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Polariton Bose condensate in an open system: Ab initio approach
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In the framework of path-integral formalism and Keldysh technique for a nonequilibrium system we explore the
kinetics of the polariton condensate in a quantum well embedded in an optical microcavity. We take into account
pumping and leakage of excitons and photons. We make an ab initio derivation of the equations governing the
dynamics of the condensates and reservoirs and show that the real open polariton system has a non-Markovian
character at times comparable to the Rabi oscillation period.
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I. INTRODUCTION

Phase transitions in an open system are among the most ex-
citing fields of modern condensed matter physics. The exciton-
polariton Bose-Einstein condensation [1,2] in semiconductor
microcavities possesses an essentially nonequilibrium charac-
ter, which makes the polariton system open and coupled with
external reservoirs.

The history of efforts to consider the polariton condensate as
an open system is rather rich. The later 1990s are characterized
by studies based on the Boltzmann equations [3–8]. Such an
approach brought an opportunity to explore many key features
of polariton condensation, such as the most significant mecha-
nisms of the exciton and polariton relaxation and evolution of
the occupation numbers towards the condensation in presence
of particle transfer from a reservoir which is in turn pumped by
a laser. One of the factors revealed in the course of the research
was the problem of the bottleneck arising in consequence of
the phase space narrowing in the region of the exciton-photon
resonance. However, the Boltzmann equation technique is
limited by mathematical cumbersomeness and inability to
describe spontaneously occurring phase correlations and, thus,
ignores the coherent character of the arising macroscopic state.

The work by Keeling and Berloff [9] was a remarkable
attempt to suggest a model of the polariton condensate as an
open dissipative system leaving the reservoir beyond consid-
eration in order to avoid excessive difficulty. The pump and
leakage were inserted directly into the equation for a polariton
condensate in a phenomenological physically reasonable way.

Wouters, Carusotto, and Ciuti [10–12] described coupling
of the polariton condensate with a reservoir of noncondensate
excitons introducing a phenomenological function R(nR) into
the Gross-Pitaevskii equation applied for the polariton con-
densate. Here, the argument nR is the particle density in the
reservoir, and an additional equation was involved to describe
its time evolution.

Wouters and Savona [13] pointed out that the phase space
of the excitons can be naturally divided into two parts: a low-
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energy polaritonic region where excitons resonantly interact
with photons and resulting quasiparticles named lower and
upper polaritons have an extremely small effective mass, and a
high-energy excitonic reservoir with a high effective mass. So,
we can introduce the boundary wave vector k0, which separates
the lower-energy region where the polariton condensate or
quasicondensate arises and the rest of the phase space.

Baumberg and co-workers [14,15] overcame the problem of
the bottleneck through the use of optical parametrical pumping
(OPO). This experimental achievement motivated theoretical
studies [16–19]. Simple models split the exciton reservoir
into two parts: the first one accounts for resonant particle
interchange with the condensate, the second one describes the
rest of excitons [20].

Haug and co-workers [21] appropriated the first-principle
consideration and made clear the structure of the phenomeno-
logical function R(nR) introduced by Wouters and Carusotto
[11]. The authors described the experimentally observed spon-
taneous pattern formation [22] in the Markovian approxima-
tion presuming the description local in time.

In this paper, we develop an ab initio approach to the
polariton condensate as an open system coupled with several
external reservoirs (see also [23,24]). We start with the exciton-
photon basis since the separate treatment of excitons and
photons provides the natural way to introduce two different
reservoirs for excitons and for photons.

We use path-integral formalism (the details of the technique
applied to the polariton BEC are discussed in [25]) with the
Schwinger-Keldysh time contour, as this technique constitutes
the only approach to nonequilibrium problems which allows
us to incorporate the Langevin equation, the Fokker-Planck
equation, quantum kinetic equations, and Keldysh nonequilib-
rium Green functions. These all are powerful instruments of
analysis [26,27].

We make an ab initio derivation of quantum kinetic equa-
tions for the coupled condensates of photons and excitons
and for corresponding reservoirs. The kinetic equations for
the condensates are obtained in the Langevin form. The
corresponding Fokker-Planck equation is used to describe
qualitatively the formation of the polariton condensate under
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simultaneous coherent and noncoherent pump. Here, we make
an attempt to understand the phase transition dynamics in the
polariton problem.

Using Keldysh nonequilibrium Green functions, we obtain a
closed-form expression for the spectral function of the exciton
condensate. The obtained relaxation time is found out to be
of the same order of the period of the Rabi oscillations. This
fact implies the non-Markovian character of the real polariton
system at comparable times.

This fact should be considered in the light of arising tech-
nologies of femtosecond control of the polariton system state.
One of the outstanding achievements here is the “full Poincare
beams” experimental study [28] (see also [29–37]). As it was
noted by the authors of this work, knowing the exciton reservoir
character is of crucial importance for adequate interpretation
of the obtained experimental results.

We derive an explicit solution of equations governing the
dynamics of the polariton condensate coupled with the reser-
voir and discuss the effects arising due to the non-Markovian
character of the open system.

II. ISOLATED EXCITON-PHOTON SYSTEM

We study a system of exciton polaritons in a semiconductor
optical microcavity with an embedded quantum well. In the
simple case when the quantum well possesses in-plane transla-
tional symmetry, the energy spectrum of excitons in the region
of small in-plane momenta has the form

εex
q = εex

0 + h̄2q2

2mex

, (1)

where ε is the dielectric constant of the medium, εex
0 =

2mexe
4/ε2h̄2 is the two-dimensional (2D) exciton binding

energy, mex = me + mh is the 2D exciton mass, and me

and mh are the effective masses of an electron and a hole,
respectively, q is the in-plane wave vector. We assume one-
particle eigenstates describing noninteracting excitons to be
found from the time-independent Schrödinger equation(

− h̄2�2

2mex

− εex
q

)
χq(x) = 0. (2)

In the case of the planar microcavity, the photons for small
in-plane momenta have the following dispersion:

εph
q = h̄c√

ε

√
q2

⊥ + q2 ≈ ε
ph

0 + h̄2q2

2mph

. (3)

Here, εph

0 = πh̄cn/L
√

ε and mph = πh̄
√

ε/cL is the effective
photon mass. We consider the lowest state n = 1. We will as-
sume microcavities to possess in-plane translational symmetry
and, so, the one-particle problem for photons reduces to(

− h̄2�2

2mph

− εph
q

)
ψq(x) = 0. (4)

In the functional approach, the grand-canonical function of
the isolated exciton-photon system is the functional integral
(see details, e.g., in [25])

Z0 =
∫

Dχ Dχ̄ Dψ Dψ̄ e− i
h̄
S0[χ̄ ,χ,ψ̄,ψ], (5)

where the action S consists of four terms

S0[χ̄ ,χ,ψ̄,ψ] = Sex[χ̄ ,χ ] + Sph[ψ̄,ψ]

+ SRabi[χ̄ ,χ,ψ̄,ψ] + Sint[χ̄ ,χ ], (6)

describing excitons, photons, Rabi splitting, and interexciton
interaction, respectively:

Sex[χ̄ ,χ ] =
∫

C

dt

∫
dx χ̄(x,t)

×
(

ih̄
∂

∂t
− h̄2�2

2mex

− μ

)
χ (x,t), (7)

Sph[ψ̄,ψ] =
∫

C

dt

∫
dx ψ̄(x,t)

×
(

ih̄
∂

∂t
− h̄2�2

2mph

+ E0 − μ

)
ψ(x,t),

(8)

SRabi[χ̄ ,χ,ψ̄,ψ] =
∫

C

dt

∫
dx

× h̄�

2
[ψ̄(x,t)χ (x,t) + ψ(x,t)χ̄ (x,t)],

(9)

Sint[χ̄ ,χ ] = − 1

2h̄

∫
C

dt

∫
dx dx′ χ̄ (x,t)χ̄ (x′,t)

×V (x − x′)χ (x′,t)χ (x,t). (10)

Here, the integral
∫
c
dt is taken along the Schwinger-Keldysh

contour, h̄� is the energy of Rabi splitting, μ is the chemical
potential, in (8) E0 = ε

ph

0 − εex
0 is detuning between exciton

and photon dispersion relations. χ (x,t) and ψ(x,t) are the field
operators written in the basis of coherent states and hence they
constitute c-number functions connected with χq(x) ψq(x) via
relations

χ (x,t) =
∑

q

χq(t) χq(x), ψ(x,t) =
∑

q

ψq(t) ψq(x) (11)

with the coefficients of expansion χq(t) and ψq(t) dependent
on time.

III. INTRODUCTION OF RESERVOIRS

Now, we insert our system into two thermal reservoirs
separately for excitons and photons. We start with the exciton
reservoir and introduce the momentum p0 in order to separate
particles withp < p0 which we assume to belong to the exciton
subsystem (for correspondent fields we keep notation χ ) and
particles with p > p0 we assume to be contained in the exciton
reservoir (their fields are denoted below as χR). We confine
ourselves only to two main mechanisms of system-reservoir
interplay. The first one is the direct exciton-exciton interaction
and the second one is system-reservoir interaction via the
semiconductor lattice.

The exciton-exciton interaction (10) resolves into the sum
of terms containing different orders of χ and χR . In order to
integrate out the exciton reservoir fields, we use the pertur-
bation theory up to the second order in V0. In the first order
we keep all terms, i.e., proportional to χ̄ χ̄χχ, χ̄Rχ̄RχRχR ,
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and χ̄ χ̄RχRχ . These terms conserve the number of particles
in the condensate and reservoir separately and do not lead to
exciton condensate-reservoir exchange. So, we need in the
second order of the perturbation theory to take into account
this process. The very crucial point of our exploration is
the statement that p0 can be chosen pretty smaller than the
momenta, which the most reservoir excitons have. Thus,
the biggest contribution is made by the process when one
exciton leaves or enters the condensate. Other processes of
the interexciton scattering that lead to the condensate-reservoir
exchange are substantially less probable. In the second order
we leave only the term with the lowest order of χ :∫

C

dt

(
− V0

2F

) ∑
p1,p2,h̄k

× [χ̄R
p2+h̄k(t)χ̄R

p1−h̄k(t)χp1 (t)χR
p2

(t) + H.c.
]
. (12)

Here and elsewhere, we assume the exciton interaction to have
the approximate local form V (x − x′) = V0 δ(x − x′), F is the
area of quantization.

When we limit ourselves to the second order of the per-
turbation theory, our approach is consistent with the golden
Fermi rule [see Eqs. (A6) and (B17)]. This fact justifies chosen
accuracy of calculations.

The interaction via the semiconductor lattice requires one
more subsystem to be taken into consideration: the gas of
phonons, which will be regarded as equilibrium one. We add
to the action the phonon part in the form

Sphon[c̄,c,χ̄ ,χ ] = S0
phon[c̄,c] + Sphon-ex[c̄,c,χ̄ ,χ ]

=
∫

C

dt

∫
C

dt ′
∑

k

c̄k(t)h̄ωk

×
[
− 1

ωk

∂2

∂t2
− 1

]
ck(t)

+
∫

C

dt

∫
C

dt ′
∑
kq

λk

× [χR
q (t)χ̄k+q(t)ck(t) + H.c.

]
. (13)

Here, ck are the phonon fields, ωk are the phonon frequencies.
The first term is the own action of phonons and the second one
accounts for the exciton-photon interaction. In this expression,
we integrate out phononic fields and obtain the effective action

with only excitonic degrees of freedom

Seff
phon[χ̄ ,χ ] = − 1

h̄

∫
C

dt

∫
C

dt ′
∑

k

λ2
k

h̄ωk

∑
q1q2

χ̄R
q1−k(t)

×χq1 (t)Dk(t,t ′)χR
q2

(t ′)χ̄q2+k(t ′). (14)

Here,

Dk(t,t ′) = h̄

∫
ω2

k

ω2 − ω2
k

e−iω(t−t ′) dω

2π
(15)

is the zeroth-order Green function of phonons.
We introduce the photon reservoir with the help of the

Caldeira-Legett model assuming the reservoir to be an ideal
Bose gas which occupies the volume VphR and has plane
waves ψR

k (x) = eikx/
√

VphR as eigenstates. In the basis of
coherent states, the reservoir is described by a c-number
function ψR(x,t) = ∑

k ψR
k (t) ψR

k (x).
The interaction between the photon subsystem and the

reservoir adds to the action (6) two following terms:∑
k

∫
C

dt ψ̄R
k (t)

(
ih̄

∂

∂t
− ε

phR

k + μ

)
ψR

k (t)

− 1√
VphR

∑
n

∑
k

[
rnkψ̄q(t)ψR

k (t) + r̄nkψq(t)ψ̄R
k (t)

]
.

(16)

The first term describes the reservoir degrees of freedom by
itself, while the second one describes the interaction of the
particle exchange type between the photon subsystem and the
reservoir. It is convenient to extract explicitly from the double
sum the term, which describes intensive coherent pumping in
some prescribed modes with wave vectors k1 as coupling with
classical fields �k1 :

1√
2

∑
k1

δqk1 [�k1 (t)ψ̄q(t) + �̄k1 (t)ψq(t)]. (17)

The coefficient 1/
√

2 is introduced for convenience.

IV. EQUATIONS FOR THE COUPLED EXCITON-PHOTON
SYSTEM IN A RESERVOIR

Next, we integrate out the exciton reservoir in (14) and (12)
using the perturbation theory up to the second order in λk
and V0, respectively. Analogously, we integrate out the photon
reservoir in (16) and arrive to the effective action of the exciton-
photon system

Seff [χ̄ ,χ,ψ̄,ψ] =
∑

q

∫
C

dt

∫
C

dt ′
[
χ̄q(t)

{(
ih̄

∂

∂t
− εex

q + μ

)
δ(t,t ′) − h̄�ex

q (t,t ′)
}
χq(t ′)

+ ψ̄q(t)

{(
ih̄

∂

∂t
− εph

q + μ

)
δ(t,t ′) − h̄�ph

q (t,t ′)
}
ψq(t ′)

+
∑
k1

δqk1 [�k1 (t)χ̄q(t ′) + �̄k1 (t)χq(t ′)]δ(t,t ′)+ h̄�

2
[ψ̄q(t)χq(t ′) + ψq(t)χ̄q(t ′)]δ(t,t ′)

]
. (18)

Here, the exciton self-energy h̄�ex
p (t,t ′) has the form

h̄�ex
p (t,t ′) = i

h̄

∑
k

λ2
k

h̄ωk
Dk(t,t ′)GexR

q−k(t,t ′) − V 2
0

h̄

1

F 2

∑
q1,q2

GexR
q1

(t,t ′)GexR
q1+q2−q(t ′,t)GexR

q2
(t,t ′) (19)
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FIG. 1. Graphic representation of �ex
p . First diagram accounts for

the direct exciton-exciton interaction, second diagram accounts for
the exciton interaction via the semiconductor lattice. Straight lines
denote the Green functions of reservoir excitons. Wave line denotes
the phonon Green function. Solid circles denote the vertex of the
exciton-exciton interaction, open circles denote the vertex of the
exciton-phonon interaction.

and the photon self-energy h̄�
ph
q (t,t ′) is

h̄�ph
q (t,t ′) = 1

h̄

1

F

∑
k

r̄qkG
phR

k (t,t ′)rqk. (20)

Here, GexR
k (t,t ′) and G

phR

k (t,t ′) are zeroth-order Green func-
tions of the exciton and photon reservoirs, respectively, and
will be discussed below. The diagrams used for the exciton
self-energy h̄�ex

p calculation are depicted in Fig. 1.
In (19) the first term originates from the interaction with

the reservoir via the lattice (14) and the second one originates
from the direct exciton-exciton interaction (12).

Next, we project the parts “+” and “−” of the Schwinger-
Keldysh contour on the axis of real time and perform the
Keldysh rotation with the help of the substitutions χ (t±) =
1/

√
2[χcl(t) ± χq(t)], ψ(t±) = 1/

√
2(ψcl(t) ± ψq(t)) (see,

e.g., [26,27] for details). As a result, we arrive to the following
expression for the exciton part of the action:

Sex[ψ̄cl,ψ̄q,ψcl,ψq]

=
∑

q

∫ +∞

−∞
dt

[
χ̄ cl

q (t)

(
ih̄

∂

∂t
− εex

q + μ

)
χq

q (t)

+ χ̄ q
q (t)

(
ih̄

∂

∂t
− εex

q + μ

)
χcl

q (t)

]

− h̄
∑

q

∫ +∞

−∞
dt

∫ +∞

−∞
dt ′
[
χ̄ cl

q (t)�ex(A)
q (t,t ′)χq

q (t ′)

+ χ̄ q
q (t)�ex(R)

q (t,t ′)χcl
q (t ′)

+ χ̄ q
q (t)�ex(K)

q (t,t ′)χq
q (t ′)

]
. (21)

Here, �ex(A)
q , �ex(R)

q , and �ex(K)
q are the advanced, retarded,

and Keldysh exciton self-energies. The explicit calculation
of �ex(R)

q and �ex(K)
q is presented in Appendix A (see also

Sec. VI).
We can introduce a new complex field ηex

q (t) and with the
help of the Hubbard-Stratonovich transformation rewrite the
last term in (21) as

1

h̄

∫ +∞

−∞
dt

∫ +∞

−∞
dt ′η̄ex

q (t)�ex(K)−1
q (t,t ′)ηex

q (t ′)

−
∫ +∞

−∞
dt
[
χ̄ q

q (t)ηex
q (t ′) + χq

q (t)η̄ex
q (t ′)

]
, (22)

where �ex(K)−1
q is inverse of the matrix �ex(K)

q .

We can undertake all operations performed above with the
photons; this part is omitted for the sake of brevity. We note
only that the coherent pumping term acquires the form

∑
k1

∫ +∞

−∞
dt δqk1

[
�k1 (t)ψ̄q

q (t) + �̄k1 (t)ψq
q (t)

]
(23)

and the Rabi cross action (9) after all transformations takes the
form ∑

q

∫ +∞

−∞
dt

h̄�

2

[
ψ̄q

q (t)χcl
q (t) + ψ̄cl

q (t)χq
q (t)

+ψq
q (t)χ̄ cl

q (t) + ψcl
q (t)χ̄ q

q (t)
]
. (24)

Taking in (21) and (24) the terms linear in χ̄
q
q (t) and setting

their sum to zero, we obtain the equation for the exciton
subsystem

ih̄
∂

∂t
χq(t) =

(
h̄2q2

2mex

− μ

)
χq(t)

+V0Nexχq(t) + 2V0NexR(t)χq(t) + h̄�

2
ψq(t)

+ h̄

∫ +∞

−∞
dt ′�ex(R)

q (t,t ′)χq(t ′) + ηex
q (t), (25)

where Nex(t) = ∑
p,|p|<p0

χ̄p(t)χp(t) is the condensate exciton
density and NexR(t) = ∑

p,|p|>p0
χ̄p(t)χp(t) is the reservoir

exciton density.
Analogously, we get the equation for the photon subsystem

ih̄
∂

∂t
ψq(t) =

(
h̄2q2

2mph

− μ

)
ψq(t) +

∑
k1

δqk1�k1 (t)

+ h̄�

2
χq(t) + h̄

∫ +∞

−∞
dt ′�ph(R)

q (t,t ′)ψq(t ′)

+ ηph
q (t). (26)

The fields ηex
q (t) and η

ph
q (t) play the role of a Langevin noise

with time correlations

〈
ηex

q (t)η̄ex
q (t ′)

〉 = ih̄2�ex(K)
q (t,t ′), (27)〈

ηph
q (t)η̄ph

q (t ′)
〉 = ih̄2�ph(K)

q (t,t ′). (28)

If we consider the condensate as a unique macroscopically
occupied state, i.e., set p0 = 0, we obtain

ih̄
∂

∂t
χ0(t) = −μχ0(t) + V0|χ0(t)|2χ0(t)

+ 2V0NexR(t)χ0(t) + h̄�

2
ψ0(t) + ηex

0 (t)

+N2
exR(t) h̄

∫ +∞

−∞
dt ′�̃ex(R)

0 (t,t ′)χ0(t ′), (29)

ih̄
∂

∂t
ψ0(t) = �0(t) − μψ0(t) + h̄�

2
χ0(t) + η

ph

0 (t)

+ h̄

∫ +∞

−∞
dt ′�ph(R)

0 (t,t ′)ψ0(t ′). (30)
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FIG. 2. Graphic representation of �exR
p . First and second dia-

grams account for the direct exciton-exciton interaction, and third
diagram accounts for the exciton interaction via the semiconductor
lattice. Zigzag arrows denote the exciton condensate. See other
notations in the capture of Fig. 1.

Here, we introduce the normalized retarded exciton self-energy
�̃

ex(R)
0 (t,t ′) such that �

ex(R)
0 (t,t ′) = N2

exR(t)�̃ex(R)
0 (t,t ′) in or-

der to explicitly include the reservoir exciton density NexR(t)
into the equations.

The equation for the exciton reservoir density can be derived
in a similar way. We use diagrams presented in Fig. 2 for the
reservoir exciton self-energy h̄�exR

p calculation. The resulting
equation is

∂

∂t
NexR(t) = F (t) − 2N2

exR(t)Im

×
[
χ̄0(t)

∫ +∞

−∞
dt ′�̃ex(R)

0 (t,t ′)χ0(t ′)
]

− 2γexRNexR(t). (31)

Here, F (t) is the incoherent pump into the exciton reservoir,
γexR is the reservoir exciton decay rate.

V. EQUATIONS IN THE LOWER-UPPER
POLARITON BASIS

It is convenient to introduce exciton and photon reservoirs
using the exciton-photon representation, nevertheless, in many
cases it is preferable to deal with lower and upper polaritons.
The change of the exciton-polariton basis to the lower-upper
polariton one is performed with the help of Hopfield’s tranfor-
mation

P L
0 = κL

1 χ0 + κL
2 ψ0, (32)

P U
0 = κU

1 χ0 + κU
1 ψ0, (33)

where κL
1 , κL

2 , κU
1 , κU

2 are Hopfield’s coefficients for q = 0:

κ
L,U
1 = h̄�/2√(

ε
ph

0 − ε
(L,U )
0

)2 + h̄2�2/4
,

κ
L,U
2 = ε

(L,U )
0 − ε

ph

0√(
ε

ph

0 − ε
(L,U )
0

)2 + h̄2�2/4
. (34)

Here, ε
(L,U )
0 are the lower and upper polariton dispersions for

q = 0:

ε
(L,U )
0 = 1

2

(
E0 + εex

0 + ε
ph

0

)
±1

2

√(
E0 + εex

0 − ε
ph

0

)2 + h̄2�2. (35)

After the basis transformation we obtain for the lower
polariton

ih̄
∂

∂t
P L

0 (t) = (
εL

0 − μ
)
P L

0 (t) + κL
2 �(t)

+ κL
1 V0

∣∣κL
1 P L

0 (t) + κU
1 P U

0 (t)
∣∣2

× [κL
1 P L

0 (t) + κU
1 P U

0 (t)
]

+ 2κL
1 V0NexR(t)

[
κL

1 P L
0 (t) + κU

1 P U
0 (t)

]
+ h̄

∫ +∞

−∞
dt ′�L(R)

0 (t,t ′)P L
0 (t ′)

+ h̄

∫ +∞

−∞
dt ′�LU (R)

0 (t,t ′)P U
0 (t ′) + ηL

0 (t)

(36)

and for the upper polariton

ih̄
∂

∂t
P U

0 (t) = (
εU

0 − μ
)
P U

0 (t) + κU
2 �(t)

+ κU
1 V0

∣∣κL
1 P L

0 (t) + κU
1 P U

0 (t)
∣∣2

× [κL
1 P L

0 (t) + κU
1 P U

0 (t)
]

+ 2κU
1 V0NexR(t)

[
κL

1 P L
0 (t) + κU

1 P U
0 (t)

]
+ h̄

∫ +∞

−∞
dt ′�U (R)

0 (t,t ′)P U
0 (t ′)

+ h̄

∫ +∞

−∞
dt ′�LU (R)

0 (t,t ′)P L
0 (t ′) + ηU

0 (t),

(37)

where
�

L(R)
0 = (

κL
1

)2
�

ex(R)
0 + (

κL
2

)2
�

ph(R)
0 ,

�
U (R)
0 = (

κU
1

)2
�

ex(R)
0 + (

κU
2

)2
�

ph(R)
0 ,

�
LU (R)
0 = κL

1 κU
1 �

ex(R)
0 + κL

2 κU
2 �

ph(R)
0 , (38)

and
ηL

0 = κL
1 ηex

0 + κL
2 η

ph

0 , ηU
0 = κU

1 ηex
0 + κU

2 η
ph

0 . (39)

If the energy of the excited state is close to the ground one
and, thus, upper polaritons do not exist, we can use only one
equation, which takes the form

ih̄
∂

∂t
P L

0 (t) = (
εL

0 − μ
)
P L

0 (t) + κL
2 �(t)

+ (κL
1

)3
V0

∣∣P L
0 (t)

∣∣2P L
0 (t)

+ 2
(
κL

1

)2
V0NexR(t)P L

0 (t)

+ ηL
0 (t) + h̄

∫ +∞

−∞
dt ′�L(R)

0 (t,t ′)P L
0 (t ′). (40)

In this case, we have for the exciton reservoir density the
equation

∂

∂t
NexR(t) = F (t) − 2

(
κL

1

)2
N2

exR(t)

× Im

[
P̄ L

0 (t)
∫ +∞

−∞
dt ′�̃ex(R)

0 (t,t ′)P L
0 (t ′)

]
− 2γexRNexR(t). (41)
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Thus, in Secs. IV and V we derived the equations which
govern the dynamics of the polariton condensate as an open
system. Equations (29), (30), (36), and (37) are the generalized
equations of the Gross-Pitaevskii type and contain new terms
such as Langevin noises and time nonlocal terms, which arise
due to coupling of the polariton condensate with the external
reservoirs. The role of the Langevin noises is most crucial at the
stage of the condensate formation, which will be considered in
Sec. IX, when the density of the emerging condensate is quite
low. As it follows from the analysis of the condensate spectral
function appropriated in the next section, the time nonlocal
terms play a substantial role, when the energy of the condensate
is comparable to the Rabi one. In time domain it corresponds
to the case when the condensate evolutes considerably at the
times of the order of the period of the Rabi oscillations. This
case takes place in the applications of the polariton condensate
to quantum information processing purposes (see also the
discussion at the end of Sec. X).

VI. SPECTRAL FUNCTION
OF THE EXCITON CONDENSATE

The spectral function Aex
0 (ω) of the exciton condensate

embedded into the exciton reservoir is connected with the
function �

ex(R)
0 by the relation

Aex
0 (ω) = −2 Im�

ex(R)
0 (ω)(

ω − Re�ex(R)
0 (ω)

)2 + (
Im�

ex(R)
0 (ω)

)2
. (42)

The function �
ex(R)
0 can be calculated starting with the expres-

sion (19) (see Fig. 1 as well). We begin with the second term,
accounting the direct exciton-exciton interaction (see [21]).
The calculation presented in detail in Appendix A leads to the
following result:

�̃
ex-ex(R)
0 (t,t ′) = i

V 2
0

h̄2

e−(γex+i�/2)(t−t ′)

1 + [
kBT
h̄

(t − t ′)
]2 θ (t − t ′). (43)

Here, T is the exciton reservoir temperature, γex describes
the collision broadening. It is convenient to introduce
the function Sex(ω) connected with the Fourier transform
�̃

ex(R)
ee 0 (ω) of the function (43) via the relation Sex(ω) =

h̄ Im�̃
ex-ex(R)
ee 0 (ω)/(πV 2

0 ). The function Sex(ω) can be obtained
in closed form into limiting cases: for γex → 0

Sex(ω) = 1

2kBT
e
− |h̄ω−h̄�/2|

kB T , (44)

and for T → 0

Sex(ω) = 1

πh̄

γex

(ω − �/2)2 + γ 2
ex

. (45)

The function Sex(ω) is normalized so that it obeys the
sum rule h̄

∫
Sex(ω)dω = 1. It is shown on Fig. 3 for CdTe

microcavities. The exciton reservoir temperature T in (43) is
taken to be 20 K, which is higher than a bath temperature
in experiments [20–22], in order to take into account the
nonequilibrium nature of the exciton reservoir. The curve a
for γex = 0 is given by (44). The decay rate h̄γex ranges in
papers [20–22] from 10−2 eV up to 10 eV, thus curves a, b, c,
and d demonstrate the growing influence of γex upon Sex(ω).

300 200 100

0.01

0.01

0.02

0.03

0.04

100 000 200 000

S   (eV  )ex -1 k (cm )-1

L

u

ph

ex

a b c

d

(eV)

FIG. 3. We consider CdTe microcavities and useV0 = 1.8 × 10−3

meV μm2, h̄� = 26 meV, T = 20 K, (a) h̄γex = 0 meV, (b) h̄γex =
0.1 meV, (c) h̄γex = 1 meV, (d) h̄γex = 10 meV (see the text).

We see that for most values of γex the exciton reservoir has
the distinct non-Markovian character and only for extremely
high γex (curve d) it can be regarded as Markovian one. In case
of the Markovian exciton reservoir �̃

ex(R)
ee 0 (t,t ′) ∼ δ(t − t ′) and

we have the local in time behavior in (40) and (41).
To estimate the effect of the exciton reservoir

on the condensate, we now compare the condensate
interexciton interaction energy (κL

1 )3
V0|P L

0 (t)|2 and
the energy of the reservoir-condensate interaction
N2

exR(t) h̄
∫ +∞
−∞ dt ′�̃ex(R)

ee 0 (t,t ′)P L
0 (t ′)/P L

0 (t) in Eq. (40).
Using (43) and values presented for CdTe microcavities in
the caption of Fig. 3, we find that second energy exceeds
the first one beginning with NexR ∼ 1010 cm−2. However,
such direct comparison is suitable in case of a Markovian
reservoir only. General situation is more complicated because
of the different time-integral behavior at different energies of
the condensate. Thus, when the energy of the condensate is
close to the ground-state energy, rapidly changing �̃

ex(R)
ee 0 (t,t ′)

makes the integral value negligibly small.
The calculation of the first term in (19) (see [3,21]), which

accounts for the condensate-reservoir exciton interaction via
the semiconductor lattice, is presented in Appendix B. The
result is

h̄ Im�
ex-a(R)
0 (ω) = D2kBT

4h̄v3
s ρ0

Nx fa

(
h̄ω − h̄�/2

kBT

)
, (46)

where

fa(x) = θ (x)[2e−x − 1 − x] + θ (−x)[1 − x]. (47)

Here, D = De + Dh, where De and Dh are electron and
hole deformation potentials, vs is the velocity of sound, ρ0

is the material density, θ (x) is the Heaviside function. For
GaAs microcavities, where De = −7 eV, Dh = 2.7 eV, ρ0 =
5.4 g cm−3, and vs = 5.2 × 105 cm s−1, we obtain D2kBT

4h̄v3
s ρ0

=
3 × 10−5 meV μm2.

The exciton-phonon interaction and direct exciton-exciton
interaction have the same order at

Nx0 = 1

2πh̄

D2

V 2
0

(kBT )2

v3
s ρ0

. (48)

For GaAs microcavities, where we take V0 = 6 ×
10−3 meV μm2, the estimation gives Nx0 ∼ 107 cm−2.

Here, we treat the phonons in the total system (a quantum
well embedded into a cavity) as 3D phonons. If we consider
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b

FIG. 4. Functions (a) f (x) from (47) and (b) f 2D
a (0,x) from (50).

T = 20 K, h̄� = 26 meV.

acoustic phonons as 2D quasiparticles with the quantized
momentum kz = π

Lz
, where Lz is the quantum well thickness,

we obtain

h̄ Im�
ex-a2D(R)
0 (ω) = π2h̄D2

2L2
zkBTρ0vs

Nx

√
1 + 2m

h̄ k2
z

|ω − �/2|

× e
− h̄|ω−�/2|

kB T sgn(ω − �/2)

= π2h̄D2

2L2
zkBTρ0vs

Nx

× f 2D
a

(
2mkBT L2

z

π2h̄
,
h̄ω − h̄�/2

kBT

)
,(49)

where

f 2D
a (a,x) =

√
1 + a|x|e−|x|sgn(x). (50)

The functions fa(x) from (47) and f 2D
a (0,x) from (50) are

depicted in Fig. 4. For GaAs microcavities π2 h̄D2

2L2
zkBTρ0vs

= 3 ×
10−7 meV μm2. This magnitude is negligibly small in com-
parison with the experimental results, whereas in contrast the
estimate made for (46) is close to them. This result leads to
the statement that acoustic phonons in an optical microcavity
must be treated as 3D particles. As it can be seen in Fig. 4, the
functions fa(x) and f 2D

a (a,x) are qualitatively different, so,
our result contradicts the widespread opinion that the spectrum
density of the exciton-phonon channel is localized in the region
of the exciton reservoir energies [21].

The calculation for optical phonons with energy h̄ω0 gives
the following expression:

h̄ Im�
ex-LO(R)
0 (ω) = e2h̄ω0√

2mex(kBT )3/2

(
1

ε∞
− 1

ε0

)

×Nx fLO

(
h̄(ω − �/2 − ω0)

kBT

)
, (51)

where

fLO(x) = −e−x

√
x

θ (x). (52)

Here, e is the electron charge, ε∞ and ε0 are high-frequency
and static dielectric constants. For GaAs microcavities, where
h̄ω0 = 35.3 meV, ε0 = 12.9, ε∞ = 10.9, the estimation gives

e2 h̄ω0√
2mex (kBT )3/2 ( 1

ε∞
− 1

ε0
) = 5 × 10−3 meV μm2, however, the ar-

gument of the function fLO(x) obeys the inequality x < 0 for
all acceptable energies of the condensate, thus optical phonons
do not play any role.

Performed estimates show that we can neglect �
ex-a(R)
0 in

comparison with �
ex-ex(R)
0 for the reservoir exciton densities

Nx 
 Nx0, so hereafter we shall take into account only
�

ex-ex(R)
0 .

VII. GREEN FUNCTIONS OF THE PHOTON CONDENSATE

The shape of the photon condensate self-energy �
ph(R)
0 (ω)

depends on technological features of the optical microcavity
fabrication, so in order to escape a discussion on this topic we
prefer for simplicity to choose a model one-peak form

Im�
ph(R)
0 (ω) = −A

γph

(ω − �/2)2 + γ 2
ph

, (53)

where γph is the decay rate of reservoir phonons. In time
domain the retarded self-energy of the photon condensate reads
as

�
ph(R)
0 (t − t ′) = −iAe−(γph+i�/2)(t−t ′)θ (t − t ′) (54)

and the Keldysh component is given by the expression

�
ph(K)
0 (t − t ′) = −iAe−i �

2 (t−t ′)−γph|t−t ′|. (55)

VIII. MARKOVIAN LIMIT

Equations describing the dynamics of a Markovian system
offer the property of time locality. Equation (40) becomes local
in time in the regime γex,γph 
 1, when the time integral can
be substituted according to the correspondence

h̄

∫ +∞

−∞
dt ′�L(R)

0 (t,t ′)P L
0 (t ′) → ih̄R(t)P L

0 (t),

where

R(t) =
(
κL

1

)2
V 2

0

h̄γex

N2
exR(t) −

(
κL

2

)2
A

h̄γph

. (56)

We come to the known system of equations (see, e.g.,
[11,21])

ih̄
∂

∂t
P L

0 (t) = (
εL

0 − μ
)
P L

0 (t) + κL
2 �(t)

+ Ṽ0

∣∣P L
0 (t)

∣∣2P L
0 (t) + 2

(
κL

1

)2
V0NexR(t)P L

0 (t)

+ ih̄R(t)P L
0 (t) + ηL

0 (t), (57)

∂

∂t
NexR(t) = F (t) +

(
κL

1

)2
V 2

0

h̄γex

N2
exR(t)

∣∣P L
0 (t)

∣∣2
− 2γexRNexR(t). (58)

Equation (57) has the Langevin form including the Gaussian
noise ηL

0 (t) with time correlations〈
ηL

0 (t)η̄L
0 (t ′)

〉 = ih̄2�
L(K)
0 (t,t ′), (59)
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where

�
L(K)
0 (t,t ′) = (

κL
1

)2
�

ex(K)
0 (t,t ′) + (

κL
2

)2
�

ph(K)
0 (t,t ′)

= − 2i

h̄2

((
κL

1

)2
V 2

0

γex

N2
exR(t) +

(
κL

2

)2
A

γph

)
δ(t − t ′).

(60)

Here, we used Eqs. (A14) and (55). This formula expresses the
well-known fact of statistical theory: if Y = X1 + X2 where
X1 and X2 are stochastic variables, then their dispersions are
connected by the equality σ 2

Y = σ 2
X1

+ σ 2
X2

.
Note that in the Markovian limit the equilibrium condition

for the stationary regime of the polariton condensate takes the
simple form R(t) = 0.

IX. CONDENSATE FORMATION IN PRESENCE OF THE
COHERENT PUMPING

Here, we qualitatively study the lower polariton condensate
formation under the simultaneous coherent and incoherent
pumping with the help of the Fokker-Planck equation. We start
with Eq. (57) and neglect the nonlinear term under assumption
that the condensate is just at the outset of the formation and, so,
its density is sufficiently low. In addition, the low condensate
density can not affect the considerably larger density of the
reservoir excitons, and so, we can exclude the reservoir degree
of freedom from our consideration treating R(t) as an assigned
function of time. We come to the equation of the Langevin type

ih̄
∂

∂t
P L

0 (t) = κL
2 �(t) + ih̄R(t)P L

0 (t) + ηL
0 (t). (61)

It is useful to write P L
0 = √

n0e
iφ, ηL

0 = |η0|eiβ , denote
κL

2 �/h̄ = �0e
iα and rewrite the equation in new variables n0

and φ. We come to the result

∂n0

∂t
= 2�0

√
n0 sin (α − φ) + 2Rn0

+ 2|η0|
h̄

√
n0 sin (β − φ),

∂φ

∂t
= − �0

cos (α − φ)√
n0

− |η0|
h̄

cos (β − φ)√
n0

. (62)

Stochastic equations of the Langevin type are a popular
instrument of digital explorations, whereas for the analytical
study the deterministic Fokker-Planck equation is more con-
venient. The path integral constitutes a natural way in passing
from a Langevin equation to a corresponding Fokker-Planck
equation (see details in [27]), which in our case has the form

ih̄
∂

∂t
P = − ∂

∂P L
0

(
κL

2 � + ih̄RP L
0

)
P

+ ∂

∂P̄ L
0

(
κL

2 �̄ − ih̄RP̄ L
0

)
P

− ∂2

∂P L
0 ∂P̄ L

0

(
h̄�

L(K)
0 P

)
. (63)

Making the change of variables (P L
0 ,P̄ L

0 ) → (r,φ), where
P L

0 = reiφ , and going to the properly normalized distribution

W = rP we obtain

∂

∂t
W = −R

(
1 + r

∂

∂r

)
W + �0

[
1

r
cos (α − φ)

∂

∂φ

− sin (α − φ)

(
−1

r
+ ∂

∂r

)]
W

+ i

4

[
∂

∂r

(
−1

r
+ ∂

∂r

)
+ 1

r2

∂2

∂φ2

](
�

L(K)
0 W

)
. (64)

In the absence of the coherent pumping �0 and incoherent
pumping R, the evolution of the system resolves into diffusion
consisting in the last line of Eq. (64). It is worth to note
the fast decrease of the phase diffusion with the increasing
condensate density and the presence of the centrifugal drift
potential (i/4)r−1 (see [26]). At sufficiently high pumping, the
diffusion terms can be omitted and the system evolutes along
the characteristics, which obey the equations

∂

∂t
r(t) = �0(t) sin [α − φ(t)] + R(t) r(t),

∂

∂t
φ(t) = −�0(t)

cos [α − φ(t)]

r(t)
. (65)

The equations coincide with deterministic parts of Eq. (62)
after the substitution r = √

n0. We see from the second
equation of (65) that the phase of the condensate changes
up to the magnitude φ0 = α − π/2 at a time of the order
of h̄

√
n0/(κL

2 �). An analysis shows that the phase φ̃0 =
α + π/2 is a point of unstable equilibrium. Therefore, this
is a mechanism for the coherent pumping imposing a certain
phase upon the condensate.

X. CONDENSATE DYNAMICS GOVERNED BY THE
COHERENT PUMPING: NON-MARKOVIAN EFFECTS

In this section, we derive an explicit solution of the set
of equations (36) and (37) and discuss the dynamics of the
polariton system coupled with the reservoir. First, we make
some simplifications. As we are interested in the influence of
the condensate-reservoir coupling on the dynamics of the
condensate, it is instructive to consider only low densities of
the polariton condensate, for which the nonlinear terms can
be omitted, meanwhile, the densities are assumed to be high
enough to neglect the Langevin terms, which are substantial
only in the limit of extremely low densities (see Sec. IX). We
limit ourselves only to the case of the zeroth detuning E0 = 0,
for which εL

0 = −h̄�/2, εU
0 = h̄�/2, κL

1 = −κL
2 = κU

1 =
κU

2 = 1/
√

2. In this regime μ = −h̄�/2 as shown in [25].
We start with the homogeneous integrodifferential equations

ih̄
∂

∂t
P L

0 (t) = h̄

∫ t

0
dt ′�L(R)

0 (t − t ′)P L
0 (t ′)

+ h̄

∫ t

0
dt ′�LU (R)

0 (t − t ′)P U
0 (t ′), (66)

ih̄
∂

∂t
P U

0 (t) = h̄�P U
0 (t) + h̄

∫ t

0
dt ′�U (R)

0 (t − t ′)P U
0 (t ′)

+ h̄

∫ t

0
dt ′�LU (R)

0 (t − t ′)P L
0 (t ′) (67)
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and discuss the Cauchy problem with initial conditions P L
0 (0)

and P U
0 (0).

The system can be analyzed in the Laplace domain. We
perform the Laplace transformation

f (s) =
∫ ∞

0
e−stf (t)dt (68)

of the system (66) and (67), obtain Laplace transforms P L
0 (s)

and P U
0 (s) from the system of two algebraic equations, and

make the inverse Laplace transformation via the formula

f (t) = 1

2πi

∫ s0+i∞

s0−i∞
estf (s)ds. (69)

The result is

P L
0 (t) = P L

0 (0)
1

2πi

∫ s0+i∞

s0−i∞
ds est s + i� − σU (s)

�(s)

+P U
0 (0)

1

2πi

∫ s0+i∞

s0−i∞
ds est σLU (s)

�(s)
, (70)

P U
0 (t) = P L

0 (0)
1

2πi

∫ s0+i∞

s0−i∞
ds est σLU (s)

�(s)

+P U
0 (0)

1

2πi

∫ s0+i∞

s0−i∞
ds est s − σL(s)

�(s)
, (71)

where

�(s) = [s − σL(s)][s + i� − σU (s)] − [σLU (s)]2. (72)

Here, σL(s), σU (s), and σLU (s) are Laplace transforms of the
functions �

L(R)
0 (t), �

U (R)
0 (t), and �

LU (R)
0 (t) correspondingly.

For better understanding this general solution behavior
it is useful to make the particular choice of the functions
�

(R)
0 . Let us take �

ex(R)
0 (t − t ′) = iaexe

−(γex+i�/2)(t−t ′) and
�

ph(R)
0 (t − t ′) = −iaphe

−(γph+i�/2)(t−t ′), where aex,aph =
const(t) > 0. From (38) we obtain �

L(R)
0 = �

U (R)
0 =

(�ex(R)
0 + �

ph(R)
0 )/2, �

LU (R)
0 = (�ex(R)

0 − �
ph(R)
0 )/2. The

Laplace transforms are

σL(s) = σU (s)

= 1

2

(
aex

s + i�/2 + γex

− aph

s + i�/2 + γph

)
,

σLU (s) = 1

2

(
aex

s + i�/2 + γex

+ aph

s + i�/2 + γph

)
. (73)

The next step is to close the contour of integration in (70) and
(71) and calculate integrals using residues. The problem is that
the substitution of these expressions into (72) converts � into
a polynomial of the sixth order in s. Thus, aiming to obtain
a closed-form expression, we restrict ourselves to a simpler
problem, when only the lower polariton condensate exists. The
problem reduces to the equation

ih̄
∂

∂t
P L

0 (t) = h̄

∫ t

0
dt ′�L(R)

0 (t − t ′)P L
0 (t ′), (74)

which has the following solution:

P L
0 (t) = P L

0 (0)
1

2πi

∫ s0+i∞

s0−i∞
ds est s + i� − σU (s)

�̃(s)
, (75)

where �L(s) = s − σL(s) is the polynomial of third order in s,
hence, the poles of the integrand s1, s2, and s3 can be obtained
in the explicit form. The solution becomes

P L
0 (t) = P L

0 (0)
∑

i=1...3

esi t (si + i�/2 + γex)

× (si + i�/2 + γph)
∏

j=1...3,j �=i

1

si − sj

. (76)

We see that the solution is represented by the set of exponents
with complex factors depending on time and constant prefac-
tors.

The expression for s1 shows that the coupling to the exciton
reservoir increases the energy of the lower polariton conden-
sate, whereas in contrast the coupling to the photon reservoir
decreases the energy. The real part of s1 is responsible for
the condensate density evolution. The equilibrium condition
for the condensate stability under the incoherent exponential
factors calculated to first order in aex and aph,

s1 = − i

�
(aex − aph), s2 = −i

�

2

(
1 + 2aph

�2

)
− γph,

s3 = −i
�

2

(
1 − 2aex

�2

)
− γex. (77)

Pumping is the equality Re s1 = 0, which resolves into a
cumbersome explicit expression, in contrast to the simple result
R(t) = 0 [see Eq. (56)] in the Markovian case. Remaining fac-
tors express the reaction of the open system at the frequencies
close to the reservoir ones with corresponding decay rates.

We can formally solve the same simplified problem for the
upper polariton condensate in the absence of the lower one
and analogously obtain three exponential factors: one close
to −i� and two close to −i�/2. These factors are roots of
the cubic equation �U (s) = s + i� − σU (s). So, we now turn
back to the original problem (70) and (71) and come to reach
the conclusion that the evolution of the full polariton system
is described by a set of six exponential functions. Among the
factors of these functions, one is close to 0, one is close to −i�,
and remaining four are close to −i�/2.

Our choice of the function �
ex(R)
0 in the form

iaexe
−(γex+i�/2)t corresponds to the case of the zeroth temper-

ature [see (19)]. If the temperature of the exciton reservoir
is different from zero, the Laplace transform of �

ex(R)
0 does

not have a simple explicit form like in (73) and the problem
becomes complicated. We can draw a conclusion that at
nonzero temperatures of the exciton reservoir, the reaction of
the system does not resolve into the set of the exponential
functions with characteristic energies in their factors, but has
more complicated character.

Note that the obtained homogeneous solution can be used
for the calculation of the system response on the coherent
pumping �(t). We can write the solution (70) and (71) in a
short form[

P L
0 hom(t)

P U
0 hom(t)

]
=
[
mLL(t) mLU (t)

mLU (t) mUU (t)

][
P L

0 (0)

P U
0 (0)

]
. (78)

If at time t = 0 the polariton condensate has components
P L

0 (0), P U
0 (0) and the coherent pumping �(t) turns on, then the
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further dynamics is governed by the sum of the homogeneous
solution (78) and the convolution of components of the matrix
m(t) from (78) and the function �(t):

P L
0 con(t) = − i

κL
2

h̄

∫ t

0
dt ′mLL(t − t ′)�(t ′)

− i
κU

2

h̄

∫ t

0
dt ′mLU (t − t ′)�(t ′),

P U
0 con(t) = − i

κL
2

h̄

∫ t

0
dt ′mLU (t − t ′)�(t ′)

− i
κU

2

h̄

∫ t

0
dt ′mUU (t − t ′)�(t ′). (79)

The obtained solution can be involved in an analysis of
experimental results of the exploration [28], in which authors
excited time-resolved Rabi oscillations of a polariton conden-
sate by a wide pulse of a Gaussian shape. Furthermore, the
developed formalism provides an alternative to the treatment of
the exciton-polariton qubit appropriated by the authors of [32]
in the frame of the Markovian approximation. Qubits based on
polariton condensate manipulations open a new dimension for
quantum information processing such as quantum calculations,
quantum cloning, and quantum memory.

XI. CONCLUSION

With the use of path-integral formalism involving the
integration along the Schwinger-Keldysh time contour and
Keldysh technique, we formulate the universal approach which
describes the nonequilibrium system of excitons and photons,
their pumping and leakage, and the coupled exciton-photon
condensate arising.

We employ the exciton-photon basis and treat a system
of coupled excitons and photons. Such an approach provides

a natural way to introduce thermal reservoirs. We make the
microscopical derivation of equations governing the dynamics
of the polariton condensate. The obtained equations include
nonlocal in time terms and the Langevin noise. The correlation
function of the Langevin noise is shown to be not Gaussian.
This fact in conjunction with the time nonlocality of the
obtained equations points at the non-Markovian character of
the polariton condensate regarded as an open system embedded
into the thermal reservoir. The non-Markovian character is
substantial at times of the order of the Rabi oscillation period.

We obtain the effective Fokker-Plank equation for the
open polariton system and use it to study the process of
the polariton condensate formation under the coherent and
incoherent pumping, and make clearer the mechanism for the
coherent pumping imposing a certain phase upon the arising
condensate.

We perform the ab initio derivation of the exciton con-
densate spectral function considering the direct interexciton
interaction and exciton interaction via the semiconductor
lattice as the channels of the condensate-reservoir particle
exchange. The obtained closed-form expression helps to make
simplifying but realistic assumptions about nonlocal terms
in the equations mentioned above. These equations are used
for the analysis of the system response to the external dis-
turbance. We find their explicit solution, which shows that
at zeroth temperature the system response represents the
set of six oscillations. Among them, two oscillations have
frequencies close to those of the isolated lower and upper
polariton condensates and others are the damped oscillations
arising in consequence of the polariton condensate coupling
to the external thermal reservoirs. The equilibrium condition
of the condensate stability under the incoherent pumping
is obtained. The non-Markovian behavior of the polariton
condensate at nonzero temperatures is a subject of future
exploration.

APPENDIX A: DIRECT INTRAEXCITON CONDENSATE-RESERVOIR INTERACTION

Starting with the second term of (19) (see also [21]) we obtain

h̄�ex(R)
q (t1 − t2) = h̄�ex(>)

q (t1 − t2) − h̄�ex(<)
q (t1 − t2) = − V 2

0

h̄F 2

∑
q1q2

× [GexR(>)
q1

(t1 − t2)GexR(<)
q1+q2−q(t2 − t1)GexR(>)

q2
(t1 − t2) − GexR(<)

q1
(t1 − t2)GexR(>)

q1+q2−q(t2 − t1)GexR(<)
q2

(t1 − t2)
]

= − V 2
0

2h̄F 2

∑
q1q2

∫
dω1dω2dω3

(2π )3
e−i(ω1−ω2+ω3)(t1−t2)

[
GexR(>)

q1
(ω1)GexR(<)

q1+q2−q(ω2)GexR(>)
q2

(ω3)

−GexR(<)
q1

(ω1)GexR(>)
q1+q2−q(ω2)GexR(<)

q2
(ω3)

]
. (A1)

For excitons we use the Green functions

GexR(<)
q (ω) = −iAq(ω)fq, GexR(>)

q (ω) = −iAq(ω)(1 + fq), (A2)

where

Aq(ω) = 2γex

(ω − eq/h̄)2 + γ 2
ex

≈ 2πδ(ω − eq/h̄), (A3)

fq are the occupation numbers of the reservoir excitons, eq = h̄�
2 + h̄2q2

2mex
are the energies of the corresponding states, γex describes

the collision broadening. We will use the Boltzmann distribution fq = Pe
− eq

kB T , P = 2πh̄2

mexkBT
NexR , regarding that fq � 1.
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The Fourier transform of h̄�ex(R)
q (t1 − t2) is

�ex(R)
q (ω) =

∫
dt eiωt�ex(R)

q (t) = − V 2
0

h̄2F 2
(−i)3

∑
q1q2

[(1 + fq1 )fq1+q2−q(1 + fq2 ) − fq1 (1 + fq1+q2−q)fq2 ]

×
∫ ∞

0
dt ei[ω−(eq1 −eq1+q2−q+eq2 )/h̄]t−γex t

= V 2
0

h̄2F 2

∑
q1q2

1

ω − (eq1 − eq1+q2−q + eq2 )/h̄ + iγex

[(1 + fq1 )fq1+q2−q(1 + fq2 ) − fq1 (1 + fq1+q2−q)fq2 ]. (A4)

In the limiting case γex → 0, the imaginary part of �ex(R)
q (ω) has the form

Im�ex(R)
q (ω) = −πV 2

0

h̄F 2

∑
q1q2

δ(h̄ω − eq1 + eq1+q2−q − eq2 )[(1 + fq1 )fq1+q2−q(1 + fq2 ) − fq1 (1 + fq1+q2−q)fq2 ]. (A5)

The corresponding quantum kinetic equation reads as [26]

∂nq

∂t
= 2π

h̄
V 2

0
1

F 2

∑
q1q2

δ(εq − eq1 + eq1+q2−q − eq2 )

× [(1 + nq)fq1 (1 + fq1+q2−q)fq2

− nq(1 + fq1 )fq1+q2−q(1 + fq2 )]. (A6)

Here, nq are the occupation numbers of the exciton condensate,

εq = h̄2q2

2mex
are the energies of the corresponding states. In the

approximation fq1+q2 = 0 (see [21]), the expression (A4) for
q = 0 can be rewritten as

�
ex(R)
0 (t) = i

V 2
0

h̄2F 2

∑
q1q2

e−i
eq1 −eq1+q2 +eq2

h̄
t−γex tfq1fq2

= i
V 2

0

h̄2

∫ ∞

0

2πq1dq1

(2π )2

∫ ∞

0

q2dq2

(2π )2

∫ 2π

0
dφ fq1fq2

× exp

[
i

(
h̄2q1q2 cos φ

h̄ m
− �

2

)
t − γext

]
. (A7)

Next, we use the formula∫ 2π

0
dφ eia cos φ = 2πJ0(a) (A8)

and obtain

�
ex(R)
0 (t) = i

V 2
0

h̄2

1

(2π )2
e−(i�/2+γex )t

×
∫ ∞

0
q1dq1

∫ ∞

0
q2dq2J0

(
h̄q1q2t

m

)
fq1fq2

= i
V 2

0

h̄2

P 2

(2π )2
e−(i�/2+γex )t

∫ ∞

0
q1dq1

×
∫ ∞

0
q2dq2J0

(
h̄q1q2t

m

)
e− βh̄2

2m
(q2

1 +q2
2 ). (A9)

Next, we integrate over q2 using the formula

∫ ∞

0
q dq Jo(aq)e−bq2 = e−a2/4b

2b
(A10)

and obtain the integral

∫ ∞

0
dq1q1

e−a2q2
1 /4b

2b
e−bq2

1 = 1

a2 + 4b2
, (A11)

where a = h̄t/m and b = h̄2β/2m. Thus, the result is

�
ex(R)
0 (t) = i

V 2
0 N2

x

h̄2

e−(γex+i�/2)t

1 + (
kBT
h̄

t
)2 θ (t − t ′). (A12)

To find the Keldysh component of the self-energy we can start
with the relation

h̄�ex(K)
q (t1 − t2) = h̄�ex(>)

q (t1 − t2) + h̄�ex(<)
q (t1 − t2)

(A13)

and obtain analogously

�
ex(K)
0 (t) = −i

V 2
0 N2

x

h̄2

e−i �
2 t−γex |t |

1 + (
kBT
h̄

t
)2 . (A14)

APPENDIX B: INTRAEXCITON
CONDENSATE-RESERVOIR INTERACTION VIA THE

LATTICE

We start from the classical action [38]

Scl
ph =

∫
dt Lcl

ph = 1

2

∫
dt dx

(
ρ0

∂di

∂t

∂di

∂t
− B

∂di

∂xj

∂di

∂xj

)
.

(B1)

Here, d is the displacement vector, ρ0 is the density of ions,
and B is the adiabatic bulk modulus B = −V (∂P/∂V )S . The
summation over repeating indexes is assumed.

Next, we introduce boson annihilation and creation op-
erators ĉk and ĉ+

k such that [ĉk,ĉ
+
k′ ] = δk,k′ , ĉ+

k = ĉ−k and
construct the phonon field operator

φ̂(x,t) =
∑

k

√
h̄ωk

2F
[ĉk(t)eikx + ĉ+

k (t)e−ikx], (B2)
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where ωk = vsk, vs = √
B/ρ0 the velocity of sound. We

rewrite the displacement vector d as the operator

d̂(x,t) = − i√
ρ0

∑
k

√
h̄

2Fωk

k
k

[ĉk(t)eikx − ĉ+
k (t)e−ikx].

(B3)

Substituting d̂(x,t) into (B1) and integrating over x we have

ρ0

2

∫
dt dx

∂di

∂t

∂di

∂t
=
∫

dt
∑

k

h̄

2ωk

[
∂ĉk

∂t

∂ĉ+
k

∂t
+ ∂ĉ+

k

∂t

∂ĉk

∂t

]

(B4)

and

−B

2

∫
dt dx

∂di

∂xj

∂di

∂xj

= −
∫

dt
∑

k

h̄ωk[ĉkĉ
+
k + ĉ+

k ĉk].

(B5)

Thus, in the basis of the coherent states the phonon action S
(0)
ph

reads as

S
(0)
ph =

∫
dt
∑

k

h̄ωk

[
1

ω2
k

∂c̄k

∂t

∂c̄k

∂t
− c̄kc̄k

]

= h̄
∑

k

∫
dt dt ′c̄k(t ′)D̃−1

k (t − t ′)ck(t), (B6)

where

D̃−1
k (t − t ′) = ωk

[
− 1

ω2
k

∂2

∂t2
− 1

]
δ(t − t ′). (B7)

The corresponding propagator D̃k(t − t ′) obeys the equation

ωk

(
− 1

ω2
k

∂2

∂t2
− 1

)
D̃k(t − t ′) = δ(t − t ′) (B8)

and, so, equals D̃k(t − t ′) = (1/h̄ωk)Dk(t − t ′) where

Dk(t − t ′) = h̄

∫
ω2

k

ω2 − ω2
k

e−iω(t−t ′) dω

2π
(B9)

is the phonon propagator.
Now, we introduce the bare phonon Green

functions D(>)(x,t) = −i〈φ̃(x,t)φ̃(0,0)〉0 and D(<)(x,t) =
−i〈φ̃(0,0)φ̃(x,t)〉0 where for φ̂(x,t) we use the expression
(B2) with ĉk(t) = ĉke

−iωk t and the subscript “0” denotes
averaging over the equilibrium distribution. Substituting (B2)
we obtain

D(>)(x,t) = −i
∑

k

h̄ωk

2F
[〈ĉkĉ

+
k 〉0e

ikx−iωk t

+〈ĉ+
k ĉk〉0e

−ikx+iωk t ] (B10)

and

D(<)(x,t) = −i
∑

k

h̄ωk

2F
[〈ĉkĉ

+
k 〉0e

−ikx+iωk t

+〈ĉ+
k ĉk〉0e

ikx−iωk t ]. (B11)

The Fourier transforms have the form

D(>)(k,ω) =
∫

dt dx D(0)>(x,t)e−i(kx−ωt)

= −2πi
h̄ωk

2
[(1 + Nk)δ(ω − ωk)

+Nkδ(ω + ωk)] (B12)

and

D(<)(k,ω) = −2πi
h̄ωk

2
[(1 + Nk)δ(ω + ωk)

+Nkδ(ω − ωk)]. (B13)

The Hamiltonian of the exciton-phonon interaction can be
written as

Ĥ ex-ph =
∑

k

λk[χ̂+
p+kχ̂kĉk + χ̂p+kχ̂

+
k ĉ+

k ], (B14)

where λk is the strength of the exciton-phonon interaction and
will be discussed later.

Starting with the first term of (19), we obtain

h̄�ex-a(R)
q (t1 − t2) = i

h̄F

∑
k

λ2
k

h̄ωk

[
D

(>)
k (t1 − t2)GexR(>)

q−k (t1 − t2) − D
(<)
k (t1 − t2)GexR(<)

q−k (t1 − t2)
]

= − i

2h̄

∑
k

λ2
k{(1 + fq−k)[(1 + Nk)e−i(eq−k/h̄+ωk)(t1−t2) + Nke

−i(eq−k/h̄−ω−k)(t1−t2)]

− fq−k[(1 + Nk)e−i(eq−k/h̄−ω−k)(t1−t2) + Nke
−i(eq−k/h̄+ωk)(t1−t2)]}. (B15)

In the limiting case γex → 0 the imaginary part of �ex-a(R)
q (ω) reads as

Im�ex-a(R)
q (ω) = − π

2h̄F

∑
k

λ2
k{(1 + fq−k)(1 + Nk)δ(h̄ω − eq−k − h̄ωk) + (1 + fq+k)Nkδ(h̄ω − eq+k + h̄ωk)

− fq+k(1 + Nk)δ(h̄ω − eq+k + h̄ωk) − fq−kNkδ(h̄ω − eq−k − h̄ωk)}. (B16)

The corresponding quantum kinetic equation can be written as [26]

∂nq

∂t
= 2π

h̄

1

F

∑
k

λ2
k{(1 + nq)fq+k(1 + Nk)δ(εq − eq+k + h̄ωk) + (1 + nq)fq−kNkδ(εq − eq−k − h̄ωk)

− nq(1 + fq−k)(1 + Nk)δ(εq − eq−k − h̄ωk) − nq(1 + fq+k)Nkδ(εq − eq+k + h̄ωk)}. (B17)
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For acoustic phonons, the strength of the exciton-phonon interaction is

λk = Ae
kI

‖
e (k‖)I⊥

e (kz) + Ah
kI

‖
h (k‖)I⊥

h (kz), (B18)

where

A
e,h
k =

√
h̄ωk

2ρ0LzF

De,h

vs

, k =
√

k2
z + k2

‖, (B19)

I⊥
e,h(kz) ≈ 1, I

‖
e,h(k‖) =

[
1 +

(
me,ha

2D
0 k‖

2(me + mh)

)2
]−3/2

=
⎡
⎣1 +

(
k‖
k

e,h
‖

)2
⎤
⎦

−3/2

, k
e,h
‖ = 2(me + mh)

me,ha
2D
0

. (B20)

Here, De and Dh are electron and hole deformation potentials, me and mh are electron and hole masses, a2D
0 is the Bohr radius

of a 2D exciton. If the momentum k‖ obeys the condition k‖ � ke
‖,k

h
‖ , we can regard λk ∼ √

k.
For GaAs microcavities De = −7 eV,Dh = 2.7 eV,me = 6.1 × 10−29 g, mh = 4.1 × 10−28 g, a2D

0 = 5.9 × 10−7 cm. Thus,
the momentum ke

‖ = 2.6 × 107 cm−1 is greater than the momenta of the reservoir excitons.

We take q = 0, Nk = 0, λ2
k = α

FLz
k2, α = h̄D2

2ρ0vs
, D = De + Dh, denote k‖ → k, and obtain

h̄ Im�
ex-a(R)
0 (ω) = − π

2h̄

∑
k

λ2
k

[
(1 + f−k)δ(h̄ω − e−k − h̄ωk) − fkδ(h̄ω − ek + h̄ωk)

]

= π

2h̄
Pα

∫ ∞

0

k dk

2π

∫ ∞

−∞

dkz

2π

√
k2
z + k2e

− h̄2k2

2mkB T

×
[
δ

(
h̄ω − h̄2k2

2m
+ h̄vs

√
k2
z + k2

)
− δ

(
h̄ω − h̄2k2

2m
− h̄vs

√
k2
z + k2

)]

= D2kBT

4h̄v3
s ρ0

Nx fa

(
h̄ω − h̄�/2

kBT

)
, (B21)

where

fa(x) = θ (x)[2e−x − 1 − x] + θ (−x)[1 − x]. (B22)

For optical phonons with energy h̄ω0 the procedure of the calculation is very similar. We consider here only the emission of
phonons and write

h̄ Im�
ex-LO(R)
0 (ω) = − π

2h̄

∑
k

λ2
k(1 + f−k)δ(h̄ω − e−k − h̄ω0), (B23)

where

λk = (
I ‖
e (k‖) + I

‖
h (k‖)

) e
k

√
h̄ω0

FL1

(
1

ε∞
− 1

ε0

)
. (B24)

Here, L1 is the length of quantization in z direction, ε∞ and ε0 are high-frequency and static dielectric constants. Thus, we have

λ2
k ≈ 2

e2

k2 + k2
z

h̄ω0

FL1

(
1

ε∞
− 1

ε0

)
, (B25)

where we denote k‖ → k. After the integration we obtain

h̄ Im�
ex-LO(R)
0 (ω) = e2h̄ω0

4πh̄2

(
1

ε∞
− 1

ε0

)√
2m

kBT
P fLO

(
h̄(ω − �/2 − ω0)

kBT

)

= e2h̄ω0√
2m(kBT )3/2

(
1

ε∞
− 1

ε0

)
NxfLO

(
h̄(ω − �/2 − ω0)

kBT

)
, (B26)

where

fLO(x) = −e−x

√
x

θ (x). (B27)
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