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Wide applicability of high-Tc pairing originating from coexisting wide and incipient
narrow bands in quasi-one-dimensional systems
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We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting
wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single
orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder.
These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and
the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When
one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but
not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly
enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction
due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing
mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the
flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and
“incipient” narrow bands in quasi-one-dimensional systems.
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I. INTRODUCTION

More than thirty years have passed since the discovery of
the high-Tc cuprate superconductors, but the cuprates remain
to be the record holder of the superconducting transition
temperature Tc at ambient pressure. A difficulty in realizing
high-Tc superconductivity lies in the incompatibility between
a strong pairing interaction and a light renormalized electron
mass: a strong electron correlation can mediate strong pairing
interactions, but also makes the electron mass heavy due to the
strong quasiparticle renormalization. The former is of course
favorable for superconductivity, but the latter suppresses Tc.
For instance, it is known that in the single-band Hubbard model
on a square lattice, a model for the high-Tc cuprates, the pairing
interaction is the largest at half filling, but there the system is
a Mott insulator [1].

About a decade ago, one of the present authors proposed
a way to overcome this problem [2]. The proposal requires a
system where narrow and wide bands coexist, not due to the
presence of multiple orbitals (such asf and s orbitals [3,4]), but
due to the presence of multiple sites within a unit cell. The case
where the narrow band intersects the wide band is considered,
and the Fermi level is set close to, but not within, the narrow
band. Then the electrons in the wide band, which are not so
strongly renormalized and have light effective mass, can form
Cooper pairs with a strong pairing interaction mediated by
the large number of interband scattering channels originating
from the large density of states of the narrow band (see upper
panel of Fig. 1). An important point is that the large density of
states of the narrow band does not cause strong renormalization
since it does not intersect the Fermi level. Here it is worth
mentioning a recent trend of the studies of the iron-based
superconductors, in which bands that do not intersect, but lie
close to, the Fermi level has been referred to as the “incipient

band,” and the possibility of enhanced superconductivity due
the interband scattering processes involving such bands has
been investigated intensively [5–10]. These studies have been
motivated by the experimental observation of the hole band
sinking below the Fermi level in some of the iron-based
superconductors [6,11–16]. The narrow band considered in
Ref. [2] lying in the vicinity of the Fermi level is indeed the
incipient band in today’s terminology.

Coming back to Ref. [2], the two-leg Hubbard ladder
[Fig. 1(a)] was considered as an actual system in which the
above mentioned high-Tc mechanism works. The Hubbard lad-
der had already been studied intensively [17] after the proposal
by Dagotto and Rice [18–20], and superconductivity with a
Tc of above 10 K was indeed observed in (Sr,Ca)14Cu24O41

[21]. The proposal in Ref. [2] was that a much higher Tc may
take place in two-leg cuprate ladder compounds, if ∼30% of
electron doping can be achieved. Namely, in the two-leg ladder
lattice with only the nearest-neighbor hoppings t , there are the
bonding and antibonding bands with the same bandwidths sep-
arated by 2t . When the second-neighbor (diagonal) hoppings
t ′ are introduced, one of the bands become narrower, while the
other becomes wider. About 30% of electron doping will place
the Fermi level just above the narrow band, making the narrow
band “incipient.”

More recently, another model on the so-called “diamond
chain,” shown in Fig. 1(c), has been studied as a system with
coexisting narrow (flat) and wide bands [22]. There, apply-
ing exact diagonalization and density matrix renormalization
group to a finite cluster, it has been shown that superconduc-
tivity is strongly enhanced when the Fermi level is positioned
close to, but not within, the flat band. This study, combined
with Ref. [2], suggests generality of enhanced superconduc-
tivity in systems with coexisting wide and incipient narrow
bands.
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FIG. 1. Upper panel: Schematic image of coexisting wide and
incipient narrow bands. Lower panels: Models in real space.
(a) Two-leg ladder, (b) three-leg ladder, (c) diamond chain, (d)
crisscross ladder; (e) and (f) show the coupling between the ladders
and the diamond chains, respectively.

In fact, we can expect that the mechanism may work in yet
another system, namely, the three-leg Hubbard ladder, shown
in Fig. 1(b). Theoretically it has been known that the three-leg
Hubbard ladder also exhibits superconductivity [23–26]. In
those studies, the effect of the diagonal hoppings was not ex-
plicitly studied, but the introduction of such hoppings, as in the
two-leg case, makes the width of the three bands vary from the
widest to the narrowest, so that an enhancement of supercon-
ductivity due to the coexistence of wide and incipient narrow
bands may also be possible in the three-leg ladder model.

Given this background, here we study the Hubbard mod-
els on the above mentioned lattices with coexisting wide
and narrow bands, and investigate how superconductivity is
affected depending on the relation between the Fermi level
and the narrow band energy. These lattices themselves are
purely one-dimensional, but here we consider cases where
these one-dimensional lattices are weakly coupled to form

two-dimensional ones, and apply the fluctuation exchange
approximation. In the cases when the narrow band is perfectly
flat, it is found in all models that superconductivity is enhanced
when the Fermi level is placed close to, but not within, the
flat band. When the narrow band possesses finite width, the
band edge plays the role of the flat band since the density
of states at the band edge is large in quasi-one-dimensional
systems. The present study suggests the wide applicability of
the high-Tc mechanism owing to coexisting wide and incipient
narrow bands.

II. THE MODELS AND METHODS

We start with describing the tight-binding lattices consid-
ered in the present study. All the models are single-orbital
models; namely, there is only one orbital per site. The nearest-
neighbor hoppings are t and taken as the unit of the energy
(t = 1) (except for the crisscross ladder described below), and
the second-nearest-neighbor hoppings are t ′. The x axis is
taken as the direction of the chains. ckx,σ , etc., are annihilation
operators of an electron with momentum kx and spin σ , and
c, d, etc., denote the different sites within a unit cell. In the
actual calculation, all the models are weakly coupled to form
two-dimensional lattices, but we first describe their purely
one-dimensional forms.

In the two-leg ladder, shown in Fig. 1(a), the Hamiltonian
takes the form

H2-leg
k =

∑
kx ,σ

(
c
†
kx ,σ

d
†
kx ,σ

)

×
(

2t cos kx t + 2t ′ cos kx

t + 2t ′ cos kx 2t cos kx

)(
ckx,σ

dkx,σ

)
. (1)

The diagonalized energy bands take the form

E±(kx) = (t ∓ t ′) cos kx ∓ t. (2)

When t ′ = 1, one of the bands become perfectly flat as shown
in Fig. 2(a).

In the three-leg ladder, shown in Fig. 1(b), the Hamiltonian
is given as

H3-leg
k =

∑
kx ,σ

(
c
†
kx ,σ

d
†
kx ,σ

e
†
kx ,σ

)

×

⎛
⎜⎝

2t cos kx t + 2t ′ cos kx 0

t + 2t ′ cos kx 2t cos kx t + 2t ′ cos kx

0 t + 2t ′ cos kx 2t cos kx

⎞
⎟⎠

×
⎛
⎝ckx,σ

dkx,σ

ekx ,σ

⎞
⎠, (3)

and the diagonalized energy bands are

E3‘−leg,1(kx) = 2t cos kx,

E3‘−leg,±(kx) = 2(t ±
√

2t ′) cos kx ±
√

2t. (4)

When t ′ = 1/
√

2, one of the bands become perfectly flat as
shown in Fig. 2(b).
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FIG. 2. The bare energy bands of the tight-binding models having
flat bands. (a) Two-leg ladder with t ′ = 1, (b) three-leg ladder with
t ′ = 1/

√
2, diamond chain with (c) t ′ = 0 and (d) t ′ = 1, crisscross

ladder with (e) tr = 1, (f) tr = 0.5, and (g) tr = 0.

The Hamiltonian of the diamond chain is

Hdia
k =

∑
kx ,σ

(
c
†
kx ,σ

d
†
kx ,σ

e
†
kx ,σ

)

×

⎛
⎜⎝

2t ′ cos kx t(1 + eikx ) 0

t(1 + e−ikx ) 0 t(1 + e−ikx )

0 t(1 + eikx ) 2t ′ cos kx

⎞
⎟⎠

×
⎛
⎝ckx,σ

dkx,σ

ekx,σ

⎞
⎠, (5)

and the energy bands are given as

Edia,1(kx) = 2t ′ cos kx,

Edia,2,3(kx) = t ′ cos kx ±
√

t ′2 cos2 kx + 4t2(1 + cos kx).
(6)

When t ′ = 0 or t ′ = 1, one of the bands become perfectly flat
as shown in Figs. 2(c) and 2(d), respectively.

We can further consider a lattice that always has a flat
band, and provides a link between the three-leg ladder and
the diamond chain. Namely, if we remove the hoppings of
the three-leg ladder in the leg direction and leave only the
hopping in the rung direction (denoted as tr here) and the the
diagonal hoppings (denoted as t here), we end up with the
lattice shown in Fig. 1(d). We will call this lattice the “crisscross
ladder.” If we assign A and B sublattices in this lattice as in the
figure, the number of A and B sites within a unit cell differs by
one, and all the hoppings connect A and B sublattice sites, so
that there is always a flat band regardless of the values of the
hoppings according to Lieb’s theorem [27]. When the hopping
in the rung direction is taken as tr = 0, this lattice is nothing
but the diamond chain (two decoupled diamond chains). In
fact, the Hamiltonian of this lattice is

Hcc
k =

∑
kx ,σ

(
c
†
kx ,σ

d
†
kx ,σ

e
†
kx ,σ

)

×
⎛
⎝ 0 tr + 2t cos kx 0

tr + 2t cos kx 0 tr + 2t cos kx

0 tr + 2t cos kx 0

⎞
⎠

×
⎛
⎝ckx,σ

dkx,σ

ekx,σ

⎞
⎠, (7)

and the energy bands are

Ecc,1(kx) = 0,

Ecc,±(kx) = ±2
√

2t cos kx ±
√

2tr . (8)

These equations confirm the above mentioned properties. In
order to strengthen the generality of the mechanism, we
also study this lattice in the present study, fixing t = 1 and
varying tr .

In all cases, the band filling n is defined as the average
number of electrons per unit cell (maximum is n = 4 for the
two-leg ladder, and n = 6 for the three-leg ladder, the diamond
chain, and the crisscross ladder). On top of these tight-binding
models, we consider the on-site repulsive Hubbard interaction
term,

Hint = U
∑

i

ni↑ni↓, (9)

where niσ is the number operator of electrons with spin
σ at the ith site. Throughout the paper, U = 6 is adopted,
which is a typical value (in units of t) for the cuprates
and related transition-metal oxides [28–30]. We apply the
fluctuation exchange (FLEX) approximation [31] to obtain
the renormalized Green’s function. Namely, bubble and ladder
type diagrams are collected to obtain the spin and charge
susceptibilities, which enter the effective interaction that is
necessary to obtain the self-energy. The Dyson equation is
solved using the self-energy, which gives the renewed Green’s
function, and the self-energy is recalculated. This iteration
process is repeated till convergence is attained. The Green’s
function is first obtained in the site representation, namely, in
the form of Gαβ , where α, β denote the sites within a unit
cell. Then it is transformed into the band representation by a
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unitary transformation. To study superconductivity mediated
by the spin fluctuation, the linearized Eliashberg equation,

λ�ll′(k) = − T

N

∑
k′mi

�lm1m4l′ (k − k′)Gm1m2 (k′)

×�m2m3 (k′)Gm4m3 (−k′), (10)

is solved, where k stands for a combination of the wave
vector and the Matsubara frequency, the subscripts denote
the sites within a unit cell, T is the temperature, N is the
number of the k-point mesh, � is the anomalous self-energy,
and � is the pairing interaction, whose main contribution
comes from the FLEX spin susceptibility mentioned above.
The eigenvalue λ of the linearized Eliashberg equation reaches
unity at the superconducting transition temperature T = Tc, so
that when it is calculated at a fixed temperature, systems with
higher Tc give larger eigenvalues. In other words, λ calculated
at a fixed temperature can be considered as a measure of
Tc. Unless noted otherwise, we calculate the eigenvalue at
T = 0.05.

As mentioned in the beginning of this section, in the actual
calculation, all the lattices are weakly connected in the y

direction to form two-dimensional lattices. The reason for
this is because the “normal state” of purely one-dimensional
systems must be treated as a Tomonaga-Luttinger liquid, and
there is no true long-range order even at T = 0 (phase diagram
is determined by how the correlation functions decay as func-
tions of distance [17]), whereas in the present study we adopt
FLEX, which is a perturbational approach based on Fermi
liquid theory, and discuss finite Tc by solving the linearized
Eliashberg equation. Adopting FLEX is more justified in two
dimensions, so we introduce the coupling ti between the one-
dimensional lattices in the form shown in Figs. 1(e) and 1(f) as
in the actual two-leg and three-leg cuprate ladder compounds
[32]. In the actual two-leg compound SrCu2O3, ti/t varies from
0.03 to 0.07 depending on how to evaluate [33], so we took
ti/t = 0.1 in the present study. In the calculation, we take a
32 × 32 two-dimensional k-point mesh and 1024 Matsubara
frequencies. Larger numbers of Matsubara frequencies are
taken for lower temperature, e.g., for T = 0.025, 2048.

To be more strict, even in two dimensions, Tc for the true off-
diagonal long-range order should be zero. Finite Tc is obtained
in the present formalism because the mean-field approximation
is adopted in deriving the linearized Eliashberg equation.
However, it has been shown in Ref. [34] that Tc calculated in the
present formalism for two-dimensional systems is essentially
the same as the Tc of the three-dimensional systems in which
those two-dimensional systems are weakly coupled in the z

direction. Hence, in the present study, Tc, in the rigorous
sense, should be considered as those of the three-dimensional
systems in which the present models are weakly coupled in the
z direction.

III. RESULTS

A. Cases with a perfectly flat band

1. Eigenvalues of the Eliashberg equation

In this section, we consider cases where the bare (U = 0)
narrow band is perfectly flat in the chain (kx) direction (i.e.,
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FIG. 3. λ against the band filling for (a) the two-leg and three-leg
ladders, (b) the diamond chain with t ′ = 0 or t ′ = 1, (c) the crisscross
ladder with tr = 1,0.5,0. The linearized Eliashberg equation could
not be solved at the band fillings where λ is not plotted; there λ is
expected to be very small.

consider the band structures shown in Fig. 2). We first show
the band-filling dependence of the eigenvalue of the Eliashberg
equation. The results for the two-leg and three-leg ladders,
those for the diamond chain, and those for the crisscross ladder
are given in Figs. 3(a), 3(b), and 3(c), respectively. It can be
seen that in all cases, superconductivity is sharply optimized
at a certain band filling. In order to elucidate the role of
these band fillings, we replot in Fig. 4 the eigenvalue against
chemical potential (Fermi level). Here, we use the chemical
potential μ for the noninteracting case (U = 0), and define a
chemical potential measured from the energy of the flat band
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Eflat as

μ∗ = (μ − Eflat) × W2leg

W
. (11)

Here, W is the total bandwidth in the noninteracting case, and
W2leg in particular is that for the two-leg ladder. The factor W2leg

W

is to take into account the difference in the total bandwidth
among different systems. In all of the systems, the eigenvalue
is maximized when the chemical potential lies in the vicinity
of the flat band. This result shows that the high-Tc pairing
mechanism in coexisting wide and incipient narrow bands
works rather generally among various quasi-one-dimensional
systems. It is also important to notice that superconductivity is
strongly suppressed when the chemical potential is too close to
the flat band. In other words, superconductivity occurs rather
abruptly against the variation of the chemical potential or the
electron density.

The optimized superconductivity has extremely high Tc

especially for the two-leg ladder case, considering the fact that
λ already exceeds unity for the temperature adopted here, 0.05,
in units of the nearest-neighbor hopping (∼300 K assuming a
typical value of nearest-neighbor hopping 	0.5 eV). We note
here that the FLEX approximation gives a maximum Tc of
somewhat lower than 100 K for the Hubbard model with a
realistic band structure of a high-Tc cuprate HgBa2CuO4 [35].
This estimation is close to, or somewhat underestimates, the
actually observed Tc.

In the case of a diamond chain with t ′ = 0 and the crisscross
ladder, the band structure is electron-hole symmetric, and
hence the eigenvalue takes the same values between cases when
the chemical potential lies below and above the flat band. In the
two-leg ladder, the eigenvalue peak is larger when the chemical
potential is above the flat band than when it is below. This is
because the band filling is closer to half filling (n = 2 in the
two-leg ladder) in the former, so that the electron correlation
effect is stronger. In the three-leg ladder case also, there can be
enhanced superconductivity when the chemical potential lies
just below the flat band. However, the band filling in that case
is very small, and the linearized Eliashberg equation could not
be solved appropriately in that regime.

If we look more closely, there are some other differences
among the systems. As mentioned above, the eigenvalue of

the two-leg ladder is by far the largest. The reason for this
is probably because both of the bands contribute to super-
conductivity, while in other cases, only one of the dispersive
bands is relevant. For example, it is known that the middle
band in Fig. 2(b) does not contribute to superconductivity in
the three-leg ladder [24–26]. In the diamond chain, one of the
dispersive bands does not intersect the Fermi level, and hence
should not contribute to superconductivity.

Another difference is that the eigenvalue of the two-leg
ladder is peaked when the chemical potential lies in the very
vicinity of the flat band. By contrast, in the three-leg ladder the
eigenvalue takes its maximum at a chemical potential value
somewhat away from the flat band position.

2. The renormalized Green’s function

To understand the difference among the systems, we plot,
against kx , the absolute value of the renormalized Green’s
function in the band representation at the lowest Matsubara
frequency. Multiple values are plotted at each kx , which is
due to the small but finite dispersion in the ky direction
originating from the interladder (or chain) hopping ti . If a
renormalized band intersects the chemical potential at a certain
wave vector, the Green’s function will be peaked at that wave
vector. Hereafter we will denote the wave vector at which the
renormalized (bare) dispersive band intersects the chemical
potential as keff

F (k(0)
F ).

We start with the two-leg ladder. In Fig. 5, we notice from
the small kx dependence of the Green’s function of the flat
band that this band remains flat even when the interaction is
turned on. When n = 2.7, for which λ is small, the Green’s
function of the wide band is sharply peaked at keff

F , which is
unchanged from k

(0)
F . Here the renormalization is weak, and so

is the pairing interaction. For n = 2.45, for which λ is large,
keff
F is shifted from k

(0)
F , so that the electron band filling of the

renormalized dispersive band is smaller compared to that of
the bare one. This means that the renormalized flat band is
closer to full filling (note that the bare flat band is not fully
filled even though the chemical potential lies above the flat
band due to finite temperature effect). In other words, the
electron-electron interaction moves the flat band away from
the chemical potential. In this case, the Green’s function of
the dispersive band is still relatively sharply peaked at keff

F ,
indicating that the self-energy renormalization of this band
is not so strong, and hence favorable for superconductivity.
On the other hand, when n = 2.2, where λ becomes strongly
reduced, the band filling of the renormalized dispersive band
increases compared to the noninteracting case because keff

F is
closer to kx = 0 or 2π compared to k

(0)
F . This implies that the

flat band is closer to the chemical potential, affecting strongly
the dispersive band. Consequently, the peak structure of the
Green’s function of the dispersive band is suppressed, leading
to the suppression of superconductivity. This result gives a
clear view as to why superconductivity is degraded when the
chemical potential is too close to or intersects the flat band:
only the electrons around the chemical potential in the wide
band can give rise to high Tc due to their light mass, but
when the effect of the interband scattering is too strong, the
renormalization of the wide band causes mass enhancement
and the reduction of the quasiparticle lifetime.
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FIG. 5. Green’s function for the two-leg ladder plotted against kx .
(a) n = 2.7, (b) n = 2.45, (c) n = 2.2. Throughout the paper, the bare
band structure is superimposed onto the Green’s function by the solid
lines on the right panels. The Green’s function of a certain portion of
the band is indicated by those with the same color as the band. The
dashed line indicates the position of the bare chemical potential. See
the text for the definition of k

(0)
F and keff

F .

In the three-leg ladder case shown in Fig. 6, the Green’s
function of the flat band exhibits a significant kx dependence,
indicating that the flat band is effectively “bent” by the
electron-electron interaction [see the schematic image given
in Fig. 7(b)] [36]. For n = 3.4, where the eigenvalue λ is
large, keff

F1 is smaller than k
(0)
F1. As in the case of the two-leg

ladder, this indicates that the band filling of the dispersive
band is reduced due to the on-site interaction, and hence the
band filling of the flat band increases (moves away from the
chemical potential), despite the bending of the flat band. By
contrast, for n = 3.1, for which λ is suppressed, keff

F1 is shifted
from k

(0)
F1 in a manner that the band filling of the renormalized

dispersive band increases compared to the noninteracting case,
even though the bare chemical potential still lies well above the
bare flat band. Such a shift occurs more strongly in the third (the
other dispersive) band as seen from the comparison between
keff
F2 and k

(0)
F2. This means that the flat band is effectively bent to

come closer to (or intersect) the chemical potential near kx = 0
[schematic image in Fig. 7(c)]. In quasi-one-dimensional
systems, even when the band is bent, the density of states
at the band edge is large and hence can mimic the effect of
the flat band, at least to some extent. Therefore, the band
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FIG. 6. Green’s function for the three-leg ladder plotted against
kx . (a) n = 3.4, (b) n = 3.1.

edge approaching the chemical potential affects the dispersive
band, so that the peak structure of the Green’s function of the
dispersive band is strongly suppressed. This “bending” of the
flat band, which does not take place in the two-leg ladder, is
the reason why superconductivity is suppressed even when the
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FIG. 7. Schematic image of the effective band structure of the
three-leg ladder, where the two bands effective to superconductivity
are extracted. (a) The bare band structure when the narrow band
is perfectly flat. (b) When U is introduced in the case of (a); here
superconductivity is optimized within cases where the bare narrow
band is flat (corresponds to n = 3.4, t ′ = 1/

√
2). (c) When the

chemical potential is reduced from the case of (b); superconductivity
is suppressed compared to (b) (corresponds to n = 3.1, t ′ = 1/

√
2).

(d) When t ′ is reduced from the case of (b) (the bare narrow band
has finite width); here superconductivity is enhanced compared to (b)
(corresponds to n = 3.4, t ′ = 0.45).
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FIG. 8. Green’s function for the diamond chain with t ′ = 0
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bare chemical potential lies somewhat away from the bare flat
band position.

As for the diamond chain with t ′ = 0, the Green’s function
of the flat band remains kx independent, and keff

F of the lower
dispersive band is nearly the same as k

(0)
F for all the band fillings

shown in Fig. 8, indicating that the position of the flat band
measured from the chemical potential is barely changed by
the electron-electron interaction. Hence the situation here is
between the two-leg and three-leg cases; due to the interaction,
the flat band moves away from the chemical potential in the for-
mer, and moves towards it in the latter due to the band bending.

For the diamond chain with t ′ = 1, the situation is com-
plicated. Although λ as a function of the chemical potential
is peaked near the flat band energy, further calculation results
regarding the temperature dependence suggest that supercon-
ductivity actually does not take place in this case, consistent
with the conclusion in Ref. [22]. We will come back to this
point later.

B. Cases with a narrow band with finite dispersion

We now move on to the case when the bare narrow band
has finite dispersion in the kx direction. Once again we start
with the two-leg ladder as shown in Fig. 9. We reduce t ′ from
1, which will make the flat band have finite bandwidth. For
the band filling of n = 2.45, where λ was the largest for the
flat-band case, λ monotonically decreases as the dispersion of
the narrow band increases. On the other hand, for larger band
fillings such as n = 2.58 or n = 2.7, λ first increases and takes
its maximum at a certain t ′.

These results can again be understood by looking at the
renormalized Green’s function shown in Fig. 10. For the case
of n = 2.45, when t ′ is reduced to 0.25, keff

F and k
(0)
F are

nearly the same, implying that the renormalized narrow band
intersects the chemical potential just as in the noninteracting
case. Consequently, the peak structure of the Green’s function
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FIG. 9. λ plotted against t ′ for the two-leg ladder for various band
fillings.

of the wide band is suppressed compared to the flat band case
of t ′ = 1, and hence superconductivity is degraded.

On the other hand, when n = 2.7 (Fig. 11), the flat band
lies far away from the chemical potential for t ′ = 1, so
that the pairing interaction is weak and superconductivity is
suppressed, but reducing t ′ to 0.3 makes the narrow band edge
around kx = 0 approach the chemical potential, as can be seen
in the enhancement of its Green’s function peak around kx = 0.
This enhances the pairing interaction and hence λ, since the
edge of a quasi-one-dimensional band, due to its large density
of states, can play the role of a flat band, as mentioned in
Sec. III A. Too large dispersion (too small t ′) makes the narrow
band intersect the chemical potential, as seen from the fact that
the peak of the Green’s function of the lower band shifts from
kx = 0 for t ′ = 0. This suppresses superconductivity, once
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FIG. 10. Green’s function against kx for the two-leg ladder with
n = 2.45, t ′ = 0.25.
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FIG. 11. Green’s function against kx for the two-leg ladder with
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again similarly to the case when the chemical potential comes
too close to the perfectly flat band.

It is also interesting to study the bandwidth dependence of
cases when the chemical potential is too close to the flat band
at t ′ = 1, so that superconductivity is strongly degraded. In the
lower panel of Fig. 9, we display λ against t ′ for n � 2.45. In
contrast to the case of n = 2.45, λ increases as t ′ is reduced in
cases with smaller n. This is because the strong renormalization
effect of the flat band is reduced by the introduction of the finite
bandwidth.

Let us now move on to the three-leg ladder. As shown in
Fig. 12, when t ′ is reduced from its flat-band value 1/

√
2,

λ increases even for the band filling of n = 3.4, which gives
the largest λ for the flat-band case. This is in contrast to the
two-leg situation, where λ monotonically deceases with the
reduction of t ′ for the band filling that gives the largest λ for
the flat-band case. This result for the three-leg ladder can again
be traced back to the renormalized Green’s function shown
in Fig. 13. For t ′ = 0.45, where λ is maximized, it can be
seen that the Green’s function of the narrow band is peaked
around kx = 0 showing that the band edge has approached
the chemical potential, which makes the pairing interaction
stronger. Still, the Green’s function of the wide band is not
strongly suppressed compared to t ′ = 1/

√
2, which indicates

that the renormalization is not strong. This combination of the
large pairing interaction and the weak renormalization results
in the enhancement of superconductivity with the reduction of
t ′. As mentioned in the previous section, for t ′ = 1/

√
2 and
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FIG. 12. λ plotted against t ′ for the three-leg ladder for various
band fillings.

n = 3.4, the bare chemical potential is positioned relatively
far from the flat band, so that there is still some room for λ to
be enhanced by increasing the bandwidth of the narrow band.
This is in contrast to the case when t ′ = 1/

√
2 is fixed (the bare

band is kept flat) and the band filling (the chemical potential) is
reduced, where the renormalization of the wide band becomes
strong. The difference between the two cases lies in that only
the portion of the band around kx = 0 approaches the chemical
potential by reducing t ′ and fixing n, while the entire flat band
approaches it when n is reduced with a fixed t ′ [schematic
images in Figs. 7(c) and 7(d)].

For the diamond chain, we can continuously connect the
two flat-band cases by varying t ′ from 0 to 1. In Fig. 14, we
show the evolution of the band dispersion. As can be seen from
this evolution, the edges of the lowest and the middle bands
have zero group velocity when t ′ is turned on, so according
to our previous discussion, these two bands both play the role
of the flat band when the chemical potential is placed in the
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FIG. 14. Evolution of the band structure of the diamond chain
with (a) t ′ = 0, (b) t ′ = 0.5, (c) t ′ = 1.

vicinity of these band edges, while neither of them can act as the
wide band. This suggests the possibility that superconductivity
actually does not take place at least for large values of t ′. To
investigate this possibility, in Fig. 15 we display the temper-
ature dependence of the eigenvalue, fixing the band filling at
which the eigenvalue is nearly maximized at T = 0.05. For
t ′ = 1, there is indeed a strong tendency of saturation of λ

upon lowering the temperature, which suggests the absence of
superconductivity. Even at t ′ = 0.5, the growth of λ is slow.
These results are consistent with the conclusion of Ref. [22] as
well as the expectation drawn from the fact that all the bands
have zero gradient near the chemical potential for finite values
of t ′, so that none of the bands can act as the wide band.

In the above context, it is also worth commenting on the
peak of λ against n in the diamond chain with t ′ = 1 around
n = 5 [Fig. 3(b)]. This corresponds to the situation when
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FIG. 15. λ plotted against the temperature for the diamond chain
with t ′ = 0, t ′ = 0.5, or t ′ = 1, along with the results for the three-leg
ladder with t ′ = 1/

√
2 and those for the crisscross ladder with tr = 1

or 0.5.

the chemical potential is around 2 [see Fig. 14(c)], where it
intersects the wide band and is in the vicinity of the top of the
second band [37]. The peak inλoriginates from the coexistence
of the light mass of the wide band and the large density
of states at the narrow band edge. However, the eigenvalue
is relatively small, and studying its temperature dependence
strongly suggests absence of superconductivity, as shown in
Fig. 15. This reconfirms our view that the band filling should
not be too far away from half filling for the present high-Tc

mechanism to be effective.

IV. CONCLUSION

Our present study shows that the high-Tc pairing mechanism
due to coexisting wide and incipient narrow bands works
quite generally in quasi-one-dimensional systems. When the
chemical potential sits close to the narrow band, the pairing
interaction due to interband pair scattering becomes large and
is favorable for superconductivity. However, if the chemical
potential comes too close to the narrow band, the renormaliza-
tion effect becomes strong and superconductivity is degraded.
In quasi-one-dimensional systems, the density of states at the
band edge is (nearly) diverging, so that the band edge itself
can play the role of the flat band to some extent, even if the
total bandwidth is not so small. Hence, superconductivity can
in some cases be optimized by increasing the dispersion of the
narrow band so as to make the band edge approach the chemical
potential. In the two-leg ladder, superconductivity is sharply
optimized when the bare chemical potential sits in the very
vicinity of the flat band or the narrow band edge. On the other
hand, in the three-leg ladder, superconductivity is optimized
when the bare chemical potential lies relatively far from the flat
band. The difference between the two cases originates from the
bending of the flat band due to electron-electron interaction,
which occurs in the latter case. For the diamond chain, the case
with t ′ = 0 is special in that the wide band has finite gradient
at the chemical potential. When t ′ is finite, the lower two bands
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have zero gradient at the band edges, so that neither of them
can play the role of the wide band when the Fermi level is
positioned in the vicinity of the two band edges. Consequently,
the calculation result of the temperature dependence suggests
that superconductivity does not take place at least when t ′ is
large.

Here we summarize the condition for the present high-Tc

pairing mechanism to be effective. The first is that the wide and
narrow bands arise due to positive and negative interference
between different paths of electrons moving from one unit cell
to another [38]; this requires multiple sites within a unit cell,
where each site corresponds to a single orbital. The reason
for this requirement is because the origin of the interband pair
scattering is the spin fluctuation, which is strongly enhanced
only by the intraorbital on-site repulsion U , via which only
up spin and down spin electrons interact. In this sense, the
combination of localized f or d orbitals and the itinerant s

orbitals does not apply, since in this case multiple bands arise
from multiple orbitals. The second is that the position of the
narrow band edge must be in the energy range where the wide
band has large gradient. Especially when the narrow band is
flat, the flat band has to intersect the wide band. As for this
condition, a recent study provides a general prescription for
obtaining such kind of coexisting flat and dispersive bands [39].
The third is that the Fermi level must be placed in the vicinity of,
but not too close to, the narrow band edge. Superconductivity
occurs rather abruptly against the variation of the Fermi level or
the temperature (see the abrupt jump of λ against T in Fig. 15).
In addition, the corresponding band filling should be somewhat
close to half filling; otherwise the electron correlation will be
too weak to induce high Tc.

As for actual materials in which the present mechanism
can be realized, the ladder-type cuprates are candidates, as
proposed in Ref. [2]. There, only the two-leg ladder was
considered, but the three-leg ladder cuprate Sr2Cu3O5 can also
be a candidate according to the present study. We stress here
that although there are no flat bands in the band structure of
these materials (they roughly correspond to the case of t ′ ∼ 0.3
[33]), the narrow band edge plays the role of the flat band, as
was revealed in the present study. However, a drawback of
these ladder-type cuprates is that they are notorious for being
unable to dope large amount of carriers, especially electrons.

The large amount of electron doping required for realizing
high-Tc superconductivity is unlikely to be attained by element
substitution in bulk ladder cuprates. Recently, two of the
present authors proposed another way of realizing the present
mechanism by introducing a concept of “hidden ladders”
in Ruddlesden-Popper compounds [40], where dxz and dyz

orbitals form ladders in the x and y directions, respectively.
There, materials such as Sr3Mo2O7 and Sr3Cr2O7 have been
proposed as good candidates in which the Fermi level is placed
in the vicinity of the narrow band.

The present study has been restricted to quasi-one-
dimensional systems. It is intriguing to see to what extent
the “wide and incipient narrow band pairing mechanism”
remains valid in higher dimensions. In fact, recent studies on
the two-dimensional bilayer Hubbard model show how finite
energy spin fluctuations enhance superconductivity [16,41].
In this model, the spin fluctuation arises due to the nesting
of the Fermi surfaces of bonding and antibonding bands,
but the superconductivity mediated by the spin fluctuation is
strongly enhanced when the Fermi surface nesting is degraded
to some extent, so that the spin fluctuation has large weight
in the finite-energy regime. An interesting extension of this
study is to make one of the bands, say, the antibonding
band, narrow (or even flat). Such a study is underway, which
suggests that the incipient narrow band pairing mechanism
does work in two dimensions at least when the density of
states of the narrow band is sufficiently large. This problem will
serve as an interesting future study, which will be published
elsewhere.
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