃2]

and φ = (x̃ − x̃0)D̃ + � where we mark the variables in F̃
with a tilde. The natural units in F̃ are λr = �λ0, tr = �t0,
and εr = ε0/�, where � = 1/

√
1 − �2 + 2γV D� and γ =

1/
√

1 − V 2. Additionally, we define �̃ = �(� − γV D) and
D̃ = �γD. Finally, in F̃ , the Lagrangian density is given by

L̃B = 1
2 (∂t̃ n)2 + �̃ ∂t̃ n · (x̂ × n), (6a)

Ũ = 1
2 (∂x̃n)2 − 1

2 (n · x̂)2 + D̃n · (x̂ × ∂x̃n). (6b)

The second term in the kinetic part of the Lagrangian
Eq. (6a) is due to the Coriolis force [26]. By expanding the
effective Lagrangian in the new reference frame L̃ up to the
second order inψ and calculating the Euler-Lagrange equation,
we find an eigenproblem expressed as H̃cψ = ω̃2ψ with the
following effective Hamiltonian for SWs on a precessing
CDW:

H̃c = Hc[x → x̃,D → D̃] + 2ω̃�̃ tanh(x̃
√

1 − D̃2). (7)

The additional hyperbolic tangent potential energy in the
Hamiltonian H̃c causes reflections [25,26].

The reflection |r| and transmission |t | amplitudes for the
1D hyperbolic tangent scattering potential are known [49]

|r|2 = sinh2
[

π
2 (k̃+ − k̃−)

]

sinh2
[

π
2 (k̃+ + k̃−)

] , (8a)

|r|2k̃− + |t |2k̃+ = k̃−. (8b)

In F̃ , the wave numbers of the transmitted and incoming
SWs k̃+ and k̃−, respectively, are given by k̃2

± = ω̃2 ∓ ω̃�̃ −
1 + D̃2. The wave numbers are the same in F and F̃ ; thus,
k2
± = ω2

± − 1 + D2. The frequency shift between an incoming
SW of frequency ω− = ω + (� − γV D) and an outgoing SW
of frequency ω+ = ω − (� − γV D) is our first central result,

�ω = −2(� − γV D). (9)
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FIG. 1. The angular-frequency � [(a) and (c)] and linear velocity V [(b) and (d)] of an AFM-DW as functions of the SW amplitude �

for k = 0.8. The solid lines are based on Eqs. (8) and (10)–(12), whereas the circles represent solutions of the Landau-Lifshitz-Gilbert (LLG)
equations. The black curves are the results in the absence of DMI, and the red/blue curves show the results for a finite DMI in the presence of
left-/right-circularly polarized SWs.

Equation (9) demonstrates that the DMI causes a shift in the
SW frequency that is linear in the DW velocity [25,26]. This
frequency shift significantly changes the interaction between
SWs and DWs, especially in biaxial systems where the angular
frequency � is suppressed. A left-circularly (right-circularly)
polarized SW incident on a DW has a positive (negative)
frequency and induces a precession of the DW in the positive
(negative) direction. In both cases, the effect of the angular-
frequency term, the first term in Eq. (9), is the same: The
precession of the DW reduces the frequency of the transmitted
SW by the same amount for incoming SWs of the same
amplitude but opposite helicity. By contrast, the velocity-
dependent term, the second term in Eq. (9), reinforces the
redshift for left-circularly polarized SWs and reduces it for
right-circularly polarized SWs.

Let us now derive the reactive magnonic force and torque.
We employ the conservation of the energy-momentum tensor
T αβ = gαγ T β

γ , where gαγ = diag(1,−1) is the inverse of
the metric tensor in the Minkowski space (x0,x1) = (t,x)
and T β

α = ∂αn · ∂L/∂(∂βn) − δβ
αL. When Lagrangian den-

sity is invariant with respect to the space-time, Noether’s
theorem implies continuity equations for the energy-
momentum tensor ∂βT αβ = 0 and current ∂αjα = 0 [50],
respectively.

The translational and rotational symmetries in uniax-
ial AFM systems dictate the conservation of total linear-
momentum P and angular-momentum J . Then the force
and torque on AFM-CDWs are defined as F = T 11(−∞) −
T 11(+∞) = dP/dt and τ = j 1(−∞) − j 1(+∞) = dJ/dt ,

respectively. The total reactive magnonic force F =
Freflection + Fredshift + FDM consists of the reflection force, the
redshift force, and the DMI force,

Freflection = 2|�|2|r|2k2
−, (10a)

Fredshift = |�|2(1 − |r|2)k−(k− − k+), (10b)

FDM = 2γD|�|2(1 − |r|2)k−. (10c)

Both the redshift and the DMI forces are due to the
transmitted SWs. The total reactive torque exerted by SWs
is given by

τ = 2|�|2(1 − |r|2)k−. (11)

Equation (10) shows that, when the SWs are hard (k± � 1)
and the DMI is large and comparable to the critical value of
D � 1, Freflection � Fredshift,FDMI. If k+ 	 k−, then the DMI
force dominates (Fredshift � FDMI). When k+ � k−, both the
redshift and the DMI forces are of the same order. For soft SWs
(k± � 1) and a strong redshift (k+ � k−), the reflection force
dominates.

Thus far, we have not considered the ubiquitous dissipation.
We include dissipative effects via a Rayleigh’s dissipation
function density R = α(∂t n)2/2, where α is the Gilbert damp-
ing. We define a viscous force Fv and a torque τ v such that
dP/dt = F + Fv and dJ/dt = τ + τ v . In the steady state,
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FIG. 2. The DW velocity V as a function of the external magnetic-
field frequency ω0 for both L- and R-polarized SWs in a uniaxial
κ = 0 AFM system with D = 0.5. The black dots represent the DW
velocity in the absence of the DMI D = 0.

F = −Fv and τ = −τ v , and we find that

F = −2αγ {D(� − γV D) − V [1 − D2 − (� − γV D)2]}
√

1 − D2 − (� − γV D)2
,

(12a)

τ = 2αγ (� − γV D)
√

1 − D2 − (� − γV D)2
. (12b)

Equations (8) and (10)–(12) form a closed set that we can
solve numerically to find the steady state. We plot the results of
the related simulations in Fig. 1. We see that the directions of
the angular frequencies of the DWs are opposite for different
SW helicities.

We check our results based on Eqs. (8) and (10)–(12) against
those of another more direct numerical procedure. For the
latter calculations, we follow Ref. [24]. We solve the coupled
nonlinear LLG equations for the staggered field n and the
magnetization m [24]. A circularly polarized magnetic field
of frequency ω0 and amplitude h0 excites SWs in a region far
from the DW center. The amplitude of the external magnetic
field is in natural units.

Figure 2 shows the DW velocity as a function of ω0 for left-
and right-circularly polarized SWs excited by a magnetic field
of h0 = 0.001. In the presence of a high-frequency left-handed
(right-handed) SW, the velocity of a chiral AFM-DW is higher
(lower) than that of its nonchiral counterpart. The DW velocity
exhibits nonmonotonic behavior with respect to the frequency
ω0. At lower frequencies, CDWs have higher velocities than
their nonchiral counterparts for both helicities.

Note that these calculations are based on the conservation
of linear momentum [24–26] and they are valid for the small
Gilbert damping regime [51].

DW motion in a biaxial AFM system. We model a biaxial
AFM material by introducing an additional contribution to the
free-energy density expressed in Eq. (3b) U → U + Uani. The
transverse-axis anisotropy energy density is Uani = κ(n · ẑ)2,
where κ = Kz/2Kx > 0 and Kz is the anisotropy energy
density in the z direction. This fixes the CDW tilt angle such

FIG. 3. The same as in Fig. 2 but for a biaxial AFM system. The
hard-axis anisotropy is κ = 0.25.

that � = 0 or π . For biaxial AFM systems, the spin-current j 1

is no longer conserved.
In a collinear biaxial AFM system, the SW polarization is

elliptical with a dispersion relation,

ω2
b = 1 + κ + k2 ±

√
4D2k2 + κ2. (13)

In a biaxial AFM system, the spectrum remains symmetric
such that ωb(k) = ωb(−k). Note that, even in the absence of
the DMI, a transverse anisotropy lifts the helicity degeneracy
of the polarized SWs; however, this degeneracy breaking is
independent of momentum and leads to a finite gap between
the two branches of the SW excitations. The group velocity
of the SWs in a collinear biaxial AFM system is vg = (1 ±
2D2/

√
4D2k2 + κ2)k/ωb. The equations of motion in biaxial

AFM systems are complicated; here, we present only the
results of numerical calculations.

In a biaxial AFM system, in the absence of the DMI, a
DW approaches the SW source regardless of the SW helicity.
There is no rotation of the DW. The potential in the SW
Hamiltonian that is induced by the AFM-DW texture causes
no reflections. Thus, the motion induced by elliptical SWs
is similar to that induced by linearly polarized SWs in a
uniaxial AFM system; the DW motion is slow compared
with that induced by circularly polarized SWs and is to-
ward the SW source because of the conservation of linear
momentum [24].

In a biaxial AFM system, the DMI does not cause the CDWs
to rotate, but Eq. (9) shows that the outgoing SWs acquire
a DMI-dependent frequency shift. The hard-axis anisotropy
suppresses the angular frequency of the CDWs. The frequency
shift simplifies to �ω 	 2γV D. The DMI and redshift forces
dominate the total magnonic force since the reflection force
can be neglected. Figure 3 shows that DMI dramatically
increases the DW velocity and leads to helicity-dependent DW
motion. This is our second central result. The helicity of the
SWs controls the direction of the induced motion of chiral
AFM-DWs. The velocity of CDW is antisymmetric respect to
the helicity of SWs. The DW velocity is approximately two
times higher in the presence of one helicity (left-circularly

020402-4



CONTROLLING CHIRAL DOMAIN WALLS IN … PHYSICAL REVIEW B 97, 020402(R) (2018)

polarized SWs in our configuration) than it is in the presence
of the opposite helicity.

Discussion and conclusion. Using KMnF3 parameters [55],
we find a DW velocity of 2 km/s, which is at least two orders of
magnitude faster than the SW-driven CDW motion in biaxial
FM systems [32] and one order of magnitude larger than the
FM-DW driven by spin-orbit torque [56]. On the other hand,
although in SW-driven CDW motion only a change in the sign
of the DMI merely reverses the direction of motion [32,57] via
a linear-momentum transfer mechanism [58], in AFMs the SW
helicity also controls the direction.

Recent developments in atomic-scale resolution mi-
croscopy enables us to trace the AFM-DW position via tech-
niques, such as spin-polarized scanning-tunneling microscopy
[59], photoelectron emission microscopy [60], and magnetic
exchange force microscopy [61]. The position of AFM-DW

center also can be detected by using the anisotropic magne-
toresistance effect indirectly [21].

The DMI results in a faster and more controlled motion of
AFM-DWs. In a biaxial AFM system, the SW helicity deter-
mines both the direction and the magnitude of the DW velocity.
These features enable the magnonic helicity-dependent DW
motion. By contrast, in a uniaxial AFM system, a CDW always
is recoiled from the SWs’ source via a magnonic force with a
helicity-dependent magnitude.
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