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Superconductivity in correlated BEDT-TTF molecular conductors:
Critical temperatures and gap symmetries
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Starting from an ab initio-derived two-site dimer Hubbard Hamiltonian on a triangular lattice, we calculate the
superconducting gap functions and critical temperatures for representative κ-(BEDT-TTF)2X superconductors
by solving the linearized Eliashberg equation using the two-particle self-consistent approach (TPSC) extended to
multisite problems. Such an extension allows for the inclusion of molecule degrees of freedom in the description
of these systems. We present both benchmarking results for the half-filled dimer model as well as detailed
investigations for the 3/4-filled molecule model. Remarkably, we find in the latter model that the phase boundary
between the two most competing gap symmetries discussed in the context of these materials—dxy and the
recently proposed eight-node s + dx2−y2 gap symmetry—is located within the regime of realistic model parameters
and is especially sensitive to the degree of in-plane anisotropy in the materials as well as to the value of the
on-site Hubbard repulsion. We show that these results provide a more complete and accurate description of the
superconducting properties of κ-(BEDT-TTF)2X than previous random phase approximation (RPA) calculations
and, in particular, we discuss predicted critical temperatures in comparison to experiments. Finally, our findings
suggest that it may be even easier to experimentally switch between the two pairing symmetries as previously
anticipated by invoking pressure, chemical doping, or disorder effects.
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I. INTRODUCTION

Among the classes of quasi-two-dimensional organic
charge transfer salts, the κ-(BEDT-TTF)2X family, often
abbreviated as κ-(ET)2X, is of special interest since its mem-
bers exhibit rich phase diagrams with antiferromagnetic Mott
insulating, superconducting (SC), and spin-liquid states [1–3].
Besides chemical substitution of the monovalent anion X−

and/or physical pressure [4,5] the κ-(BEDT-TTF)2X salts offer
the possibility to tune between the different states by endgroup
disorder freezing [1,6,7].

Measurements of electronic properties such as specific
heat, conductivity, or magnetic susceptibility [1] evidence a
strong anisotropy between the stacking direction and the two-
dimensional ET planes, which may even become supercon-
ducting below transition temperatures of about 10 K [8–11].
Even though a large variety of experimental techniques has
been employed to study the character of the superconducting
order parameter, no consensus on the symmetry of the gap
function has been reached so far and proposals range from s

wave [12–14] to d wave [15–23] states. Even within the group
of researchers that agree on a d-wave superconducting order
parameter, there are controversial measurements regarding the
position of the nodes on the Fermi surface [17,19,24,25]. How-
ever, the similar phase diagrams (antiferromagnetic Mott and
SC phase) of the high-temperature cuprate superconductors
and κ-(ET)2X suggest a common pairing mechanism based
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on antiferromagnetic spin fluctuations, although the additional
effect of geometrical frustration in the κ-(ET)2X family yields
another degree of complexity with not yet completely under-
stood consequences [26,27].

In a recent study [24,28], a comparison of the widely
used dimer model and the more accurate molecule model
has provided evidence that a strong degree of dimerization,
characterized by the intradimer hopping, is not sufficient to
guarantee the validity of the dimer approximation. In contrast,
it was shown that due to the in-plane anisotropy of the
hopping parameters this approximation is not applicable to
the whole κ-(ET)2X family, where the more accurate descrip-
tion within the molecule model even results in a different
gap symmetry. All materials were found to be located in
the eight-node gap s + dx2−y2 region of the phase diagram
with some compounds close to the phase boundary to a dxy

symmetry. Scanning tunneling spectroscopy measurements
for κ-(ET)2Cu[N(CN)2]Br showed compatibility with the
proposed eight-node gap symmetry [24]. However, as these
measurement can only access the absolute value of the gap
function, phase sensitive measurements will be required to
uniquely settle this discussion also for the other members of
the κ-ET family.

All the previously mentioned analyses were based on
weak-coupling RPA calculations. Since providing an accurate
location of the boundary between the two gap symmetries may
help to unveil the origin of apparent contradicting experimental
observations in the κ-(ET)2X family, in the present work we
go beyond RPA and reanalyze the superconducting properties
in these materials. We employ the linearized Eliashberg theory
combined with an extension of the single-band intermediate-
coupling two-particle self-consistent (TPSC) approach
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introduced by Vilk and Tremblay [29]. This enables us to not
only calculate the gap symmetries in the dimer and molecule
model but also, in general, to determine the critical tempera-
tures associated with the different models and materials. We
find that in the dimer model the critical temperatures show
an approximately linear dependence on the frustration ratio
with dxy symmetry of the order parameter in agreement with
previous studies [30,31]. In contrast, the real κ-(ET)2X com-
pounds do not follow this simple relation, further evidencing
the inadequacy of the dimer approximation. In the molecule
model we find that the inclusion of the TPSC self-energy
gives rise to pseudogap physics preventing the transition to the
superconducting state. Although this hampers the calculation
of critical temperatures, we can determine the gap symmetries
by carefully approaching the SC phase and find that besides a
large in-plane anisotropy and large intradimer hopping, strong
correlations stabilize gap functions with extended s + dx2−y2

symmetry at low temperatures. Hence, the gap symmetry in
these materials is determined by the complex interplay of
these experimentally highly tunable parameters. Based on
these results we conclude that small changes on the crystal
structure introduced via pressure, chemical doping, or disorder
may easily switch between the different symmetry states.

II. METHODS AND MODELS

A. Ab initio calculations and model Hamiltonian

As the electronic properties of the κ-(ET)2X systems, such
as the conductivities, are highly anisotropic with the largest
contribution within the ET planes, it is justified to focus only
on these two-dimensional planes. The κ packing motif allows
for two distinct model descriptions with different degrees of
approximation. The dimer model constitutes the strongest sim-
plification, in which the center of two parallel ET molecules is
taken as a single lattice site, resulting in a half-filled anisotropic
triangular lattice model with two dimers in the crystallographic
unit cell [28] (two-band model). The molecular model further
resolves the inner structure of each dimer as each individual
molecule corresponds to a tight-binding lattice site yielding a
3/4-filled model with four molecules per crystallographic unit
cell (four-band model).

Using the projective Wannier function method as imple-
mented in FPLO, the hopping amplitudes between the localized
molecular orbitals have been calculated [28], where the large
differences in the order of magnitude allow us to neglect all
but four hopping parameters (t1,t2,t3,t4, see Fig. 1) in a first
approximation since the next order of hopping elements is
about 10% of the smallest hopping t4. Our kinetic energy
Hamiltonian is then given by

Hkin =
∑

ij,α,β,σ

t
αβ

ij [c†βσ (�rj )cασ (�ri) + H.c.]

−μ
∑

i,α,σ

c†α,σ (�ri)cα,σ (�ri), (1)

where tij,αβ are the hoppings from site α in unit cell i to site
β in unit cell j , μ is the chemical potential, c†ασ (�ri) creates
an electron in unit cell i at site α with spin σ , while cασ (�ri)
annihilates an electron in unit cell i at site α with spin σ .
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FIG. 1. (a) Lattice structure within the molecule model of the
κ-(ET)+2 layer. ET molecules are single lattice sites (ellipsoids
in figure). The amplitude of the four dominant hopping integrals
(t1,t2,t3,t4) are shown by the thickness of the line. (b) In the dimer
model one has to integrate out t1 and average between t2 and t4 that
results in the dominant hopping integral t while t ′ is connected to
the former t3 by dividing contributions from the two separate ET
molecules that are counted now as one.

The parameters of the dimer model

Hkin =
∑

〈ij〉,α,σ

t[c†α,σ (�ri)cα,σ (�rj ) + H.c.]

+
∑

[ij ],α,β,α �=β

t ′[c†α,σ (�ri)cβ,σ (�rj ) + H.c.]

−μ
∑

i,α,σ

c†α,σ (�ri)cα,σ (�ri) (2)

can be derived using the geometrical relations

t = (|t2| + |t4|)/2, (3a)

t ′ = |t3|/2. (3b)

The tight-binding dispersions can be easily determined
analytically through the four matrix elements between the two
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dimer states |α = 0〉 and |α = 1〉 in the dimer model,

〈0|Hkin|0〉(�k) = 〈1|Hkin|1〉(�k) = 2t ′cos(kxa) − μ, (4a)

〈0|Hkin|1〉(�k) = t(eikxa/2+ikyb/2 + e−ikxa/2+ikyb/2

+ eikxa/2−ikyb/2 + e−ikxa/2−ikyb/2)

= 〈1|Hkin|0〉∗(�k), (4b)

and six distinct contributions between the four molecule states
for the molecule model

〈0|Hkin|1〉(�k) = t1 + t3 eikxa, (5a)

〈0|Hkin|2〉(�k) = t4(1 + e−ikyb), (5b)

〈0|Hkin|3〉(�k) = t2(1 + e−ikxa), (5c)

〈1|Hkin|2〉(�k) = t2 e−ikyb(1 + e−ikxa), (5d)

〈1|Hkin|3〉(�k) = t4 e−ikxa(1 + e−ikyb), (5e)

〈2|Hkin|3〉(�k) = t1 + t3 e−ikxa, (5f)

〈α|Hkin|α〉(�k) = −μ, (5g)

where a and b are lattice constants of the two-dimensional ET
plane and the remaining matrix elements are obtained from
H = H †. Note that the chemical potential was determined
numerically to ensure the correct filling in both models.

B. Two-particle self-consistent calculations

Due to the similarity of the phase diagram of cuprates and
κ-(ET)2 materials we can assume a spin-fluctuation based
mechanism for the superconductivity. We will use an exten-
sion of the two-particle self-consistent (TPSC) approach as
introduced by Vilk and Tremblay [29] to find an approximate
solution for our multisite dimer and molecule models with
Hubbard on-site interaction,

H = Hkin + Hint

= Hkin + U

2

∑

i,α,σ

nασ (�ri)nασ̄ (�ri), (6)

where U is the Hubbard on-site interaction and niασ is the
number operator for electrons in unit cell i at site α with
spin σ . Note that the on-site U term in the dimer model
corresponds to the Coulomb interaction in the dimer where
one can approximate [2,32] Udim ≈ 2t1, while the on-site U in
the molecule model corresponds to the Coulomb interaction in
the molecule Umol. In the present work we do not include
intersite Coulomb contributions [33]. Please note that the
inclusion of intermolecular Coulomb repulsion allows for
the possibility of describing charge density wave phases in
proximity to superconductivity [34,35]. However, the observed
solutions are very similar and we can only speculate that this
may be due to a robustness of the instabilities that yield the
resulting gap symmetries against further-neighbor interactions.

So far, TPSC has been successfully applied, for instance, to
investigate pseudogap physics [36] and the domelike shape
of the superconducting critical temperature [37,38] for the
Hubbard model on a square lattice. TPSC is a conserving
and self-consistent approximation, in which higher order
contributions to the four-point vertices are reduced to their

averages. As a consequence, the resulting equations yield a
weak- to intermediate-coupling approach for the solution of
the Hubbard model.

We define the noninteracting multisite Green’s function

G0
μν(�k,iωn) = [iωnI − Hkin(�k)]−1

μν , (7)

where μ,ν are site indices, �k is a two-dimensional reciprocal
lattice vector, and ωn = (2n + 1)πT are fermionic Matsubara
frequencies at temperature T . Moreover, we calculate the
noninteracting susceptibility χ0,

χ0
λμνξ (�q,iqm)=− 1

N�k

∑

�k,b,c

aν
b (�k)aλ∗

b (�k)aμ
c (�k + �q)aξ∗

c (�k + �q)

× f [εb(�k)] − f [εc(�k + �q)]

iqm + εb(�k) − εc(�k + �q)
, (8)

where matrix elements aμ,a as well as energy eigenvalues
εa(�k) are obtained by diagonalization of the tight-binding
Hamiltonian Hkin. In order to facilitate the assignment of
indices, we will follow the convention that greek letters denote
site indices and latin letters denote band indices. Moreover,
the susceptibility depends on the difference of the thermal
occupation probability f (x) = 1

1+ex/(kB T ) , which follows from
Fermi-Dirac statistics, and bosonic Matsubara frequencies
iqm = 2mπT . For iqm = 0, the denominator becomes diver-
gent for equal band energies, which we treat by means of
the rule of l’Hospital. Due to the fact that the considered
Hamiltonians bear no nonlocal interactions, for susceptibilities
of the form χμμνν (see below) we can reduce the tensor product
of vector spaces from CN ⊗ CN ⊗ CN ⊗ CN to CN ⊗ CN .

Spin and charge fluctuations within TPSC are treated by
spin and charge susceptibilities (χ sp and χ ch, respectively)
from linear response theory:

χ sp(�q,iqm) = [I − U spχ0(�q,iqm)]−12χ0(�q,iqm),

χ ch(�q,iqm) = [I + U chχ0(�q,iqm)]−12χ0(�q,iqm). (9)

The renormalized irreducible vertices in the spin channel U sp

and in the charge channel U ch are determined by local spin and
charge sum rules

T

N�q

∑

�q,iqm

χ sp
μμ(�q,iqm) = nμ − 2〈nμ↑nμ↓〉,

T

N�q

∑

�q,iqm

χ ch
μμ(�q,iqm) = nμ + 2〈nμ↑nμ↓〉 − n2

μ, (10)

where the spin vertex U sp is calculated from an ansatz equation
that is motivated by the Kanamori-Brueckner screening [29]

U sp
μν = 〈nμ↑nμ↓〉

〈nμ↑〉〈nμ↓〉Uδμ,ν (11)

and the diagonal elements of the charge vertex U ch
μμ are

directly calculated from the local charge sum rule while
off-diagonal elements are zero. Correlation effects within the
Green’s function G are taken into account using a single-shot
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self-energy � and incorporated by the Dyson equation

�μν(�k,iωn) = Unμ,−σ δμ,ν + UT

8N�q

∑

�q,iqm

[
3U sp

μμχ sp
μν(�q,iqm)

+U ch
μμχ ch

μν(�q,iqm)
]
G0

μν(�k − �q,iωn−m), (12)

Gμν(�k,iωn) = [
G0−1

μν (�k,iωn) − �μν(�k,iωn)
]−1

. (13)

In this framework, we employ Migdal-Eliashberg theory to
calculate the superconducting gap �μν(�k,iωn). We restrict our
calculations to singlet and even-frequency and even-orbital
solutions, i.e.,

�μν(�k,iωn) = �μν(−�k,iωn) = �μν(�k, − iωn). (14)

The linearized Eliashberg equation takes the form

λ�μν(�k,iωn)

= T

N�k′

∑

�k′,iωn′

Vμν(�k − �k′,iqn−n′ )

×
∑

α,β

Gμα(�k′,iωn′ )�αβ(�k′,iωn′ )G∗
νβ(�k′,iωn′ ), (15)

where the temperature at which the largest positive eigenvalue
λ becomes unity indicates the onset of superconductivity. The
singlet pairing potential is calculated within the random phase
approximation (RPA) [39,40] and given by

V (�q,iqm) = − 3
4U spχ sp(�q,iqm)U+ 1

4U chχ ch(�q,iqm)U− 1
2U.

We enforce singlet solutions by sym-
metrization of the gap (G�G)sμν(�k,iωn) =
1
2 [(G�G)μν(�k,iωn) + (G�G)νμ(−�k, − iωn)] entering on
the right-hand side of the linearized Eliashberg equation
[Eq. (15)]. For the numerical evaluation of the noninteracting
susceptibility we employed adaptive cubature based on
a three-point formula for triangles with an integration
tolerance of 10−6. The interacting susceptibilities are
strongly peaked when approaching the critical temperature.
Therefore they were calculated on a 200 × 200 k grid for
the molecule model and 300 × 300 k grid for the dimer
model, while all other quantities were well converged on
70 × 70 grids. For the evaluation of Eqs. (12) and (15),
we additionally employed fast Fourier transforms and
the circular convolution theorem for a highly efficient
implementation. The summation over Matsubara frequencies
was performed for NMats = 40(0.025/T ) points, whereas
high-frequency corrections up to the order of 1

ω2 were
included by extrapolation.

III. RESULTS AND DISCUSSION

A. Half-filled dimer model

Although the insufficiency of the dimer model for capturing
the physics of the κ-(ET)2X systems has been discussed
[28,35], we will first use this well-explored model as a
benchmark for our TPSC calculations.

In the context of the high-Tc cuprate superconductors it is
already well known that the half-filled single-band Hubbard
model on the square lattice stabilizes dx2−y2 pairing solutions.

-π 0 π
-π

0

π

kx

ky

-1

-0.5

 0

 0.5

 1

-π 0 π
-π

0

π

kx

ky

-1

-0.5

 0

 0.5

 1

FIG. 2. Superconducting gap �(�k,iω0) of the dimer model in
the first physical Brillouin zone (see main text). The dominant dxy

character shows nodes along the boundaries, since it has to be 2π

periodic, and a sign change between (a) the first band and (b) the
second band that has been previously assigned to strong interband
coupling [31].

Introducing anisotropic diagonal couplings t ′ one expects
superconductivity to become unstable for high values of the
frustration t ′/t , while the d-wave solution will be retained
for intermediate frustration strengths, as it is the case for the
half-filled single-band triangular lattice model for κ-(ET)2X.
In order to compare the results of this section to the molecule
model considered in the following section, we have to trans-
form this solution to the physical Brillouin zone (BZ) of the
κ-(ET)2X (corresponding to two dimers per crystallographic
unit cell), which is half as large as of the single-band model.
Folding the BZ corners and rotating by 45◦ [28], we expect
a dxy solution with gap maxima at (±π, ± π ). Additionally,
the 2π periodicity of the gap function enforces node lines
along the BZ boundaries (kx,π ) and (π,ky). Note that there
is a sign change between the two bands at the Fermi surface
(see Fig. 2), which previously has been attributed to strong
interband coupling [31].

In order to explore the role of the diagonal hopping t ′
we have calculated the largest positive eigenvalue of the
linearized Eliashberg equation [Eq. (15)] at T = 0.003 eV ≈
35 K in dependence of the hopping ratio t ′/t and the relative
on-site repulsion Udim/t (Fig. 3), where a large eigenvalue
implies a close proximity to the superconducting state that
is realized at λ = 1. We find that several effects compete:
at large t ′/t ratios the antiferromagnetic (afm) fluctuations
that drive superconductivity are strongly suppressed, while for
large correlations a pseudogap opens, reducing the number of
states close to the Fermi level and therefore the total energy
gained by the formation of superconducting pairs. Therefore,
both effects are needed to enhance spin fluctuations but they
should be kept moderate enough to prevent magnetic ordering.

Finally, we calculate critical temperatures for eight repre-
sentatives of the κ-(ET)2X family for Udim ≈ 2t1 (see Table I).
We observe no obvious relation to the measured critical temper-
atures. However, plotting the calculated critical temperatures
against the corresponding frustration values (Fig. 4), we find
a monotonous decrease with increasing geometric frustration,
i.e., the diagonal hopping suppresses the afm spin fluctuations
that drive the superconductivity. As the measured critical
temperatures do not follow this simple trend, it is obvious that
we have to go beyond the dimer model in order to understand
the superconductivity in the κ-(ET)2X family.
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FIG. 3. Largest positive eigenvalue of the linearized Eliashberg
equation at T = 0.003 eV within the dimer model. Moderate on-site
interactions are crucial to obtain superconductivity, while too strong
correlations (Udim/t � 1.5) result in the opening of a pseudogap
and Mott insulator physics. Strong afm insulating tendencies can be
reduced by next nearest neighbor hoppings and the implicit geometric
frustration. A combination of both (t ′/t ≈ 0.25 and Udim/t > 3.4) is
most favorable for superconductivity.

B. 3/4-filled molecule model

We consider now the proposed four-parameter molecule
model [28] as the starting point of the present study (the
comparison to the full ab initio derived tight-binding model
is discussed in Appendix B).

In the molecule model, the center of each ET molecule
constitutes a lattice site in the tight-binding model yielding
a 3/4-filled four-band system (four molecules per unit cell).
Compared to the dimer model two additional degrees of
freedom are accessible: the strength of the intradimer hopping
and the in-plane anisotropy. In a previous study [28] it was
demonstrated that already a small degree of in-plane anisotropy
results in considerable symmetry changes of the gap function.
For all realistic parameter sets the exotic eight-node gap func-
tion was found to be favorable, whereas several compounds
were shown to lie close to a phase boundary to dxy symmetry.

As the previous static RPA approach may only give qual-
itative results on the gap symmetry, in this study we apply
the above introduced combination of the linearized Eliashberg

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7
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Tc [K] Tc(t’/t)=-84(t’/t)+70.6

FIG. 4. Critical temperature Tc calculated within the combined
TPSC + Eliashberg approach as a function of t ′/t for the eight
κ-(ET)2X materials listed in Table I. Tc drops monotonically with
increasing t ′/t since the geometric frustration suppresses an afm state
and reduces therefore spin fluctuations that are key ingredients for
large Tc. As a guide to the eye we show the linear fit to the data
points.

equation, the RPA expression for the pairing vertex, and the
TPSC self-energy corrected Green’s functions and renormal-
ized vertices.

Interestingly, the gap symmetries calculated with the
more advanced TPSC approach differ from the RPA pre-
dictions. For moderate on-site molecule Umol values, only
κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2](CN), with the
highest in-plane anisotropies feature s± + dx2−y2 symmetry
(see Fig. 5), while the other compounds exhibit a simple dxy

symmetry as in the dimer model. Only for larger values of
Umol s± + dx2−y2 is stabilized in a large region in param-
eter space including all superconducting materials studied
with RPA if Umol � 0.7 eV (see Fig. 7). This result and
the experimental evidence of s± + dx2−y2 gap symmetry in
κ-(ET)2Cu[N(CN)2]Br [24] indicate the importance of cor-
relations in these materials not only for the enhancement of
spin fluctuations but also for the symmetry of the gap function.
Although the TPSC approach, in general, also allows us to de-
termine the critical temperatures for superconductivity, we find
that correlation effects give rise to strong antiferromagnetic

TABLE I. Comparison of the calculated and experimental critical temperatures Tc for several organic charge transfer salts. The calculations
within the dimer model do not reproduce the general trend of the experimental results but can be understood by means of geometric frustration
(see Fig. 4).

Material t ′/t t4/t2 Udim (eV) T TPSC
c (K) Tc (K) [8–11]

κ-(ET)2Ag(CF3)4(TCE) 0.449 0.362 0.336 32.5 2.6
κ-(ET)2I3 0.346 0.266 0.36 44.1 3.6
κ-(ET)2Ag(CN)2I · H2O 0.473 0.305 0.37 31.3 5.0
κ-α′

1-(ET)2Ag(CF3)4(TCE) 0.495 0.362 0.332 27.1 9.5
κ-(ET)2Cu(NCS)2 0.69 0.171 0.38 15 10.4
κ-α′

2-(ET)2Ag(CF3)4(TCE) 0.495 0.369 0.33 26.2 11.1
κ-(ET)2Cu[N(CN)2](CN) 0.669 0.172 0.35 13.9 11.2
κ-(ET)2Cu[N(CN)2]Br 0.455 0.379 0.354 32.5 11.6
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FIG. 5. s± + dx2−y2 superconducting gap �(�k,iω0) as obtained
in the four-band molecule model at low temperatures. This kind of
symmetry was already observed in Ref. [28] in the context of RPA
calculations.

fluctuations (as indicated by diverging spin susceptibilities)
in TPSC, which do not allow us to obtain meaningful results
in the λ ≈ 1 regime for the molecule model [41]. Therefore,
we can only estimate trends for the critical temperatures from
the magnitude of the eigenvalue of the Eliashberg equation
at higher temperatures above the superconducting transition,
as displayed in Fig. 6, where we assumed Umol = 0.65 eV
[42]. We find that although the two materials with the s± +
dx2−y2 solution show the strongest deviations in the hopping
parameters, they are located on the same branch as most
of the other materials. Instead, κ-(ET)2Ag(CN)2I · H2O and
κ-(ET)2Cu[N(CN)2]Br exhibit especially high eigenvalues in
the considered temperature range that do not coincide with
experimental observations. Nevertheless, it is interesting to
note that also the s± + dx2−y2 compounds prefer a dxy solution
at high temperatures above the superconducting transition (see
Appendix A). Only below ∼20 K the eight-node solution is
stabilized, although the susceptibilities already reveal the ten-
dency towards the s± + dx2−y2 solution at higher temperatures
(see Fig. 8 in Appendix A). While the spin susceptibilities of the
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FIG. 6. Largest positive eigenvalue λ of the linearized Eliashberg
equation for Umol = 0.65 eV. We see only small differences between
the values for each material which can be understood from the
similarity of the hopping parameters. The four-band model based on
the largest hopping elements is not sufficient to reproduce the trends
of Tc.
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FIG. 7. Largest positive eigenvalue λ of the linearized Eliashberg
equation for Umol = 0.55, 0.6, 0.65, and 0.7 eV (t1, t2, and t3 averaged
from GGA results [28]). We see an overall increase in λ by going to
larger values ofUmol and an inset of extended s + dx2−y2 gap symmetry
(orange background) at small values of t4/t2 while dxy symmetry (blue
background) is dominant otherwise.

materials displaying dxy symmetry in the considered parameter
range peak at reciprocal vectors q ∼ (0.6π,0.37π ), the peaks
are significantly shifted to higher qx values for the two com-
pounds with high in-plane anisotropies q ∼ (0.76π,0.41π ).
Moreover, as mentioned above, in the TPSC calculations the
magnitude of the on-site Hubbard repulsion strongly influences
the gap symmetry. At low values of the Hubbard interaction
it is not possible to access the s± + dx2−y2 region for any
strength of the in-plane anisotropy, while slightly larger values
shift the transition line towards t4/t2 values of up to 0.365 for
Umol = 0.7 eV (see Fig. 7).
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FIG. 8. Largest eigenvalue λ of the linearized Eliashberg equation
for κ-(ET)2Cu(NCS)2 in the four-parameter model with Umol =
0.65 eV. A change in the gap symmetry (from dxy to extended
s + dx2−y2 ) becomes visible at T ≈ 22 K and is accompanied by a
sudden drop in the eigenvalue that can be understood as a suppression
of the superconducting state due to competing symmetries.
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FIG. 9. Static spin susceptibility
∑

μ χsp
μμ(�q,0) for s± + dx2−y2 (a)

and dxy (b) gap symmetries. The dominant spin fluctuations in the
compounds with smaller in-plane anisotropy have wave vectors of
about (0.6π,0.37π ), while the dominant vector is shifted towards
large k values in the materials with high in-plane anisotropies, Q ∼
(0.76π,0.41π ).

IV. SUMMARY AND OUTLOOK

To summarize, we have applied a combination of TPSC
and the Eliashberg framework for superconductivity in order
to derive the gap symmetries and trends for the critical
temperatures in the dimer and molecule models for several
superconducting κ-(ET)2X materials. Within the dimer model
we find that the critical temperatures only reflect the frustration
of the system but do not reproduce the experimental trends. Our
calculations for the molecule model confirm previous findings
that the additional degrees of freedom, i.e., the intradimer
hopping and the in-plane anisotropy, are decisive for the gap
symmetry and can result in s± + dx2−y2 solutions. However, we
find that the s± + dx2−y2 gap is further stabilized by increasing
correlations and may therefore be realized within the range
of realistic model parameters. These three tuning parameters
are known to be very sensitive to pressure or strain as well
as to endgroup disorder. Switching between the different gap
symmetries may therefore be easily realizable and should be
observable in for instance state-of-the-art scanning tunneling
spectroscopy measurements.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF GAP SYMMETRY

Our combined TPSC and Eliashberg framework allows
us to track the gap symmetry and the corresponding eigen-
value at temperatures above the superconducting transition.
Interestingly, we find that at high temperatures, T � Tc, all
materials yield a dxy symmetry. Only at temperatures close to
the superconducting transition, the materials with high in-plane
anisotropy and/or large correlations undergo a transition to the
extended s + dx2−y2 symmetry accompanied by a change of the
slope and a nonmonotonous jump in the Eliashberg eigenvalue,
as shown in Fig. 8 for the κ-(ET)2Cu(NCS)2 compound. This
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FIG. 10. Temperature evolution of the largest Eliashberg eigen-
value λ for the four-parameter (violet line) and full ab initio-derived
kinetic Hamiltonian (green line) for κ-(ET)2Cu[N(CN)2]Br with
Umol = 0.65 eV. While the gap symmetry remains unchanged, the
inclusion of long-range hoppings stabilizes the superconducting state.

small drop in the eigenvalue can be interpreted in terms of a
competition between the different order parameter symmetries,
which destabilizes the superconducting state.

APPENDIX B: SUSCEPTIBILITIES AND
GAP SYMMETRIES

Based on the discussion of the temperature dependence
of the gap symmetries, we think that all materials might
exhibit s± + dx2−y2 gap symmetry at very low temperatures,
at which we can not perform meaningful calculations due
to diverging factors in the linearized Eliashberg equation. In
order to resolve this issue, we further investigate the driving
force of the superconducting transition, i.e., the spin suscepti-
bilities. Indeed, we can find two clear distinctions between
the high in-plane anisotropy materials and the other κ-ET
materials (see Fig. 9): First, the broad shoulder connecting
the one-dimensional parts of the Fermi surface is much less
pronounced in the materials with high in-plane anisotropy.
Second, the peak position is further shifted towards the Bril-
louin zone boundaries. While the strongest peaks in most
of the materials are located at (0.6π,0.37π ), it is shifted to
higher kx , ky values, (0.76π,0.41π ), in κ-(ET)2Cu(NCS)2 and
κ-(ET)2Cu[N(CN)2](CN).

Hence, a careful inspection of the spin susceptibilities even
at high temperatures can give clues as to the necessary strength
of the correlations to realize s± + dx2−y2 gap symmetries.

APPENDIX C: REDUCTION TO LARGEST
HOPPING ELEMENTS

In order to rule out the possibility that inclusion of further
hopping parameters crucially influences the gap symmetries or
transition temperatures, we have performed test calculation,
where we compare the four-parameter calculations with the
results of calculations, in which we take into account the full
Hamiltonian as obtained by the Wannier projection method
in DFT. In Fig. 10 we show the temperature evolution of
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the largest Eliashberg eigenvalue for the two models for one
representative of the κ-ET family. While we always obtain
the same gap symmetry independent of the considered model,
the eigenvalue is considerably enhanced due to the additional

hoppings. Hence, we want to stress that accurate calculations
of critical temperatures do not only have to carefully choose the
strength of the Hubbard repulsion but also have to go beyond
the four-parameter model.
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