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Magnetic disorder in superconductors: Enhancement by mesoscopic fluctuations
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We study the density of states (DOS) and the transition temperature Tc in a dirty superconducting film with
rare classical magnetic impurities of an arbitrary strength described by the Poissonian statistics. We take into
account that the potential disorder is a source of mesoscopic fluctuations of the local DOS, and, consequently, of
the effective strength of magnetic impurities. We find that these mesoscopic fluctuations result in a nonzero DOS
for all energies in the region of the phase diagram where without this effect the DOS is zero within the standard
mean-field theory. This mechanism can be more efficient in filling the mean-field superconducting gap than rare
fluctuations of the potential disorder (instantons). Depending on the magnetic impurity strength, the suppression
of Tc by spin-flip scattering can be faster or slower than in the standard mean-field theory.
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I. INTRODUCTION

The properties of superconductors in the presence of im-
purities have remained at the focus of intense theoretical
and experimental research during the past half century. It
is generally accepted that the potential scattering in s-wave
superconductors affects neither the transition temperature,
Tc, nor the density of states (DOS), ρ(E). This statement
usually referred to as Anderson’s theorem [1–3] is valid for
sufficiently good metals. As the potential disorder increases,
the emergent inhomogeneity due to the interplay of quantum
interference (Anderson localization) and interaction leads to
modification of Tc [4–12] and ρ(E) [13–16], with the effect
being controlled by the parameter 1/(kF l) � 1 (where kF is
the Fermi momentum and l is the mean-free path).

Magnetic impurities violating the time-reversal symmetry
affect superconductivity much more strongly, already at kF l →
∞. Classical magnetic impurities lead both to suppression of
Tc and to reduction of the superconducting gap in ρ(E) with the
increase of their concentration ns [17]. Beyond the Born limit,
magnetic impurities produce degenerate subgap bound states
[see Fig. 1(a)]. Their hybridization results in the formation
of an energy band giving rise to a nontrivial DOS structure
[18–21]. The Kondo effect [22–24], the indirect exchange
interaction between magnetic impurities [25], or the spin-flip
scattering assisted by the electron-phonon interaction [26] can
lead to the reentrant behavior of Tc vs ns (see Ref. [27] for a
review).

A hard gap in ρ(E) obtained for superconductors with mag-
netic impurities in the mean-field approximation is smeared
by inhomogeneity. This can be due to rare fluctuations of a
potential disorder [28–31], ns [32], or superconducting order
parameter [33]. A combined theory of these mechanisms has
been developed in Refs. [34,35].

In this paper we describe a different mechanism for smear-
ing of the superconducting gap. We reconsider the problem of
rare classical magnetic impurities with the Poissonian statistics
in a dirty superconductor. The key point that distinguishes
our work from the previous ones is that we take into account

mesoscopic fluctuations of the local DOS in a potential disor-
der. Physically, this implies that the energies of subgap bound
states become dependent on the spatial positions of magnetic
impurities [see Fig. 1(b)]. Averaging over these bound states
results in a nonzero homogenous DOS at all energies in the
region of the phase diagram where in the absence of this effect
ρ(E) is zero within the mean-field approximation. Motivated
by the recent experiment on magnetic Gd impurities in su-
perconducting MoGe films [36], in this paper we develop the
theory of the enhancement of magnetic disorder by mesoscopic
fluctuations in the case of a dirty superconducting film.

The outline of the paper is as follows. In Sec. II we present
a description of dirty superconductors with rare magnetic
impurities in terms of the nonlinear sigma model and its
renormalization. Our results for the renormalized spin-flip
rate, superconducting transition temperature, and the density
of states are given in Sec. III. We end the paper with our
discussion (Sec. IV) and conclusions (Sec. V). Some details of
calculations are presented in Appendices.

II. NONLINEAR SIGMA MODEL FOR PARAMAGNETIC
IMPURITIES

We consider a two-dimensional (2D) dirty s-wave super-
conductor in the presence of both potential (spin-preserving)
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FIG. 1. Subgap states localized at individual magnetic impurities.
(a) In a clean system, the energies of all bound states are equal.
(b) Mesoscopic fluctuations lead to the log-normal distribution of
impurity strength [cf. Eq. (16)], rendering the energies of bound states
position-dependent.
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and magnetic disorder. Scattering off the former is responsible
for the dominant contribution to the momentum relaxation
rate 1/τ . A much weaker spin-flip scattering rate is related
to the exchange interaction between magnetic impurities and
electrons described by the Hamiltonian

Hmag = J
∑

j

ψ†(rj )Sjσψ(rj ). (1)

We shall treat rare magnetic disorder under the standard
assumptions [18–21,31]: (i) impurity positions rj have the
Poisson distribution; (ii) impurity spins Sj are classical sta-
tistically independent vectors with the flat distribution over
their orientations,

∏
j δ(S2

j − S2).
The low-energy description of two-dimensional disordered

superconductors with rare paramagnetic impurities can be
conveniently formulated in terms of the replicated version of
a nonlinear sigma model [37,38]. Its action can be written as

S = SD + S� + Smag. (2)

Here SD is the standard diffusive action

SD = πν

8

∫
d2r tr[D(∇Q)2 − 4(ετ3 + �τ1)Q], (3)

where ν and D denote the density of states at the Fermi energy
(per one spin projection) and the diffusive coefficient in the
normal state, respectively. The matrix Q operates in the spin,
Nambu, replica, and Matsubara energy spaces. It is subject to
the following constraints [39]:

Q2 = 1, Q = Q ≡ τ1σ2Q
Tτ1σ2. (4)

Here the transposition T acts in both the Matsubara energy
space and the replica space. The Pauli matrices τj (σj ) act in
the Nambu (spin) spaces. The matrix ε is the diagonal matrix
with the elements εn = πT (2n + 1).

The superconducting correlations are described by the
order-parameter matrix � which is diagonal in the Nambu
space with matrix elements �a(r). In the absence of a su-
percurrent, � is chosen to be real. The action S� reads

S� = ν

λT

∫
d2r

N∑
a=1

|�a(r)|2. (5)

Here N stands for the number of replicas and λ > 0 denotes
the attraction amplitude in the Cooper channel.

We consider the case of rare classical magnetic impurities
with the concentration ns (for the precise condition on ns see
below), when the magnetic part of the action, Smag, becomes
separable in the individual magnetic impurities [30]:

Smag ≈
∑

j

s(j )
mag = −1

2

∑
j

tr ln[1 + i
√

α Q(rj )τ3σ nj ].

(6)

Here nj stands for the three-dimensional unit vector and the
dimensionless parameter α = (πνJS)2 is expressed in terms
of the impurity spin S and exchange constant J . We note
that approximation (6) of the full action Smag is equivalent
to the self-consistent T -matrix approximation for magnetic
scattering which treats all orders in scattering off a single

magnetic impurity but neglects diagrams with intersecting
impurity lines.

Performing the Poisson averaging over positions of the
magnetic impurities with the help of the relation [40]〈

exp
∑

j

f (r j )

〉
= exp

{
ns

∫
d2r[ef (r) − 1]

}
, (7)

we find that the contribution to the nonlinear sigma model
action due to magnetic impurities becomes

Smag → −ns

∫
d2r(〈e 1

2 tr ln[1+i
√

α Q(r)τ3σ n]〉n − 1). (8)

Here 〈. . . 〉n stands for the averaging over direction of the unit
vector n. Expanding Smag in powers of

√
α, we find

Smag = −ns

∫
d2r

[ ∞∑
m=1

(−1)m−1

2m
ĈTm

+ 1

2!

∞∑
m,n=1

(−1)m+n

4mn
ĈTmn

+ 1

3!

∞∑
m,n,p=1

(−1)m+n+p−1

8mnp
ĈTmnp + . . .

⎤⎦. (9)

Here we introduced the operators

ĈTm = Ci1...im tr(QAi1 . . . QAim ),

ĈTmn = Ci1...im+n
tr(QAi1 . . . QAim)

× tr(QAim+1 . . . QAim+n
), (10)

and so on. The operator Ĉ acts as the symmetric tensor:
Ci1...im = 〈ni1 . . . nim〉. For convenience we defined the self-
dual matrix A = i

√
ατ3σ = A. Since operators Tn... are sym-

metric with respect to its indices, the expansion can be written
in the following form:

Smag = ns

∫
d2r
[

1

4
ĈT2 − 1

8
ĈT11 + 1

8
ĈT4 − 1

12
ĈT31

− 1

32
ĈT22 + 1

32
ĈT211 − 1

384
ĈT1111 + . . .

]
. (11)

The nonlinear sigma model action (2) with the magnetic part
given by Eq. (11) provides a full description of quantum effects
for a dirty superconductor in the diffusive regime. These effects
(weak localization and Aronov-Altshuler-type corrections) are
responsible for the renormalization of the system’s parameters,
e.g., the diffusion coefficient and the attraction amplitude. In
the 2D case, the magnitude of quantum corrections at the
energy scale ε is governed by the parameter

t(ε) = 1

πg
ln

1

|ε|τ , (12)

where g = h/(e2R�) 
 1 is the bare dimensionless con-
ductance of the film. In a superconductor, renormalization
stops at ε ∼ max{Tc,|�|} ∼ Tc. Assuming that the transition
temperature is not too low, t(Tc) � 1, one can neglect the
renormalization of the conductance and interaction parameters
between the energy scales 1/τ and Tc (see Refs. [37,38] for a
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review). In contrast, renormalization of the magnetic-impurity
part Smag of the nonlinear sigma model is essential.

Treating this renormalization in the one-loop approxima-
tion, we find that after the renormalization this part of the action
can be written as (see Appendix A)

Smag = ns

∫
d2r[γ2ĈT2 + γ11ĈT11 + γ4ĈT4 + γ31ĈT31

+ γ22ĈT22 + γ211ĈT211 + γ1111ĈT1111 + . . . ].

(13)

Here the coefficients γk1k2...kq
, where k1 + k2 + · · · + kq = n,

are given as follows:

γk1k2...kq
(t) = γk1k2...kq

(0)en(n−1)t , (14)

where initial values of the coefficients γk1k2...kq
(0) follow from

Eq. (11).
In what follows we are interested in the singlet sector of the

theory. Therefore, one can operate with a Q matrix which is the
unit matrix in the spin space, Q = Q0σ0. Then we can average
over directions of the impurity magnetization n in operators
ĈTk1k2...kq

. Then the renormalized magnetic-impurity part of
the nonlinear sigma model action (13) can be written in the
following convenient shorthand notation (see Appendix B):

Smag = −ns

∫
d2r
〈

exp

{
1

4
tr ln[1 + a(Qτ3)2]

}
− 1

〉
a
,

(15)

where the averaging 〈. . . 〉a is defined with respect to the
following log-normal distribution function:

Pα(a,t) = 1

4a
√

πt
exp

[
− 1

4t

(
1

2
ln

a
α

+ t

)2]
. (16)

Comparing Eq. (15) with Eq. (8) we may interpret the effect
of renormalization as follows: Now instead of a single value
of α there is a log-normal distribution of the effective strength
of impurity a, schematically shown in Fig. 1.

III. RESULTS

In the mean-field approximation, a dirty superconductor in
the diffusive regime is described by two coupled equations:
the self-consistency equation for the superconducting order
parameter � and the Usadel equation for the quasiclassical
Green’s function [41–43]. These equations can be derived
as the saddle-point equations of the nonlinear sigma model
described in the previous section. The mean-field solution for
the Q matrix can be parametrized as

Q = τ1 sin θ + τ3 cos θ. (17)

Performing variation of the action S on the configuration
(17) with respect to �, we find the following mean-field
self-consistency equation:

� = πλT
∑

ε

sin θε. (18)

where θε is the energy-dependent spectral angle, and ε =
πT (2n + 1) denotes the fermionic Matsubara frequencies.

For the study of space-averaged configurations at the mean-
field level, it is sufficient to retain the term of the first order in
trace only in the renormalized action (15):

SMF
mag = −ns

4

∫
d2r〈tr ln[1 + a(Qτ3)2]〉a. (19)

Since the eigenvalues of (Qτ3)2 are e±2iθ , we find explicitly

SMF
mag = −ns

2

∑
σ=±

∫
d2r〈ln(1 + a e2iσ θ )〉a. (20)

Performing variation of the action S [with Smag given by
Eq. (20)] on the configuration (17) with respect to θε, we find
the following modified Usadel equation:

ε sin θε − � cos θε + ns

πν

〈
a sin 2θε

1 + a2 + 2a cos 2θε

〉
a

= 0, (21)

We recall that the averaging 〈. . . 〉a in Eq. (21) is defined
with respect to the log-normal distribution function (16). Since
Pα(a,t → 0) → δ(a − α), Eq. (21) at t = 0 coincides with the
standard Usadel equation in the case of magnetic impurities
[17,20,21,31]. The linearity of Eq. (21) in ns is justified
for small concentration of magnetic impurities: nsξ

2/g � 1,
where ξ = l/

√
Tcτ is the dirty superconducting coherence

length.
The quantity a in Eq. (21) plays a role of the renormalized

impurity strength. Since the bare impurity strength α is pro-
portional to the local DOS which is subjected to mesoscopic
fluctuations, Pα(a,t) reflects the log-normal distribution of
the local DOS in 2D weakly disordered systems [44,45].
Contrary to naive expectations, one should average over a
the Usadel equation rather than physical observables, e.g.,
the DOS. This is a consequence of the Poisson distribution
of impurity positions rj .

A. Effective spin-flip rate

In the vicinity of the thermal transition, � → 0 and we can
linearize Eq. (21) with respect to θε. This procedure yields

θε ≈ �/(ε + 1/τs), (22)

where the effective spin-flip rate is given by

1

τs

= 2ns

πν

〈
a

(1 + a)2

〉
a
. (23)

At t = 0, one recovers the standard expression for the
bare spin-flip rate due to magnetic impurities, 1/τs0 =
2αns/[πν(1 + α)2] [21]. In the limiting cases α → 0 and α →
∞, the spin-flip rate (23) becomes enhanced in comparison
with the bare one: 1/τs = exp(2t)/τs0 and 1/τs = exp(6t)/τs0,
respectively. For an arbitrary value of α, the asymptotic
expansion at t � 1 has the form (see Appendix C 1)

τs0

τs

≈ 1 + 2 − 16α + 6α2

(1 + α)2
t(Tc) + O(t2). (24)

At small t , the spin-flip rate is suppressed (enhanced) for α0 <

α < 1/(3α0) (otherwise), where α0 = 1/(4 + √
13) ≈ 0.13.

The overall behavior of the ratio τs0/τs as a function of t and
α is illustrated in Fig. 2.
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FIG. 2. The color plot for τs0/τs vs ln α and t . The red dashed
curves indicate isolines 0.7, 0.85, 1 (long dash), 1.15, 1.3. The yellow
curves mark the position of the maximum of τs0/τs as a function of t

for a fixed value of α.

B. Transition temperature

Since the spin-flip rate (23) is the only characteristic of
magnetic disorder that enters the linearized solution for θε, we
obtain the standard equation for the superconducting transition
temperature (see Appendix C 2):

ln
Tc0

Tc

= ψ

(
1

2
+ 1

2πTcτs

)
− ψ

(
1

2

)
, (25)

where Tc0 denotes the transition temperature in the absence
of magnetic impurities, and ψ(z) stands for the digamma
function. Equation (25) was derived by Abrikosov and Gor’kov
(AG) in the Born limit (α → 0) [17], and later was shown to
describe the suppression of Tc for arbitrary values of α [21]. For
a scale-independent spin-flip time, τs = τs0, Eq. (25) defines
a universal function T AG

c (1/τs0) shown by the black dashed
line in Fig. 3. Superconductivity is eventually destroyed at
the critical spin-flip rate 1/τsc = 2πeψ(1/2)Tc0 ≈ 0.88 Tc0 [17].
This standard approach corresponds to the limit t = 0, when
mesoscopic fluctuations can be neglected.

An essential modification introduced by the log-normal
distribution of the impurity strength (16) is that now the
spin-flip rate 1/τs depends on the parameter t(Tc), i.e., on
the conductance g and the transition temperature Tc itself.
This leads to an unusual behavior illustrated in Fig. 3, where
we present the numerical solutions of Eq. (25) for fixed
values of g and Tc0τ and for various values of α. At finite t ,
dependence of 1/τs on Tc renders the curves Tc(1/τs0) sensitive
to a particular value of α. In the range α0 < α < 1/(3α0),
the spin-flip rate decreases monotonically down to zero with
increasing t . Therefore the reduction of Tc with the increase of
1/τs0 is slower than for t = 0. This agrees qualitatively with the
slowdown of Tc suppression with increasing the film resistance
measured in Ref. [36]. In the opposite case, for α < α0 and
α > 1/(3α0), the dependence of Tc on 1/τs0 is qualitatively
different since the ratio τs0/τs can be larger than unity and

0 5 10
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�4 �2.8 �1.9 00.51.11.83.5 �∞�∞

0 0.5 1 1.5
0
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1

FIG. 3. The dependence of Tc/Tc0 on the bare spin-flip rate
1/τs0 for some values of the bare impurity strength (values of ln α

are indicated near the curves), and R� = 2.5 k� (g = 10). The
black dotted curve, T AG

c (1/τs0), is the solution of Eq. (25) without
renormalization. Inset: The dependence of Tc/T AG

c on R� for the
same values of ln α, and τsc/τs0 = 0.7. We use ln(Tc0τ ) = 5.

is a nonmonotonic function of t . Since the spin-flip rate is
enhanced, the reduction of Tc with the increase of 1/τs0 is
faster than in the case t = 0. The nonmonotonicity of τs0/τs

results in the existence of two solutions of Eq. (25) for Tc.
Formally, it admits the solution with nonzero Tc for any value
of the parameter τsc/τs0. However, we recall that our approach
is valid provided the inequality Tc 
 exp(−πg)/τ holds.

The dependence of the spin-flip rate on g transforms into
the dependence of Tc on the film conductance. To illustrate
this effect, we fix the value of the parameter τsc/τs0 and plot
the ratio Tc/T AG

c (1/τs0) on the film resistance R� for some
values of α in the inset to Fig. 3. Since for α0 < α < 1/(3α0)
the spin-flip rate decreases monotonically with the increase
of t, Tc is enhanced with respect to T AG

c . The nonmonotonic
dependence of 1/τs on t obtained for α < α0 and α > 1/(3α0)
leads to the reentrant behavior of Tc on R�.

It is worthwhile to mention that not only the suppression
of Tc by magnetic impurities but also the reduction of � is
modified at finite g due to the log-normal distribution of the
effective impurity strength [46].

C. Density of states

Consider now the superconducting phase with a finite �.
The DOS can be obtained from the solution of Eq. (21)
after analytic continuation to real energies E: ρ(E) =
2ν Re cos θ−iE+0. It is convenient to parametrize the spectral
angle as θ = π/2 + iψ . Without renormalization (t = 0), the
angle ψ(E) should be determined from equation FE(ψ) = 0,
where [17,20,21,31]

FE(ψ) = sinh ψ − E

�
cosh ψ − [αns/(πν�)] sinh 2ψ

1 + α2 − 2α cosh 2ψ
.

(26)

This leads to a complicated structure of the DOS at energies
|E| < �, which depends on the values of α and η = 1/τs0�

(see Ref. [35] for a review). In the case η > ( 1−α
1+α

)2, the
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FIG. 4. The energy dependence of the DOS for some values of
the parameter t , and α = 0.05. Inset: The DOS at the Fermi energy
as a function of t for values of ln α indicated near the curves. We use
1/(τs0�) = 0.1.

impurity band touches the Fermi energy, leading to a finite
DOS at E = 0. Below we shall consider the opposite regime,
η < ( 1−α

1+α
)2, in which ρ(E) has a finite gap Eg0 for t = 0. The

gap opens since FE(ψ) = 0 possesses only real solutions at
energies |E| < Eg0.

Typical modification of the DOS at finite t is illustrated in
Fig. 4, where we plot ρ(E) obtained by numerical solution of
Eq. (21) at ε → −iE + 0. For t � 1, mesoscopic fluctuations
of magnetic disorder affect the DOS in two ways. (i) On the
perturbative level, they shift the position of the gap: Eg0 →
Eg , with (Eg0 − Eg)/Eg0 ∝ t , but the gap remains hard.
(ii) A finite DOS below the renormalized gap is then generated
nonperturbatively in t , due to the tail of the distribution
Pα(a,t). In Fig. 4, the smearing of Eg can be clearly seen
for t = 0.03, whereas for larger t the smearing and gap shift
cannot be separated. A profound feature of the DOS is its finite
value right at the Fermi energy.

In the limit of weak renormalization, t � 1, the DOS
can be obtained analytically. The general expression is quite
cumbersome (see Appendix C 3), so we present here only the
results in the regime of weak magnetic impurities (α � η2/3 �
1). The gap smearing at E → Eg is described by

ρ(E)/2ν =
√

2/3 η−2/3 Re
√

ε + iε∗, (27)

where ε = (E − Eg)/� and

ε∗ = η2/3
√

2π

16
√

t

(
η2/3

α

)3/4

exp

(
− 1

16t
ln2 η2/3

4α

)
. (28)

The subgap DOS (27) decays as a power law. The residual DOS
at the Fermi energy is determined by the probability Pα(1,t)
to find a = 1 and in the limit t � 1 reads

ρ(0)

2ν
=

√
πη

8α3/4
√

t
exp

(
− 1

16t
ln2 1

α

)
. (29)

This result is nonperturbative in both t and α. The dependence
of ρ(0) on t for some values of ln α is shown in the inset to
Fig. 4. Its nonmonotonicity is related to that of Pα(1,t) as a
function of t . At a fixed value of t, ρ(0) behaves nonmonoton-
ically with the impurity strength α at a given value of η.

IV. DISCUSSION

Our main equation (21) could be derived for a toy model
of Poissonian magnetic impurities with the strength inde-
pendently distributed according to Pα(a,t). We emphasize
however that in a disordered film the log-normal distribution
is generated intrinsically due to mesoscopic fluctuations of the
local DOS.

The log-normal distribution Pα(a,t) predicts an exponen-
tially small probability for realization of very small and very
large values of the effective impurity strength a. As is well
known from the theory of mesoscopic fluctuations of the
local DOS and wave function multifractality, this implies that
typically the impurity strength a− < a < a+ is realized [47].
Using results of Ref. [48], we obtain the following estimate
for the termination points: a± = α exp[±(4/

√
πg) ln 1/(Tcτ )]

(see Appendix D). In order for our result (29) for ρ(0) to be
applicable to a typical sample, the vicinity of a = 1 should
be inside the interval (a−,a+). This is fulfilled provided that
(4/

√
πg) ln 1/(Tcτ ) 
 ln(1/α).

We emphasize the difference with the instanton analysis
[31,35], where the effect of mesoscopic fluctuations on mag-
netic disorder was not taken into account: (i) in our approach,
the DOS is modified already at the mean-field level and (ii) our
results (27)–(29) involve a spreading resistance ln(ξ/ l)/2πg

which is parametrically larger than the sheet resistance 1/g

emerging in the instanton analysis. As a result, our mechanism
predicts a larger DOS at the Fermi level, whereas near Eg

it prevails provided ln2[η2/3/(4α)] � 16t ln[gη1/2/(α3/4
√

t)]
(see Appendix C 3).

Although our results were derived for a weak disorder, t �
1, they can be extended to the case of a moderate disorder, t ∼ 1
(provided g 
 1) [46]. In this situation the mean-field equation
for θε remains the same as Eq. (21), but the distribution function
Pα(a,t) must be found taking Fermi-liquid renormalizations
into account.

The enhancement of magnetic disorder due to mesoscopic
fluctuations is not restricted to classical magnetic impurities.
It is known [49–52] that the Kondo effect in the disordered
electron systems is also modified by mesoscopic fluctuations
of the local DOS. Therefore, the theory for the interplay
of the Kondo effect and superconductivity developed in
Refs. [22–24] needs to be modified for disordered films [46].

The dependence of Tc on the film conductance can be caused
by a variety of reasons, among which are the dependence of
the DOS at the Fermi energy on disorder, renormalization
of the Cooper channel attraction in ballistic and diffusive
regimes, and the Berezinskii-Kosterlitz-Thouless transition
[37,38]. The sensitivity of the spin-flip rate on the conductance
is a mechanism providing a nontrivial dependence of Tc on g.

V. CONCLUSIONS

To summarize, we reconsidered the problem of rare classical
magnetic impurities with the Poissonian statistics in a dirty
superconducting film. We took into account renormalization of
the multiple spin-flip scattering due to mesoscopic fluctuations
of the local DOS in a potential disorder. This effect results in
the log-normal distribution of the effective magnetic impurity
strength rendering the energies of quasiparticle bound states
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position-dependent (see Fig. 1). In the superconducting state,
this results in the smearing of the hard gap (obtained in
the absence of spin-flip renormalization) and emergence of
a nonzero DOS for all energies already at the mean-field
level. Depending on the bare magnetic impurity strength,
the superconducting transition temperature is suppressed by
the spin-flip scattering slower or faster than in the absence
of renormalization. Finally, we mention that our results can
be extended to the model with an arbitrary distribution of
magnetic impurities, the vicinity of a superconductor-insulator
transition, the case with Coulomb repulsion in addition to
attraction, the presence of Zeeman splitting, etc. [46].

Note added. Recently, we have became aware of the paper
[53] on fluctuations of the Shiba states due to a potential
disorder. Their result for the dispersion of the energies of the
Shiba states in the diffusive 2D superconductors can be easily
obtained from the log-normal distribution (16) of the effective
impurity strength a.
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APPENDIX A: RENORMALIZATION OF THE ACTION Smag

In this Appendix we present details of the one-loop renor-
malization of the magnetic-impurity part of the action.

To renormalizeSmag we write Q = �(1 + W + . . . ), where
W obeys two linear constraints: �W + W� = 0 and W =
−W , and the convergency condition W = −W †. The matrix
� is assumed to be self-dual: � = �. Then the quadratic part
of the action reads

S (2)
D [W ] = −πνD

8

∫
dr tr(∇W )2. (A1)

The quadratic part of the action determines the following
contraction rules:

∂t 〈tr AW tr BW 〉 = tr[AB − A�B� + AB − A�B�],

(A2a)

∂t 〈tr AWBW 〉 = tr A tr B − tr A� tr B�

− tr[AB − A�B�], (A2b)

where t = [2/(πg)] ln(L/l) with L denoting the infrared
length scale.

Next we write the matrix Q as Q = U−1�(1 + W + . . . )U
where the slow field U obeys the condition U = U−1. Using
contraction rules (A2), we find

∂t tr AQBQ = ∂t 〈tr UAU−1�WUBU−1�W 〉
= [tr A tr B−tr AQ tr BQ]−tr[AB−AQBQ],

(A3a)

∂t tr AQ tr BQ = ∂t 〈tr UAU−1�W tr UBU−1�W 〉
= − tr[AQBQ − AB − AB + AQBQ].

(A3b)

The action for the slow modes after integration over fast
modes W can be found as

Smag → − ln〈e−Smag〉W = 〈Smag〉W − 〈〈S2
mag〉〉W/2 + · · · .

(A4)

Here 〈. . . 〉W denotes the averaging over fast modes W . In what
follows, in the expansion on the right-hand side of Eq. (A4) we
neglect all terms except the lowest order one in the impurity
concentration, 〈Smag〉W . The smallness of the omitted terms is
controlled by the condition nsξ

2/g � 1, where ξ ∼ √
D/Tc

is the superconducting coherence length in the dirty limit. As
we shall see below, it is the first term on the right-hand side of
Eq. (A4) that is responsible for the logarithmic renormalization
of Smag.

1. Operators of the second order in Q

In the Born approximation (first order in α) we need to
consider the operatorsT2 andT11 with twoQmatrices involved.
Their contribution to Smag is controlled by the coefficients γ2

and γ11 with the initial conditions following from (11): γ2(0) =
1/4 and γ11(0) = −1/8.

Using the contraction rules (A3), we find

∂t

(
ĈT2

ĈT11

)
= M2

(
ĈT2

ĈT11

)
, M2 =

(
1 −1

−2 0

)
. (A5)

The operators T2 and T11 transform into each other under
the renormalization. We note that under renormalization the
operators with the same or fewer number of Q matrices are
generated only. The eigenvalues of M2 are equal to 2 and −1.
The eigenvalue 2 corresponds to the operator ĈT2 − ĈT11/2:

∂t

(
ĈT2 − 1

2 ĈT11
) = 2

(
ĈT2 − 1

2 ĈT11
)
. (A6)

The operator ĈT2 − ĈT11/2 is known to be a pure scaling
operator beyond the lowest order perturbation theory [54–57].

We emphasize that the operators of the second order in Q

enter the magnetic part of the action, Eq. (11), precisely in
combination ĈT2 − ĈT11/2. This implies that

γ2(t) = 1
4e2t , γ11(t) = − 1

8e2t . (A7)

2. Operators of the fourth order in Q

The next nontrivial order in α involves operators which
are of the fourth order in Q. Their flow is described by the
system

∂t ĈT4 = 6(ĈT4)−4(ĈT31)−2(ĈT22)−4αĈT2, (A8a)

∂t ĈT31 = −6(ĈT4) + 3(ĈT31) − 3(ĈT211)

− 6αĈT2 − 3αĈT11, (A8b)

∂t ĈT22 = −8(ĈT4) + 2(ĈT22) − 2(ĈT211), (A8c)

∂t ĈT211 = −8(ĈT31) − 2(ĈT22) + (ĈT211)

− (ĈT1111) − 8αĈT11, (A8d)

∂t ĈT1111 = −12(ĈT211). (A8e)
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The operators of the fourth order in Q are mixed under the
renormalization. In addition, the operators of the second order

in Q are generated. The system of equations (A8) can be cast
in the matrix form

∂t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĈT4

ĈT31

ĈT2,2

ĈT211

ĈT1111

ĈT2

ĈT11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= M4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĈT4

ĈT31

ĈT2,2

ĈT211

ĈT1111

ĈT2

ĈT11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 −2 0 0 −4α 0
−6 3 0 −3 0 −6α −3α

−8 0 2 −2 0 0 0
0 −8 −2 1 −1 0 −8α

0 0 0 −12 0 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A9)

Here we used Eq. (A5). We emphasize that the form of the matrix M4 reflects the fact that under renormalization the operators
with the same or fewer number of Q matrices are generated only. The matrix M4 has the following eigenvalues: 12, 5, 2, 2, −1,−1,
and −6. The largest eigenvalue 12 corresponds to the operator ĈT4 − (2/3)ĈT31 − (1/4)ĈT22 + (1/4)ĈT211 − (1/48)ĈT1111. It
is known that this operator is the pure scaling operator from arguments based on the group representation theory [54–57]. It is
worth emphasizing that the operators of the fourth order in Q enter the magnetic part of the action, Eq. (11), precisely in the
combination ĈT4 − (2/3)ĈT31 − (1/4)ĈT22 + (1/4)ĈT211 − (1/48)ĈT1111. This implies that the coefficients in the action (13)
are simply

γ4(t) = 1
8e12t , γ31(t) = − 1

12e12t , γ22(t) = − 1
32e12t , γ211(t) = 1

32e12t , γ1111(t) = − 1
384e12t . (A10)

3. Renormalization of operators of arbitrary order in Q

In general, one can derive the following set of renormalization group equations:

∂t ĈTn = n(n − 1)

2
ĈTn − n

2

n−1∑
k=1

[ĈTk,n−k − (−α)min(k,n−k)ĈT|n−2k|], (A11)

∂t ĈTm,n = −2mn[ĈTm+n − (−α)min(m,n)ĈT|m−n|] + m(m − 1) + n(n − 1)

2
ĈTm,n

−
{

m

2

m−1∑
k=1

[ĈTk,m−k,n − (−α)min(k,m−k)ĈT|m−2k|,n] + n

2

n−1∑
l=1

[ĈTm,l,n−l − (−α)min(l,n−l)ĈTm,|n−2l|]

}
, (A12)

∂t ĈTm,n,p = −2{mn[ĈTm+n,p − (−α)min(m,n)ĈT|m−n|,p] + mp[ĈTm+p,n − (−α)min(m,p)ĈT|m−p|,n]

+ np[ĈTm,n+p − (−α)min(n,p)ĈTm,|n−p|]} + m(m − 1) + n(n − 1) + p(p − 1)

2
(ĈTm,n,p)

−
{

m

2

m−1∑
k=1

[ĈTk,m−k,n,p − (−α)min(k,m−k)ĈT|m−2k|,n,p] + n

2

n−1∑
l=1

[ĈTm,l,n−l,p − (−α)min(l,n−l)ĈTm,|n−2l|,p]

+ p

2

p−1∑
s=1

[ĈTm,n,s,p−s − (−α)min(s,p−s)ĈTm,n,|p−2s|]

}
, (A13)

and so on. Using these equations we find for the renormalization of the action

∂tSmag = −ns

∫
d2r

{ ∞∑
m=1

(−1)m−1

2m

[
m(m − 1)

2
ĈTm + m

2

m−1∑
k=1

(−α)min(k,m−k)ĈT|m−2k|

]

+ 1

2!

∞∑
m,n=1

(−1)m+n

4mn
(−2mn)[ĈTm+n − (−α)min(m,n)ĈT|m−n|] +

∞∑
m=1

(−1)m

2m

m

2

m−1∑
k=1

ĈTk,m−k

+ 1

2!

∞∑
m,n=1

(−1)m+n

4mn

[
m(m − 1)ĈTm,n + m

m−1∑
k=1

(−α)min(k,m−k)ĈT|m−2k|,n

]
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+ 1

3!

∞∑
m,n,p=1

(−1)m+n+p−1

8mnp
(−6mn)[ĈTm+n,p − (−α)min(m,n)ĈT|m−n|,p] + . . .

⎫⎬⎭
= −ns

∫
d2r

{ ∞∑
m=1

(−1)m−1

2m
m(m − 1)ĈTm + 1

2!

∞∑
m,n=1

(−1)m+n

4mn
(m + n)(m + n − 1)ĈTmn + . . .

}
. (A14)

Note that all terms in Eq. (A14) which contain α cancel each
other.

APPENDIX B: THE RENORMALIZED ACTION Smag

In this Appendix we present the details of the derivation of
Eq. (8).

All in all, we find from Eq. (A14) that the coefficients
γk1k2...kq

, where k1 + k2 + · · · + kq = n, behave in the same
way:

γk1k2...kq
(t) = γk1k2...kq

(0)en(n−1)t . (B1)

In what follows we are interested in the mean-field analysis
of the renormalized action (13) for which the singlet sector of
the theory is important only. Therefore, one can operate with a
Q matrix which is the unit matrix in the spin space, Q = Q0σ0.
Then averaging over directions of the impurity magnetization
n becomes trivial. We find (all indices, m, n, . . . are even)

ĈTm = (−α)m/2 tr(Qτ3)m,

ĈTmn = (−α)(m+n)/2 tr(Qτ3)m tr(Qτ3)n, (B2)

and so on. Then the renormalized action for magnetic impuri-
ties becomes

Smag = −ns

∫
d2r
[
−

∞∑
k=1

(−α)k

22k
e2k(2k−1)t tr(Qτ3)2k

+ 1

2!

∞∑
k,l=1

(−α)k+l

42kl
e(2k+2l)(2k+2l−1)t tr(Qτ3)2k tr(Qτ3)2l

− 1

3!

∞∑
k,l,m=1

(−α)k+l+m

82klm
e(2k+2l+2m)(2k+2l+2m−1)t

× tr(Qτ3)2k tr(Qτ3)2l tr(Qτ3)2m + . . .

]
. (B3)

Decoupling the Gaussian part with an auxiliary integral over
λ we obtain

Smag = −ns

∫
d2r

∫
dλ√
4πt

e−(λ+t)2/4t

[
−

∞∑
k=1

(−α)k

22k
e2kλ

× tr(Qτ3)2k+
∞∑

k,l=1

(−α)k+l

2!42kl
e(2k+2l)λ tr(Qτ3)2k tr(Qτ3)2l

−
∞∑

k,l,m=1

(−α)k+l+m

3!82klm
e(2k+2l+2m)λ tr(Qτ3)2k tr(Qτ3)2l

× tr(Qτ3)2m + . . .

]
. (B4)

Now all summations become trivial:

Smag = −ns

∫
d2r

∫
dλ√
4πt

e−(λ+t)2/4t

[
X+X2

2!
+X3

3!
+ . . .

]
= −ns

∫
d2r

∫
dλ√
4πt

e−(λ+t)2/4t (eX − 1), (B5)

where

X = − tr
∞∑

k=1

(−α)k

4k
e2kλ(Qτ3)2k

= 1

4
tr ln[1 + αe2λ(Qτ3)2]. (B6)

Finally, we find

Smag = −ns

∫
d2r

∫
dλ√
4πt

exp

{
− (λ + t)2

4t

}
×
[

exp

{
1

4
tr ln[1 + αe2λ(Qτ3)2]

}
− 1

]
, (B7)

where tr still includes summation over the spin space. This
equation is equivalent to Eq. (8).

APPENDIX C: THE SPIN-FLIP RATE, THE TRANSITION
TEMPERATURE, AND THE DENSITY OF STATES

In this Appendix we present the details of the derivation of
results for the spin-flip rate, the transition temperature, and the
density of states.

1. The spin-flip rate near the transition temperature

According to Eq. (23), contrary to the usual case of magnetic
disorder [17], the spin-flip rate in the presence of mesoscopic
fluctuations acquires a weak logarithmic (in 2D) dependence
on energy through the function t = t(ε):

1

τs

= 2ns

πν

∫ ∞

−∞

du√
π

e−u2−2iμu

∫ ∞

0

dλ√
π

cos(2uλ)

cosh(βλ) + 1

= 2ns

πν

4

β2

∫ ∞

−∞
du e−u2−2iuμ u

sinh 2πu
β

. (C1)

Here we introduced μ = (2t − ln α)/(4
√

t) and β = 4
√

t .
Expanding the denominator in the last integral on the right-
hand side of Eq. (C1) in powers of exp(−2π |u|/β) and, then,
performing integration over u, we find

1

τs

= −2ns

πν

2
√

π

β2
∂μ Im

∞∑
k=0

f (iμ + π (2k + 1)/β). (C2)

Here we introduce the function f (z) = exp(z2)[1 − erf(z)]. At
β/π � 1 we can use the expansion of the function f (z) in
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series in 1/z:

f (z) =
∞∑
l=1

(−1)l−1�(l − 1/2)

πz2l−1
. (C3)

Performing summation over k in (C2), we obtain

1

τs

= ns

πνβ

∞∑
l=0

1

4l l!
∂2l+1
μ tan

(
βμ

2

)

= 2ns

πν
e4t(α∂α )2 αe−2t

(1 + αe−2t )2
. (C4)

In the limiting cases Eq. (C4) reduces to

1

τs

= 2ns

πν

{
αe2t , α → 0,

e6t /α, α → ∞.
(C5)

Expanding the right-hand side of Eq. (C4) to the first order in
t , we find

1

τs

= 1

τs0

[
1 + 2t

1 − 8α + 3α2

(1 + α)2
+ O(t2)

]
, (C6)

where 1/τs0 = 2αns/[πν(1 + α)2].
For β/π 
 1, the sum k in Eq. (C2) reduces to the integral.

Then, we find

1

τs

= 2ns

πν

1√
πβ

Re f (iμ + π/β). (C7)

Next, for μβ 
 1, which holds for t 
 1, we obtain

1

τs

= 2ns

πν

1√
πβ

e−μ2 = 1

τs0

(1 + α)2

α
Pα(1,t). (C8)

2. The transition temperature

Knowledge of the effective spin-flip rate allows one to
compute the dependence of the superconducting transition
temperature on the spin-flip rate, 1/τs0, and potential disorder.
Using Eqs. (18) and (22), we find the following equation for
the transition temperature:

ln
Tc0

Tc

=
∞∑

n=0

[
1

n + 1/2 + 1/[2πTcτs(ε)]
− 1

n + 1/2

]
,

(C9)

where ε = 2πTc(n + 1/2). Performing formal expansion on
the right-hand side of Eq. (C9) with respect of the difference
τ−1
s (ε) − τ−1

s (Tc), we obtain

ln
Tc0

Tc

= ψ

(
1

2
+ 1

2πTcτs(Tc)

)
− ψ

(
1

2

)
+ Xrest, (C10)

where

Xrest =
∞∑

n=0

∞∑
k=1

(−1)k+1
[
τ−1
s (ε) − τ−1

s (Tc)
]k

(2πTc)k{n + 1/2 + 1/[2πTcτs(Tc)]}k+1
.

(C11)

Since the effective spin-flip rate depends on the Matsubara en-
ergy ε via t(ε) = t(Tc) − 1

πg
ln[π (2n + 1)], we can represent

τ−1
s (ε) as follows:

1

τs(ε)
= 1

τs(Tc)
+

∞∑
l=1

(−1)l

l!(πg)l
lnl[π (2n + 1)]

∂l

∂t l

1

τs

∣∣∣∣
t=t(Tc)

.

(C12)

In the case 1/(2πTcτs) � 1, the sum in Eq. (C16) is
dominated by the term with k = 1. The condition g 
 1 allows
us to consider in Eq. (C16) the term with l = 1 only. Therefore,
we find

Xrest = c

gTcτs(Tc)

∂ ln τs

∂t

∣∣∣∣
t=t(Tc)

,
1

2πTcτs

� 1, (C13)

where the numerical constant

c = 1

2π2

∞∑
n=0

ln[π (2n + 1)]

(n + 1/2)2
≈ 0.4. (C14)

Using Eq. (C9), we find that the suppression of Tc for the case
1/(2πTcτs) � 1 is given as

Tc − Tc0

Tc0
=
(

1 + 4c

πg

)
π

4Tc0τs(Tc0)
. (C15)

As one can see, the correction to the expression for Tc due to
the dependence of the effective spin-flip rate on the Matsubara
energy is negligible provided the conductance is large enough,
g 
 1.

In the opposite case, 1/(2πTcτs) 
 1, we can integrate over
n in Eq. (C16) instead of summation and find

Xrest =
∞∑

k=1

(−1)k+1

k

( ∞∑
l=1

τs lnl[2πTcτs]

l!(πg)l
∂ l

∂t l

1

τs

∣∣∣∣
t=t(Tc)

)k

= ln
τs[t(Tc)]

τs

[
t(Tc) + 1

πg
ln 1

2πTcτs [t(Tc)]

] . (C16)

Provided the following condition

1

πg
ln

1

2πTcτs

� 1 (C17)

holds, we can neglect the term Xrest on the right-hand side of
Eq. (C9) in comparison with the ln 1/(2πTcτs) which appears
due to the digamma function.

All in all, the correctionXrest to the mean-field equation (C9)
for Tc which stems from the energy dependence of the effective
spin-flip rate can be neglected if the following inequality holds:

1

g
max

{
1, ln

1

2πTcτs

}
� 1. (C18)

Since our theory is valid for t(Tc) = [1/(πg)] ln[1(2πTcτ )] �
1 and 1/τs � 1/τ , the condition (C18) is always satisfied.

3. The density of states

The average DOS can be extracted from 〈Qεε〉 analytically
continued to the real energies E: iε → E + i0+. The mean-
field equation (21) can be written as

ε sin θε − � cos θε + ns

πν
F
(

θε,
2t − ln α

4
√

t
,4

√
t

)
= 0,

(C19)
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where

F(θ,μ,β) =
∫ ∞

−∞

dλ

2
√

π
e−(λ+μ)2 sin 2θ

cosh(βλ) + cos 2θ
. (C20)

It is convenient to parametrize the spectral angle as θε = π/2 +
iψ such that the density of states becomes

ρ(E) = 2ν lim
iε→E+i0+

Im sinh ψ. (C21)

For arbitrary values of t and α, Eq. (C19) is a complicated
integral equation which can be solved numerically. Below, we
demonstrate how its solution and, consequently, the density of
states, can be found analytically at t � 1.

At first, we rewrite the function F(θ,μ,β) as follows:

F(θ,μ,β) =
∫ ∞

−∞

du√
π

e−u2−2iμu

∫ ∞

0

dλ√
π

sin 2θ cos(2uλ)

cosh(βλ) + cos 2θ

= 1

β

∫ ∞

−∞
du

sinh 4θu
β

sinh 2πu
β

e−u2−2iuμ. (C22)

Here we used the relation 3.514.2 from the book [58]. Expand-
ing the denominator in the last integral on the right-hand side of
Eq. (C22) in powers of exp(−2π |u|/β) and, then, performing
integration over u, we find

F(π/2 + iψ,μ,β)

=
√

π

2β

∑
σ=±

{ ∞∑
k=0

f

(
iσμ + 2(πk − iψ)

β

)

−
∞∑

k=1

f

(
iσμ + 2(πk + iψ)

β

)}
, (C23)

where f (z) = exp(z2)[1 − erf(z)]. Since we are interested in
β/π � 1 we can use expansion of the function f (z) in powers
of 1/z [see Eq. (C3)]. Then performing summation over k on
the right-hand side of Eq. (C23), we find

F(π/2 + iψ,μ,β)

= 1

2β
[H (μ − 2ψ/β) + H (−μ − 2ψ/β)]

− 1

2
e

1
4 ∂2

μ
i sinh(2ψ)

cosh(βμ) − cosh(2ψ)
, (C24)

where

H (z) = √
πe−z2

[1 − i erfi(z)] + i e
1
4 ∂2

z z−1. (C25)

While deriving Eq. (C24) we used the following relation for
the Euler digamma functions:

ψ(1 + z) − ψ(1 − z) = 1

z
− π

tan πz
. (C26)

We note that both the real and imaginary parts of the function
H (z) are exponentially small at z 
 1.

Using the result (C24) and making transformation ε →
−iE, we obtain the following form of the mean-field equation
(21):

e4t(α∂α )2
FE(ψ,αe−2t ) = ins

8π
√

t ν�

[
H

(
2t − ln α − 2ψ

4
√

t

)
+H

(
ln α − 2t − 2ψ

4
√

t

)]
, (C27)

where the function [cf. Eq. (26)]

FE(ψ,α) = sinh ψ − E

�
cosh ψ − [αns/(πν�)] sinh 2ψ

1 + α2 − 2α cosh 2ψ

(C28)

is defined in such a way that the mean-field equation at t = 0
is given as

FE(ψ,α) = 0. (C29)

In what follows, we focus on the case

1

τs0�
<

(1 − α)

(1 + α)

2

, (C30)

in which the density of states has a finite gap Eg0 at t = 0 [35].
In this case, Eq. (C29) has a real solution ψ for |E| < Eg0. The
energy Eg0 and the corresponding value ψg0 are determined
from the following equations:

FEg0 (ψg0,α) = 0, ∂ψg0FEg0 (ψg0,α) = 0. (C31)

Since for t � 1 the arguments of the functions H in
Eq. (C27) are large we can use the asymptotic expression for
H (z) at z 
 1. In this way, we find

F̃E(ψ,α,t) = ins

2ν�

∑
σ=±

e2ψσPα(e2ψσ ,t),

F̃E(ψ,αe−2t ) ≡ e4t(α∂α )2
FE(ψ,αe−2t ).

(C32)

We note that for t � 1, we can write

F̃E(ψ,α,t) ≈ [1 − 2t(α∂α) + 4t(α∂α)2]FE(ψ,α). (C33)

a. The density of states near the band gap Eg0

The solution of Eq. (C27) for t � 1 depends on the energy
interval we are interested in. We start from the energies close to
the bare gap edge Eg0. The function F̃E(ψ,α,t) has a behavior
similar to that of the function FE(ψ,α). Although at nonzero
t the density of states is finite at some energy, it is convenient
to define the characteristic energy Eg and corresponding angle
ψg which are the solutions of the following set of equations:

F̃Eg
(ψg,α,t) = 0, ∂ψg

F̃Eg
(ψg,α,t) = 0. (C34)

For t � 1 we find that the difference between the characteristic
energy Eg and the bare gap Eg0 is given as

Eg0 − Eg = 2t�

cosh ψg0
[(α∂α) − 2(α∂α)2]FEg0 (ψg0,α).

(C35)

In the Abrikosov-Gor’kov regime, α � η2/3 � 1, where
η ≡ 1/(τs0�), the above expression for the shift of the bare
gap acquires the following simple form:

Eg0 − Eg

Eg0
= 2tη2/3. (C36)

Here we took into account that cosh ψg0 = 1/η1/3 and Eg0 =
�(1 − η2/3)3/2.

Now we can find the dependence of the density of states on
energy near Eg . Expanding the left-hand side of Eq. (C32) in
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ε = (E − Eg)/� and ψ − ψg , we find the following result for
the density of states:

ρ(E)

2ν
= cosh ψg

√
2 cosh ψg∣∣∂2

ψg
F̃Eg

(ψg,α,t)
∣∣ Re

√
ε + iε∗,

|ε| �
∣∣∂2

ψg
F̃Eg

(ψg,α,t)
∣∣

cosh ψg

. (C37)

Here we introduced the energy scale

ε∗ = ns

2ν� cosh ψg

∑
σ=±

e2ψgσPα(e2ψgσ ,t). (C38)

In the regime α � η2/3 � 1 the result for the density of
states for |ε| � η2/3 becomes

ρ(E)

2ν
=

√
2

η2/3
√

3
Re
√

ε + iε∗,

ε∗ = η4/3√π

16α
√

t

(
4α

η2/3

)1/4

exp

(
− 1

16t
ln2 η2/3

α

)
. (C39)

Now it is instructive to compare our results for the density
of states with the results of the instanton analysis [31,35]. The
density of states due to instantons near the band gap Eg is given
as

ρinst(ε)

2ν
≈ cosh ψg√

g
exp

(
−g

2 cosh ψg∣∣∂2
ψg

F̃Eg
(ψg,α,t)

∣∣ |ε|
)

. (C40)

As one can see there is the characteristic energy scale � =
|∂2

ψg
F̃Eg

(ψg,α,t)|/(g cosh ψg) in Eq. (C40). Using Eq. (C39),
we find

ρ(�)

ρinst(�)
∼
{
ε∗/�, ε∗ � �,√

ε∗/�, ε∗ 
 �.
(C41)

Therefore, our contribution to the density of states dominates
the instanton one near the band gap Eg provided ε∗ 
 �. In
the Abrikosov-Gor’kov regime, α � η2/3 � 1, this condition
becomes

1√
t

exp

(
− 1

16t
ln2 η2/3

α

)

 1

g

(
α

η2/3

)3/4

. (C42)

At the Fermi level our contribution to the density of states
dominates the result due to instanton analysis since the latter
involves the sheet resistance 1/g which is parametrically
smaller than the spreading resistance t = ln(ξ/ l)/(2πg).

b. The density of states at low energies

At energies which are much smaller than the characteristic
energy, |E| � Eg , the equation (C32) without the right-hand
side has the real solutions only. We substitute ψ = ψ ′ + iψ ′′
with ψ ′′ � 1 into Eq. (C32) and splitting into the real and
imaginary parts. Then we find

F̃E(ψ ′,α,t) = 0,

∂ψ ′ F̃E(ψ ′,α,t)ψ ′′ = ns

2ν�

∑
σ=±

e2ψ ′σPα(e2ψ ′σ ,t).
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FIG. 5. Energy dependence of the density of states for some
values of the parameter t . The solid curves are obtained by numerical
solution of the mean-field Eq. (C19). The dashed curves are plotted
with the help of Eq. (C43). We use 1/(τs0�) = 0.1 and α = 0.05.

The density of states can be found as

ρ(E)

2ν
= ψ ′′ cosh ψ ′ = ns

2ν�

cosh ψ ′

∂ψ ′ F̃E(ψ ′,α,t)

×
∑
σ=±

e2ψ ′σPα(e2ψ ′σ ,t). (C43)

We present the comparison between the density of states found
from numerical solution of Eq. (C19) and analytical result
(C43) in Fig. 5. To plot the curves in this figure we neglect the
difference between ψg and ψg0 as well as between F̃E(ψ ′,α,t)
and FE(ψ ′,α).

At E = 0, ψ ′ = 0 is the solution of Eq. (C43). Then from
Eq. (C43) we find the density of states at zero (Fermi) energy

ρ(0) = 2ns

�

(
1 − 1

τs0�

(1 + α)2

(1 − α)2

[
1 + 2t

1 + 8α + 3α2

(1 − α)2

])−1

×Pα(1,t). (C44)

APPENDIX D: THE EFFECT OF TERMINATION OF THE
MULTIFRACTAL SPECTRUM

In this Appendix we discuss how the termination of the
multifractal spectrum affects our results.

The result (B1) for the coefficients γk1k2...kq
is derived by

consideration of the contributions related to 〈Smag〉W . In this
approximation operators Tk1k2...kq

with given n = k1 + · · · + kq

always transform under the renormalization group into linear
combinations of operators Tl1l2...lq with m = l1 + · · · + lq ≤ n.
Therefore, the renormalization group equations remain linear
in coefficients γk1k2...kq

. In general, one needs to take into
account terms which are nonlinear in Smag, e.g., 〈[Smag]2〉W .
Then the fusion of two operators Tk1k2...kq

and Tl1l2...lq into a
single operatorTs1s2...sq

with s1 + · · · + sq = n + m is possible.
This renders the renormalization group equations for γk1k2...kq

nonlinear [48]. This nonlinearity results in termination of
the multifractal spectrum [47] which implies the following
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modification of Eq. (B1):

γk1k2...kq
(t) = γk1k2...kq

(0)e ynt ,

yn =
{
n(n − 1), 1 < n < nc,

−n2
c + (2nc − 1)n, nc ≤ n.

(D1)

Here nc = √
2/t0 
 1 and t0 = 2/(πg) � 1 denotes the bare

resistance. The function yn obeys the following symmetry pro-
perty: y1−n = yn [59]. Let us now define the function G(λ) as∫ ∞

−∞
dλ enλ G(λ) = e ynt . (D2)

Then we find

Smag = −ns

∫
d2r

∫ ∞

−∞
dλG(λ)(eX − 1), (D3)

where X is given by Eq. (B6).

At t � 1 and t/t0 
 1, the function G(λ) can be written as

G(λ) = 1√
4πt

exp

[
− (λ + t)2

4t

]
θ (λc − |λ|), (D4)

where θ (z) denotes the Heaviside step function and λc =
t(2

√
2/t0 − 1) ≈ 2t

√
2/t0. This form of the function G(λ)

implies that the integration over a in Eq. (21) is restricted
to the range a− < a < a+, where a± = α exp(±2λc). Since
for the existence of a finite density of states near the Fermi
energy, the vicinity of a = 1 is important, this point should be
within the range of integration over a in Eq. (21), i.e., a− <

1 < a+. The latter condition is fulfilled provided 4t
√

2/t0 

ln(1/α).
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