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Recently developed parity (P) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety
of new and characteristically distinct physical properties, which may or may not have a direct analog in their
Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that
possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band
mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter
itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory,
we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its
Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-
order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding
thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a
PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction,
but with an external bath, or complex potential, among others.
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I. INTRODUCTION

The PT -symmetric (where P and T are parity and time-
reversal operators, respectively) class of non-Hermitian (NH)
systems with real energy eigenvalues have become the topic of
frontier research over a decade and half [1–5]. The Hermiticity
requirement of a Hamiltonian is replaced by the analogous
condition of PT symmetry, and with this, one can have a
consistent quantum theory with a unitary time evolution [1,6].
It is anticipated that such PT -symmetric NH systems can
govern new and exotic physical properties, which may or may
not have direct analogs in the Hermitian counterparts. Recent
experimental realizations of such Hamiltonians in condensed
matter systems such as optical systems [7,8] and metamaterials
[9,10] have provided a huge boost to this field, and hitherto
studies of such theories have dispersed into various branches of
physics [11,12]. For example, various topological properties of
the PT -symmetric NH Hamiltonian are recently investigated
[13,14]. Stability and localization of various normal state and
superconducting properties under NH disorder have also been
studied recently [15,16].

Interestingly, it is recently observed that superconductiv-
ity is significantly enhanced in metamaterials and optically
pumped cuprates [17–20], where also non-Hermiticity may
concur [7–10]. While we draw physical motivation to study
a NH Cooper pairing instability from these observations, the
corresponding theory is generic and is also applicable to
other systems.P- and/or T -broken superconductors have been
discussed in noncentrosymmetric materials [21–23] and in
odd-frequency pairing cases [24–26], but to our knowledge,
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the combined PT -invariant pairing symmetry has not been
studied before even for a Hermitian case.

We start with delineating the general properties of a
NH superconducting state which can describe a physical
system. Superconductivity arises when the low-energy elec-
trons and holes individually pair up, owing to an effec-
tive attractive potential between them. The superconduct-
ing (SC) gap due to the electron-electron and hole-hole
pairs, respectively, are �̃k = −∑

k′ Vkk′ 〈c†k′↑c
†
−k′↓〉 and �k =

−∑
k′ Vk′k〈c−k′↓ck′↑〉, where Vkk′ is the pairing potential,

c
†
k↑ and ck↑ are the creation and annihilation operators,

respectively, of electrons at momentum k with spin up. In
Hermitian superconductors, �̃k = �

†
k. Here, we investigate

a generic case where such a constrain is relaxed, and replaced
with a more generalized criterion that these two pairs are
PT conjugate to each other, i.e., �̃k = �PT

k , but not neces-
sarily Hermitian. For a noninteracting dispersion εk (real func-

tion), the BCS energy eigenvalues are Ek = ±
√

ε2
k + �̃k�k. It

is convenient to express the complex gaps in polar coordinates
as �k = |�k|eiθk and �̃k = |�̃k|eiθ̃k , where the modulus of
the gap (real) is defined as |�k|2 = �k�

†
k, and θk and θ̃k are

the corresponding phases. Energies are real when �̃k�k =
|�̃k||�k|ei(θ̃k+θk) is real. This is achieved when the two phases
follow θ̃k + θk = nπ , with n ∈ Z (n can be k-dependent, but
we take the isotropic case for simplification). There arise two
different scenarios when n assumes either even or odd integers.

When n is even, we obtain �̃k�k = |�̃k||�k|. The |�̃k| =
|�k| condition gives a Hermitian system, whereas |�̃k| �=
|�k| produces a NH superconductor. In addition, the order
parameter is assumed to be PT -symmetric, so we have
|�k| = |�PT

k | = |�̃k| (since modulus gives a real number,
which is invariant here). In what follows, one cannot obtain a
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TABLE I. The table gives a comparison between the two cases
where energy eigenvalues are real even without a Hermitian operator,
but with PT invariance. �F is different between the normal and
SC free energies. CPT represents an CPT inner product for NH
Hamiltonians.

Properties H-SC NH-SC

SC gap �̃k = �
†
k, �̃k = −�

†
k

Eigenvalues ±
√

ε2
k + |�k|2 ±

√
ε2

k − |�k|2
Free energy �F = a|�|2 �F = −a|�|2
Phase transition Second order First order
Pairing interaction Symmetric Antisymmetric

(Vkk′ = Vk′k) (Vkk′ = −Vk′k)
Inner product 〈ψ | · |ψ〉 〈ψ | · |ψ〉CPT

→ ∫
drψ † · ψ → ∫

drψCPT · ψ

PT -symmetric, NH SC Hamiltonian with precisely opposite
phases (i.e., when n is even).

On the contrary, when n is odd, we obtain �̃k�k =
−|�̃k||�k|. This suggests that, if we take �k = |�k|eiθk , then
�̃k = −|�̃k|e−iθk . Employing the PT -invariance condition
(i.e., |�̃k| = |�k|), we get �̃k = −�

†
k, which makes the SC

gap anti-Hermitian (but owing to the ξk term, the Hamil-
tonian is not anti-Hermitian, but NH). In other words, the
PT -invariance implies that PT eiθk (PT )−1 = −e−iθk . Hence
θk �= 0, which excludes the possibility of a purely real order
parameter in the PT -symmetric, NH-SC case.

Based on the aforementioned properties, we can construct
the BCS theory for a generic NH Hamiltonian with PT -
symmetric pairings. We compare the results with those of a
corresponding Hermitian superconductor with the same PT -
symmetric pairing symmetry. These two cases, as referenced
to “NH-SC” and “H-SC” Hamiltonians, are defined as

H-SC : �̃k = �PT
k and �̃k = �

†
k,

(1)
NH-SC : �̃k = �PT

k and �̃k = −�
†
k.

We summarize our general result in Table I. For the H-SC

case, the eigenvalues Ek = ±
√

ε2
k + |�k|2 are real at all k

points on the Brillouin zone (BZ). On the other hand, the

quasiparticle energy for the NH-SC Ek = ±
√

ε2
k − |�k|2 is

real in the PT -invariant (“paired”) region where |εk| � |�k|,
while outside the quasiparticle states break PT symmetry and
thus superconductivity remains blocked (namely “unpaired”
region). The free energy in the leading order of the gap
takes the form �F = Fs − Fn = a�̃� = ±a|�|2 for the H-
SC and NH-SC cases, respectively (Fn includes the non-SC
contributions). For the H-SC case, it becomes minimum when
a < 0, giving a second-order phase transition. On the other
hand, for the NH-SC case, the free energy is lowered for a > 0,
which we will show below, within the Ginsburg-Landau theory,
that it gives a first-order phase transition.

In addition, we also show that the NH order parameter
can, for example, emerge from an antisymmetric potential
Vkk′ = −Vk′k (or anti-Hermitian, if complex). Dzyaloshinskii-
Moriya (DM) interaction, which arises in noncentrosymmetric
systems is one such antisymmetric, real potential. It can give

an anti-Hermitian pair if the system is connected to a bath or
the potential is made complex. This suggests that an NH-SC
order parameter can emerge in a physical system even from a
Hermitian normal state. Finally, we find that the self-consistent
gap function and the thermodynamical and transport properties
turn out to be characteristically different here compared to the
Hermitian case with the same pairing function. We reaffirm
the characteristic differences in the type of phase transitions
between the H-SC and NH-SC cases with a self-consistent gap
calculation within the BCS theory.

The rest of the manuscript is arranged as follows. In Sec. II,
we describe the one-band model with aPT -symmetric Hermi-
tian and anti-Hermitian SC order parameters, their differences
in eigenstates, and ground-state properties. We also discuss the
definition of the CPT inner products and expectation values of
physical properties in the NH-SC state. In Sec. III, we present
the self-consistent gap equation, free energy calculations,
Ginsburg-Landau description of the phase transition, and the
Meissner effect. We compare all the results for both Hermitian
and non-Hermitian cases with the same pairing symmetry.
Finally, we discuss various aspects of the model, results, and
the possibility of their realizations in condensed matter systems
in Sec. IV. In Appendix A, we derive the NH-SC order from a
Hermitian DM interaction.

II. MODEL

A. PT -symmetric order parameter

The theory of PT -symmetric Hamiltonian suggests that all
complex conjugate terms are replaced by their corresponding
PT conjugate, i.e., c†kσ → cPT

kσ . For generalization, we hence-
forth use the symbol “tilde” to denote “dagger” for a Hermitian
case, and PT conjugate for the NH counterpart. Using this
convention, we start with a generalized pairing Hamiltonian as

H =
∑
kσ

εkc̃kσ ckσ +
∑
k,k′

Vkk′ c̃kσ c̃−kσ̄ c−k′σ̄ ck′σ , (2)

where c̃kσ (ckσ ) is the creation (annihilation) operator for an
electron with Bloch momentum k, and spin σ , with σ̄ = −σ

for singlet and σ̄ = σ for triplet pairings. The noninteracting
dispersion εk is considered within the tight-binding model with
nearest-neighbor hopping (t) as εk = −2t(cos kx + cos ky) −
μ and μ is the chemical potential. We set t = 1, and the
Boltzmann constant kB = 1 in all the calculations and figures
below. The pairing potential Vkk′ is general, i.e., it can arise
from either electron-phonon coupling or electronic interaction,
and the discussion of the potential is deferred to Appendix A.

We define the pair creation and annihilation operators (the
SC fields) as

φ̃k = c̃kσ c̃−kσ̄ , φk = c−kσ̄ ckσ . (3)

Let us assume 〈φk〉CPT and 〈φ̃k〉CPT are the two corresponding
mean-field values obtained from the CPT -expectation values
(see Sec. III A). Since all inner products are understood to be
a CPT inner product for the NH case and a typical inner
product for the H-case, we drop the superscript henceforth
for simplicity. Now expanding the fields with respect to their
corresponding mean values as φkσ = 〈φkσ 〉 + δφkσ , we obtain
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the pairing interaction term from Eq. (2),

HI ≈
∑
kk′σ

Vkk′ (〈φ̃kσ 〉δφk′σ̄ + 〈φk′σ̄ 〉δφ̃kσ

+〈φ̃kσ 〉〈φk′σ̄ 〉 + δφ̃kσ δφk′σ̄ ). (4)

The order parameters are defined as

�̃k = −
∑

k′
Vk′k〈φ̃k′ 〉, �k = −

∑
k′

Vkk′ 〈φk′ 〉. (5)

This gives the generalized BCS Hamiltonian (neglecting the
last term being small and ignoring the third being constant)

HMF =
∑
kσ

[εkc̃kσ ckσ − �kc̃kσ c̃−kσ̄ − �̃kc−kσ̄ ckσ ]. (6)

Using Eqs. (1) and (5), we can deduce the symmetry require-
ment forVkk′ for the two cases. For the H-SC case, �̃k = �

†
k ⇒

Vkk′ = V ∗
k′k. On the other hand, for the NH-SC case, we have

�̃k = −�
†
k ⇒ Vkk′ = −V ∗

k′k, i.e., the pairing potential matrix
must be anti-Hermitian if complex, or simply antisymmetric if
real. In Appendix A, we show that the DM interaction [27] can
give aPT symmetric anti-Hermitian pairing, by relaxing either
the momentum or the particle-number conservation principles,
or with a complex potential [see Sec. IV, observation (vi) for
specific discussions]. We note that although the pairing term
is anti-Hermitian, the mean-field Hamiltonian in Eq. (6) is not
anti-Hermitian, but non-Hermitian.

All the analytical formulas derived in this work do not
assume any particular form of the order parameter. However,
only for numerical calculations, we need to invoke a pairing
symmetry which is kept fixed for both H-SC and NH-SC
cases for direct comparison. In the single-band case, the
anti-Hermiticity implies that the order parameter is purely
imaginary, breaking theT symmetry. Therefore, to preserve the
PT symmetry, the order parameter must be odd under parity.
So, we consider a idxy-pairing symmetry as

�k = i�0 sin (kx) sin (ky), (7)

where �0 is the SC gap amplitude. In 2D, the parity op-
erator is defined with respect to a mirror plane as [28] P :
(x,y) −→ (−x,y) or (x,y) −→ (x, − y) [29]. Then, under an
usual T operator, we find that the gap in Eq. (7) satisfies
PT �k(PT )−1 = �k. We have also studied other forms of the
PT -symmetric order parameters in Appendix E, and we have
found that the general conclusions remain the same.

B. Eigenvalues and eigenfunction

The eigenvalues of Eq. (6) are given by Ek =
±

√
ε2

k + �k�̃k = ±
√

ε2
k + |�k|2 , for the H-SC system, and

Ek = ±
√

ε2
k − |�k|2 for the NH-SC case. Clearly, in the latter

case, the eigenvalues are real wonly in the region, called “paired
region” (R1), defined by the boundary

|εk| � |�k|, (8)

as depicted by grey shadings in Fig. 1. The white region
is called “unpaired region” (R2) where the eigenvalues be-
come imaginary. Thereby, PT symmetry is broken in the
“unpaired region.” However, we note that the mean-field NH-
SC Hamiltonian continues to be PT -symmetric even in the

�Π � Π
2

0 Π

2
Π

�Π

� Π
2

0

Π

2

Π

kx

k y

FIG. 1. The splitting of the BZ into the “paired region” (gray
color) and “unpaired region” (white) in the NH-SC case. The shape
of the “unpaired region” is determined by the pairing symmetry at
hand, while the area is proportional to the gap amplitude (�0). As
T → Tc, the white region vanishes smoothly. kx,y are defined in units
of 1/a where a is the lattice constant.

unpaired region, i.e., [HMF, PT ] = 0 in the entire BZ. But
the eigenfunctions of HMF are no longer the simultaneous
eigenfunctions of thePT operator. This is a direct consequence
of the antilinear property of the T operator. Due to imaginary
eigenvalues, the quasiparticle states and/or the SC gap rapidly
decay to obtain the normal state [30]. Once normal state is
achieved in the unpaired region, the entire BZ, consisting of
paired and unpaired regions, becomes fully PT symmetric.
As the SC gap |�k| decreases, the size of the paired region
gradually increases, and it smoothly covers the entire BZ at Tc.
Such an unpaired region also arises in H-SC Hamiltonians with
finite-momentum pairings, as referred by the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase [31] or pair-density wave
[32]. Moreover, a Bogolyubov Fermi surface (FS) can be
defined in the NH-SC state by the locus of the quasiparticle
nodes, that is, at the boundary between the paired and unpaired
regions at εk = �k. The SC FS is different from the nodal
line FS that occurs in the H-SC state where the SC gap itself
vanishes on the normal state FS, i.e., �(kF ) = 0 [33]. We
discuss these aspects in further details in Sec. IV.

The two eigenvectors of Eq. (6) are

|ψk+〉 =
(

αk
βk

)
, |ψk−〉 =

(−βk
αk

)
, (9)

where αk =
√

1
2 (1 + εk

Ek
) and βk =

√
1
2 (1 − εk

Ek
). They follow

the usual normalization condition 〈ψ±|ψ±〉 = 1, which is
related to the constraint |αk|2 + |βk|2 = 1.

However, in the NH-SC case, the situation changes. Here, in
the paired region |Ek| � |εk|, which makes βk imaginary. So,
it makes more sense to write βk as βk = i

√
1
2 ( εk

Ek
− 1). This

gives the constrains that |αk|2 − |βk|2 = 1 and α2
k + β2

k = 1.
This leads to an essential problem that the eigenstates are not
anymore normalized, because 〈ψ±|ψ±〉 = |αk|2 + |βk|2 �= 1.
According to thePT -symmetric quantum theory, this problem
is solved by taking the so-called CPT inner product of the
eigenstates, as defined in the next section.
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C. CPT inner products

According to the quantum theory of PT -symmetric Hamil-
tonian [1,2,4–6], although this symmetry guarantees real
eigenvalues, the positive and finite value of the inner product
and the unitarity of the states require another symmetry. This
symmetry is inherent to all PT -symmetric Hamiltonians,
often arises from the conjugating property, and is denoted
by a C operator. The nature of the C symmetry may vary
from system to system, and there are multiple ways to define
it. The Hamiltonian commutes with both C, and PT , and
thus naturally with the combined CPT operator [2,6] (for a
Hermitian Hamiltonian, CPT = 1). c̃kσ , ckσ are the creation
and annihilation operators of the noninteraction Hamiltonian
H0, which is Hermitian, so c̃kσ ≡ c

†
kσ in this case. However, the

eigenstates ψk± and the Bogoliubov operators of the NH-SC
transform under the CPT operator as follows.

The time-reversal operator here is T = K, where K is the
complex conjugation operator. We take the parity operator
as P = σz, where σz is the third Pauli matrix. Then, the
PT conjugate of the eigenvectors in Eq. (9) is defined as
〈ψk±|PT = (PT ψk±)T = (σzψ

∗
k±)T , as written explicitly by

〈ψk+|PT = (αk βk),〈ψk−|PT = (βk −αk). (10)

This leads to the PT inner product of the eigenvectors
〈ψk±|ψk±〉PT = ±1. In other words, the second eigenvector
yields a negative norm. This can be rectified by introducing
the C operator as

C = |ψk+〉〈ψk+|PT + |ψk−〉〈ψk−|PT ,

= (
α2

k − β2
k

)
σz + 2αkβkσx. (11)

The key properties of the C operator are

C|ψk±〉 = ±|ψk±〉, CPT |ψk±〉 = |ψk±〉; (12a)

[C,HMF] = 0, [C,PT ] = 0, C2 = 1. (12b)

Note that the eigenvalues of C are precisely the signs
of the PT norms of the corresponding eigenstates. Thus
the new CPT inner product becomes always positive, i.e.,
〈ψk±|ψk±〉CPT = 1.

The Bogoluibov operators for the two eigenvalues ±Ek are
defined as γk+ and γ̃k−,

γk+ = αkckσ − βkc̃−kσ̄ ,
(13)

γ̃k− = αkc̃−kσ̄ + βkckσ .

Their CPT conjugates are γ̃k± = (CPT )γk±(CPT )−1. Since
αk, and βk are invariant under CPT , it is easy to show that the
Bogoliubov operators anticommute, since fermonic operators
ckσ and c̃kσ anticommute:

{γ̃k±,γk±} = α2
k{c̃kσ ,ck′σ } + β2

k{c−k,σ̄ ,c̃−k′,σ̄ },
= (

α2
k + β2

k

)
δk,k′ = δk,k′ , (14)

since {c̃kσ ,ck′σ ′ } = δkk′δσσ ′ . Similarly, {γ̃k±,γk∓} = 0 as
{ck′σ ,ckσ } = {c̃−k′σ̄ ,c̃kσ̄ } = 0. The thermal average of the Bo-
goliubov operators yields 〈γ̃k+γk+〉 = f (Ek), and 〈γ̃k−γk−〉 =
f (−Ek) = 1 − f (Ek), where f (Ek) is the Fermi function.

D. Ground-state wave function

We note that the ground state consists of Cooper pairs for
k ∈ R1 and unpaired electrons for k ∈ R2. We first focus on
the paired region R1. The vacuum state is |ψ0〉. If the wave
function of a single Cooper pair at k is defined by |ψ1k〉, then
the second quantization rule between them arises as

|ψ1k〉 = φ̃k|ψ0〉,
(15)

|ψ0〉 = φk|ψ1k〉 = φkφ̃k|ψ0〉,
where φ̃k and φk are the creation and annihilation operators,
respectively, for a single Cooper pair, defined in Eq. (3). The
corresponding CPT conjugates are 〈ψ1k|CPT = 〈ψ0|φk and
〈ψ0|CPT = 〈ψ1k|φ̃k = 〈ψ0|φkφ̃k. Naturally, |ψ0〉 and |ψ1k〉
are orthogonal to each other and posses positive, finite inner
products, and hence form a Hilbert space. This can be seen
from the following definitions of the CPT inner products as

〈ψ0|ψ0〉CPT = 1,

〈ψ1k|ψ1k′ 〉CPT = 〈ψ0|φkφ̃k′ |ψ0〉 = δk,k′ (16)

〈ψ0|ψ1k〉CPT = 〈ψ1k|ψ0〉CPT = 0.

The probability of the pair creation at k is β2
k , and that of not

having a pair is α2
k = 1 − β2

k . Therefore the ground-state wave
function of a Cooper pair at k ∈ R1 is |�1(k)〉 = αk|ψ0〉 +
βk|ψ1k〉 = (αk + βkφ̃k)|ψ0〉.

In the unpaired region, the wave function at any k ∈ R2 is
|�2(k)〉 = ∏

σ c
†
kσ |ψ0〉. Using Eq. (16), we can easily show

that the CPT inner product of both wave functions give
〈�ν(k)|�ν ′(k′)〉CPT = δk,k′δνν ′ , where ν = 1,2. Therefore �1

and �2 both belong to the same Hilbert space. The total wave
function is a product function:

|�G〉 =
∏

k′∈R2,σ ′
c
†
k′σ ′

∏
k∈R1,σ

(αk + βkc
†
kσ c

†
−kσ̄ )|ψ0〉. (17)

Therefore |�G〉 describes the mean-field wave function of
the NH pair condensation. A similar wave function also
arises in the case of FFLO superconductivity [31], consisting
of the product of the paired and unpaired wave functions.
Using variational principles, we affirm that this wave function
describes condensation of NH pairs in Appendix B. (The
unpaired region can also be described by the same �1 function
by setting α = 1 and β = 0.)

III. RESULTS

A. Self-consistent SC gap equation

The self-consistent BCS gap equation can be obtained in
multiple ways; by minimizing the total energy obtained from
the Hamiltonian in Eq. (2), or by simply taking the CPT inner
product of the SC fields defined in Eq. (5). The total energy
(WG) can be obtained by taking the CPT inner product of
the Hamiltonian in Eq. (2) with respect with the total ground
state in Eq. (17), which yields (see Appendix B for details) for
k < kF ,

WG = 2
∑

k∈R2

εk + 2
∑

k∈R1

εk|βk|2

+
∑

kk′∈R1

Vkk′αkβkαk′β∗
k′ . (18)
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FIG. 2. (a) and (b) Self-consistent values of the SC gap �0 for the
NH-SC and H-SC cases, respectively, are plotted for different values
of the pairing potential V0 and chemical potential μ (where t = 1 and
kB = 1 in all the calculations and figures). The NH-SC gap values are
plotted as a dashed line near Tc to emphasize the fact that due to the
first-order phase transition here, the gap discontinuously drop to zero
without tracing the smooth curve to reach zero. The exact value where
the phase transition occurs is not attainable from the gap function in
Eq. (20). The temperature where a solid to dashed line transition
occurs is chosen here arbitrarily and for illustration purposes only.

The first term is the additional energy that arises from the
unpaired region in the NH-SC, and is zero in the Hermitian
case. By minimizing WG with respect to β∗

k and βk, we obtain
the condensation of the SC fields as

�k = −
∑

k′∈R1

Vkk′αk′βk′ , �̃k = −
∑

k′∈R1

Vk′kαk′β∗
k′ .

(19)

We can make few observations here. We notice that in the two
terms the summation index k′ switches position in Vkk′ , which
is a key ingredient in obtaining H-SC and NH-SC pairings for
symmetric (Vkk′ = Vk′k) and antisymmetric (Vkk′ = −Vk′k)
potentials. We also note that although WG contains both paired
and unpaired regions, the only surviving term in the gap
function is the paired region. Therefore the same equation
works for both H-SC and NH-SC cases withR1 being extended
to the entire BZ in the latter case. Equation (19) can be
verified by taking the CPT inner products of the SC fields with
the full ground-state wave function, i.e., 〈�G|φk|�G〉CPT and
〈�G|φ̃k|�G〉CPT , and substituting them in Eqs. (5). This proves
that the generalized anti-symmetric pairing interaction leads to
the NH pairing instability. Finally, substituting for αk and βk
and also introducing the temperature dependence, we obtain

�k = −
∑

k′∈R1

Vkk′
�k′

2Ek′
tanh

(
Ek′

2T

)
. (20)

Similar equation is obtained for �̃k, by substituting
Vkk′ → Vk′k. For the robustness of the numerical results,
we take various forms of Vkk′ , such as Vkk′ = −V0, or
Vkk′ = V0 sin kx cos ky , as well as Vkk′ = V0gkg̃k′ (V0 is
constant) with gk = i sin kx sin ky . In all cases, we obtain
characteristically the same conclusion a discussed below.

Interestingly, the solution of the self-consistent gap equation
[Eq. (20)] gives characteristically different results for the
H-SC and NH-SC, keeping all other parameters the same. In
Fig. 2, we plot the self-consistently evaluated SC gap amplitude
�0(T ) for different values of V0 and μ. The H-SC gap
shows a typical BCS-like temperature dependence with critical
exponent 1/2, characterizing a continuous, second-order phase

transition. In contrast, the NH-SC gap exhibits a linear-in-T
dependence near the transition for all values of V0 and μ. This
linear-in-T behavior of the gap is independent of the choice
of the gap symmetry, as we show in Fig. 6, and is a natural
behavior tied to the BCS gap equation in Eq. (20). We establish
below from the free energy behavior that such a behavior leads
to a first-order phase transition, see Fig. 2.

B. Characterization of the phase transition

Next, we delineate the underpinnings of the phase transition
by studying the temperature evolution of the free energy and
entropy. Implementing the T dependence of the SC gap from
Eq. (20), we obtain the mean-field free energy in the SC state
(see Appendix B),

Fs = 2
∑

k∈R1

|εk|
[
f (Ek) + (1 − 2f (Ek))

(
1 − εk

Ek

)]
+ FS

−
∑

k∈R1

(
�k�̃k

2Ek

)
(1 − 2f (Ek)) + 2

∑
k∈R2

εkf (εk),

(21)

where

FS = −4T
∑

k∈R1

[
ln(1 + e−Ek/T ) + Ek

T
f (Ek)

]

+ 2
∑

k∈R2

[ln(1 + e−εk/T )]. (22)

The last terms in Fs and S give the corresponding contributions
from the unpaired region in the NH case. We calculate the free
energy and entropy for both H-SC and NH-SC cases, and the
results are shown in Fig. 3. For Hermitian and anti-Hermitian
superconductors, we obtain �k�̃k = ±|�k|2, which provides
the difference in the temperature dependence of Fs . As a
consequence, we observe that in the NH-SC state, Fs(T ) has
an opposite slope, compared to that of the normal state free
energy Fn = Fs(� = 0). This leads to a “kink” behavior of Fs

at Tc, which causes a discontinuous jump in the first derivative
of the free energy, i.e., in the entropy, as shown in Fig. 3(d). In
addition, we also find that the change in entropy turns out to be
negative, which is compensated by addition a constant entropy
shift. The source of this extra entropy is not yet known. Accord-
ing to the Ehrenfest classification scheme, this phase transition
is first-order type. In the corresponding H-SC counterpart, we
recover the second-order phase transition characteristics.

C. Ginzburg-Landau (GL) framework

The conversion of the NH-SC phase transition into a first-
order type is parameter-free, and is a direct consequence of
the symmetry of the Hamiltonian. Both second- and first-order
phase transitions in the H-SC and NH-SC cases can be repro-
duced with the same parameter set if we include an up to fourth-
order gap expansion of the free energy within the GL theory:

F = Fs − Fn = a(��̃) + b(��̃)2 + c(��̃)3 + d(��̃)4,

(23)
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FIG. 3. The computed free energy for the H-SC case in (a) and
the NH-SC case in (b) is plotted in both normal (dashed line) and SC
(solid line) states. Here we choose the same parameter V = 1.5 and
μ = 0.03 in both cases (in units of t). The entropy computed from the
free energies for the H-SC and the NH-SC cases is plotted in (c) and
(d), respectively. Normal and SC free energies obtain a similar slope
in the H-SC case, and thus their first derivative (entropy) does not
obtain any jump, and their second derivative becomes discontinuous
at Tc (not shown). On the other hand, in the NH-SC case, these two
free energies acquire opposite slopes, and thus obtain a discontinuity
in the first derivative at Tc. The exact location where the jump occurs
is arbitrarily chosen, as in Fig. 2. In fact, as mentioned in Fig. 2, the
actual phase transition occurs before reaching the predicted Tc from
Eq. (20). The entropy for the NH case is plotted after adding a constant
entropy of a yet unknown source (see text).

where a, b, c, and d are the expansion coefficients. In the
H-SC phase, ��̃ = |�|2, so a second-order phase transition
occurs as a < 0 below Tc, while b, c, and d are positive. This
is evident from the corresponding free energy plot in Fig. 4 in

FIG. 4. Plot of Ginzburg-Landau free energy as a function of the
order parameter � for the H-SC and NH-SC cases, with the same
parameter sets of a = −1.5, b = 1, c = 2, and d = 0.5 [Eq. (23)].
Note that both the first- and second-order phase transitions can be
reproduced for some values of these parameters. For the H-SC case
(gray line), it shows two minima at finite ±�c

0 and they merge to
a single minimum at �0 = 0 as a smoothly increases and crosses
zero. For the same parameter set, the NH-SC system (in which all
the odd powers of |�|2 become negative) gives a first-order phase
transition (black line). This situation is analogous to making a = −a

and c = −c, while keeping b and d the same.

which the free energy minimum continuously shifts to a finite
gap value as a smoothly changes sign.

Within the lowest order approximation, all these coefficients
depend on the normal state properties (t , μ, and V0) and thus re-
main very much the same as we switch between H-SC and NH-
SC order parameters (see Appendix C). However, an important
change arises from the gap term itself, in that all the odd powers
of ��̃ terms change sign, ��̃ = −|�|2 and (��̃)3 = −|�|6,
and other terms remain the same. Therefore, for the same set of
expansion coefficients, i.e., a < 0 and b, c, d are positive, the
free energy minima at a finite gap value is disconnected from
the minimum at � = 0 through a maximum in between. This
situation is equivalent to the parameter values of a > 0, b > 0,
c < 0, and d > 0 with Hermitian pairing, which gives a first-
order phase transition (a finite value of d is required to keep the
energy bounded). Note that this first-order transition is slightly
different from the one usually obtained in the Hermitian case
with b < 0 with other parameters being positive.

D. Meissner effect

Since the magnetic field breaks the T symmetry, one may
expect that there will not be any Meissner effect in the PT -
symmetric NH-SC system. However, our calculation shows
that in the limit of small B, a Meissner effect arises. The
PT -symmetric NH Hamiltonian is known to follow a modified
continuity equation [34]. We follow the same strategy for the
calculation of the current operator with an applied magnetic
field [34]: J(r) = 1

2 [ψ̃(v′ψ) − (v′ψ̃)ψ], where v′ = v − eA
mc

,
with A being the vector potential and e, m, and c having
their usual meanings. The total current can thus be split into
paramagnetic and diamagnetic terms as J = Jp + Jd. Fourier
transforming the current operators in the corresponding k and
photon-momentum q spaces, we get

Jp(q) = e

′∑
k,σ

vkc̃k−q,σ ck,σ , (24a)

Jd(q) = −e2

c
a(q)

′∑
k,σ

1

m∗
k
c̃k−q,σ ck,σ . (24b)

Here, a(q) is the Fourier components of the vector potential,
and vk and m∗

k are the band velocity and mass, respectively.
Both the dispersion εk and the SC gaps �k , �̃k involving

k dependence acquire corrections as the vector potential is
turned on. However, as shown in detail in Appendix D, the
corrections in �k give a quadratic-in-a term in the current term,
which we neglect in the present linear-response theory. There-
fore the electromagnetic interaction term is obtained from
the kinetic energy only, which yields Hint = − e

c

∑′
k,q,σ vk ·

a(q)c̃k+q,σ ck,σ + O(a2). With an explicit calculation, we ob-
tain the paramagnetic and the diamagnetic components of the
current tensor as

Jμν
p (0) = −e2β

2c2
aν(0)

∑
k∈R1

v
μ

k vν
ksech2

(
Ek

2T

)
+ J

μν
p,0,

J
μν
d (0) = 4e2

c2
aν(0)

∑
k∈R1

1

m
μν

k

(
1 − εk

Ek
tanh

Ek

2T

)
+ J

μν

d,0,

(25)
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FIG. 5. Plots of superfluid “kernels” (proportional to currents)
are shown with paramagnetic (Kp , black dashed), diamagnetic (Kd ,
magenta), and total (Kd + Kp , blue) components (along the xx and
yy directions), see Eq. (25). The parameter set is kept the same as in
Fig. 3. For the NH-SC, all plots are drawn in dashed lines near Tc to
emphasize that the location of the discontinuous phase transition is
unknown.

where μ, ν = x,y, v
μ

k = 1
h̄

∂εk
∂kμ

, and 1
m

μν

k
= 1

h̄2
∂2εk

∂kμ∂kν
. Jp,0 and

Jd,0 are the contributions from the unpaired regions, which can
be obtained by setting � → 0 in the corresponding currents in
the paired regions. In the absence of superconductivity here, we
can show that Jμν

p,0 = −J
μν

d,0, implying that there is no Meissner
effect in the unpaired region.

In Fig. 5, we plot the corresponding response kernels
Ki(0) = − 4πJi (0)

a(0) (i = p,d). The total response kernel is related

to the superfluid density (ns) as K(0) = λ−2 = 4πnse
2/mc2,

where λ is the penetration depth. We note some characteristic
differences between the H-SC and NH-SC cases. For the
former case, the diamagnetic term is very much temperature
independent, while in the NH-SC counterpart, it reduces
smoothly across Tc. This is because the momentum values are
restricted to the paired region in the latter case. Comparing
Eqs. (20) and (25), it can be easily deduced that the paramag-
netic term is proportional to the SC gap amplitude �0, and thus
acquires similar temperature dependence. As a result, near Tc,
the superfluid density exhibits a linear-in-T dependence. As
T → 0, both systems show a linear temperature dependence,
which is a consequence of the nodal gap structure as seen in
other nodal superconductors [35].

IV. DISCUSSIONS AND CONCLUSIONS

Here, we discuss in further details how the NH-SC pairing
emerges from a Hermitian normal state, and makes a proper
physically realizable quantum phase of matter. We also discuss
their potential observations.

(i) We obtained the general property that the dual require-
ments of NH and PT symmetric superconductivity prescribe
an anti-Hermitian Cooper pairing [Eq. (1)] (this conclusion
is drawn for a single-band superconductor). This, however,
does not lead to an anti-Hermitian Hamiltonian in Eq. (6), but
a PT -symmetric NH Hamiltonian which gives a real quasi-
particle energy in the PT -invariant region. Having imaginary
quasiparticle eigenvalues, the SC state in the PT -broken,
unpaired region, would decay with a rate τ ∼ h̄/(2〈Ek〉) for
k ∈ R2, and would become a normal state with energyEk = εk
[30]. We emphasize that the BCS Hamiltonian in Eq. (6)
itself commutes with the PT operator in both paired and
unpaired regions. However, its eigenstates are no longer the
simultaneous eigenstates of the PT operator in the unpaired

region, due to the complex eigenvalues. This is a consequence
of the antilinear property of the T operator.

(ii) Interestingly, the NH-SC pairing occurs away from the
normal state FS when |εk| � |�k|, unlike in H-SC where super-
conductivity occurs at all states including on the FS. Recently,
in iron-based Hermitian superconductors, it is demonstrated
both experimentally and theoretically that superconductivity
forms in “insulating bands,” which lie close to the Fermi level,
but do not cross it [36–38]. This implies that if an NH-SC state
forms in the low-lying insulating bands with a band gap, say
δ, there may not arise any unpaired region in the BZ if δ > �

at all momenta.
Another interesting property of the NH-SC phase is that the

boundary between the paired and unpaired region is denoted
by zero quasiparticle energy states (see Fig. 1). This means,
one obtains a FS even in the SC state. For a H-SC case, this
occurs at the locus of �kF

where kF is the Fermi momenta
and they are called nodal states. In the NH-SC state, additional
nodal states occur when ξk = �k. Recently, the existence of
a Bogoliubov FS is predicted in H-SC states with line nodes
[33]. As mentioned above, if the NH-SC state occurs in an
insulating band, and the insulating gap δ > �, it may also
escape having a Bogoliubov FS (i.e., no unpaired region would
then arise). Another special situation may arise when the NH-
SC gap function possesses a pairing symmetry such that �kF

=
0 at all kF , then the normal state FS and the Bogoliubov FS
merge.

(iii) The NH pairing breaks the gauge symmetry, as a
consequence of the antilinear property of the PT operator. Let
us assume that the Cooper pair field φk is transformed by a
homogeneous phase (θ ) as φk → φke

iθ , then itsPT -conjugate
component obtains φ̃k → φ̃ke

−iθ . The interaction potential
[Eq. (2)] possessing both φ̃kφk remains invariant under gauge
transformation, while the mean-field Hamiltonian in Eq. (6)
is no longer invariant under this transformation. It is easy to
show that the system possesses particle-hole symmetry and the
energy eigenvalues are ±Ek in both H-SC and NH-SC cases.
The particle-hole symmetry of the BdG Hamiltonian is defined
by the operation �HMF(k)�−1 = −H ∗

MF(−k). This condition
is satisfied for an antiunitary particle-hole operator � = σxK,
where K is the complex conjugation.

(iv) It is known that any observable in a NH system
is represented by an operator A, which satisfies AT =
(CPT )−1A(CPT ), where “T” represents the usual “transpose”
operation [4,5]. This condition guarantees that the CPT
expectation value A is real, and is preserved under the time-
evolution if the Hamiltonian satisfies H T = H . Our mean-field
Hamiltonian in Eq. (6) satisfies this condition. Therefore the
NH-SC state is a proper physical phase, which can be realized
in condensed matter systems.

(v) The NH-SC state is an emergent quantum phase, which
is separated by a first-order phase transition from the normal
state. The pairing should be PT -symmetric. In a noncen-
trosymmetric system, since the system does not have inversion
symmetry, the SC order parameter also looses parity. However,
to preserve the PT symmetry, the T symmetry also has to be
broken in the SC state in such a way that the system is invariant
under their combination. The T symmetry does not necessarily
have to be broken in the normal state, but it must be broken at
the SC phase transition.
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(vi) The DM interaction [27] is an antisymmetric, Hermitian
potential. As shown in Appendix A, it can drive an anti-
Hermitian pairing in multiple conditions. If the momentum-
conservation principle is relaxed, and a nonlocal SC potential
is obtained as Vkk′ = V (k − k′), Eq. (5) implies that an
anti-Hermtian pairing naturally emerges from the real DM
interaction. Such a case arises when the system is connected
to a “momentum bath” or boosted. Otherwise, if the particle
number is not conserved in the system, a case that arises in
nonequilibrium or when the system is connected to a “number”
bath, the expectation values of the SC field 〈φ̃k〉, 〈φk〉 are no
longer Hermitian conjugate to each other, but can be made
PT -symmetric. This gives PT -symmetric pairs. Finally, in
other cases, where the potential itself is made anti-Hermitian,
we can obtain an anti-Hermitian,PT -symmetric pairing. Such
conditions require additional device setup, such as connecting
the system to a bath, or open quantum systems or driven
systems, as done in optical lattices [7,8] or metamaterials [9,10]
to engineer the PT -symmetric conditions.

Electromagnetic metamaterials [9,10] and optically
pumped systems [7,8] are two classes of dynamical systems
where the realization of PT -symmetric NH Hamiltonians
is widely explored. Interestingly, superconductivity is also
recently observed in both of these material classes [17–20].
In metamaterials, since the dielectric function becomes
negative along some of the spatial directions, it can lead to
a directional dependent attractive Coulomb interaction. This
raises the possibility of unconventional superconductivity
with a momentum-dependent order parameter [18]. Recently,
in hyperbolic metamaterials obtained in the mixture of tin
and barium nanoparticles [17], and in aluminum thin film
grown on Al2O3 [19], a characteristic enhancement of the
superconducting transition temperature (Tc), compared to
their bulk values, is observed. Again, in optically excited
cuprate materials, a significant enhancement of the coherent
superconducting transport up to the room temperature is also
reported [20]. These results suggest that owing to the external
drive, unconventional superconductivity arises with its salient
properties, which deviate from the typical BCS paradigm.

Various open quantum systems such as optically driven
materials, or proximity induced systems are also potential hosts
of the NH-SC pairs, if the system has no inversion symmetry.
We found that the free energy for the NH-SC is lower than
that of the H-SC for the same magnitude of the order param-
eter. Therefore, in a suitable condition for a PT -symmetric
pairing (such as with a antisymmetric pairing potential), one
can expect that a NH pairing is more favorable than its H
counterpart.

ACKNOWLEDGMENTS

We are thankful to T. V. Ramakrishnan, H. R. Krishna-
murthy, and S. Sachdev for useful discussions. A.G. acknowl-
edges the financial support from Science and Engineering Re-
search Board (SERB), Department of Science & Technology
(DST), Government of India for the National Post Doctoral
Fellowship. T.D. acknowledges the Financial support from
the DST, India under the Start Up Research Grant (Young
Scientist) [SERB No. YSS/2015/001286].

APPENDIX A: DM INTERACTION

We found in Sec. II that an anti-Hermitian superconductivity
can arise from an antisymmetric pairing potential. Here we
show how an anti-Hermitian pairing can be obtained from
an antisymmetric potential. One of the known antisymmetric
potential is the DM interaction, which arises in noncentrosym-
metric materials or at the surface of single crystals. The most
general form of the DM interaction is

HI = i
∑

q

V(q) · (Sq × S−q), (A1)

where Sq = ∑
k c̃kσ �σσ,σ ′ck+qσ ′ , with σ being the spin index.

Potential V(q) arises from charge potential gradient, and it is a
real and antisymmetric function, i.e., V(q) = −V(−q). Since
Sy contain imaginary “i,” Eq. (A1) is a Hermitian Hamiltonian.
Without loosing generality, for the present 2D case, we fix the
electric field direction along the z axis. Therefore, substituting
Sx

q and S
y
−q, in the above equation, we obtain

HI =
∑

q

Vz(q)
∑
kk′

[(c̃k↑ck+q↓ + c̃k↓ck+q↑)

× (c̃k′↑ck′−q↓ − c̃k′↓ck′−q↑)

− (c̃k↑ck+q↓ − c̃k↓ck+q↑)(c̃k′↑ck′−q↓ + c̃k′↓ck′−q↑)]

= −2
∑

q

Vz(q)
∑
kk′

[c̃k↑ck+q↓c̃k′↓ck′−q↑

− c̃k↓ck+q↑c̃k′↑ck′−q↓]. (A2)

We denote 2Vz(k) = V (k). We notice that the second term is
same as the first term when we substitute q → −q, V (−q) =
−V (q), and interchange between k and k′ indices. So, we
can ignore the second term and extend the q summation
over the entire Brillouin zone. We also notice that H

†
I = HI,

i.e., it contains its own Hermitian conjugate. It is conve-
nient to rearrange the above equation according to the SC
fields as

HI =
∑
kk′q

V (q)c̃k↑c̃k′↓ck+q↓ck′−q↑. (A3)

We consider here zero center-of-mass momentum pairing,
i.e., k′ = −k. In Eq. (3), we defined the two SC fields φ̃k =
c̃kσ c̃−kσ̄ , and φk = c−kσ̄ ckσ for particle-particle and hole-hole
pairs. The fields are Hermitian conjugate to each other. In terms
of the SC fields, we now get HI = ∑

kq V (q)φ̃kφ−k−q. It will
be convenient to substitute k + q = −k′, which gives

HI = −
∑
kk′

V (k + k′)φ̃kφk′ . (A4)

Equation (A4) gives two solutions if we obey the momentum
conservation or not. The corresponding solutions give Hermi-
tian or anti-Hermitian pairings, respectively. In the first case,
we define the SC gaps as

�̃k = −
∑

k′
V (k + k′)〈φ̃k′ 〉, (A5a)

�k = −
∑

k′
V (k′ + k)〈φk′ 〉. (A5b)
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Then both the SC gap and the mean-field Hamiltonian are
Hermitian, if V (k + k′) is Hermitian.

Anti-Hermtian pairing. Next we assume the formation of a
pairing gap at a shifted momentum from the pair field. Here we
substitute V (q) = V (k − k′). Then the two nonlocal SC gaps
equations are

�̃k = −
∑

k′
V (k − k′)〈φ̃k′ 〉, (A6a)

�k = −
∑

k′
V (k′ − k)〈φk′ 〉. (A6b)

In this case, we can see that if V (k − k′) is antisymmetric,
one obtains �̃k = −�

†
k, in other words, the pairing is anti-

Hermitian. Such a condition can arise if the system is connected
to a “momentum bath” or boosted.

There are other ways to obtain anti-Hermitian pairing. For
example, if the expectation values of the SC fields 〈φ̃k〉, and
〈φk〉 are not Hermitian conjugate to each other, but PT -
symmetric, one obtains an non-Hermitian,PT -symmetric pair
from Eqs. (A5b) and (A5b). This can occur if the particle-
number is not conserved, and/or there is an imbalance between
the electron-electron and hole-hole pairs driven by proximity
effect or external drive, etc. Also if one makes the DM inter-
action itself anti-Hermitian, Eqs. (A5b) and (A5b) give anti-
Hermitian pairings without loosing momentum conservation.

Hartee and Fock terms. Next, we consider the Hartee and
Fock fields. In principle, these two terms can introduce trans-
lational symmetry breaking, if present. We here consider the
simply homogeneous Hartee and Fock terms which are often
calculated within the Density-Functional Theory calculations.
It turns out that the Hartee and Fock terms are characteristically
different in the DM interaction, than in a symmetric potential.
Since the spin-rotational symmetry is already broken in the
DM interaction term, Hartee and Fock terms do not break this
symmetry again. In the case of no magnetic moment, they do
not break any other symmetry and thus do not lead to a phase
transition, rather than adding constant potentials to the total
Hamiltonian.

Since DM interaction vanishes at q = 0, the only possible
Hartee term that can arise when q = ±2k. Hence we get

HH =
∑
kk′q

V (q)
[〈c̃k↑ck+q↓〉c̃k′↓ck′−q↑δ2k′,q

+〈c̃k′↓ck′−q↑〉c̃k↑ck+q↓δ2k,−q]

=
∑

k

[�H(k)c̃k↓c−k↑ + �̃H(k)c̃k↑c−k↓]. (A7)

Here the Hartee self-energy terms are �H(k) = ∑
k′ V

(2k)〈c̃k′σ ck′+2kσ̄ 〉 and �̃H(k) = ∑
k′ V (−2k)〈c̃k′σ̄ ck′−2kσ 〉. If

there is no net magnetic moment in the system, Hartee energy
vanishes.

Finally, the Fock term can be written as

HF = −
∑
kk′q

V (q)[〈c̃k↑ck′−q↑〉c̃k′↓ck+q↓

+ 〈c̃k′↓ck+q↓〉c̃k↑ck′−q↑]δk′−k,q

=
∑

k

[�F(k)c̃k↓ck↓ + �̃F(k)c̃k↑ck↑]. (A8)

Here, the Fock self-energy terms are �F(k) = −∑
k′ V (k −

k′)〈c̃k′σ ck′σ 〉 and �̃F(k) = −∑
k′ V (k′ − k)〈c̃k′σ̄ ck′σ̄ 〉. In the

absence of any magnetic ordering, it is easy to see that the
Fock term will vanish in the antisymmetric potential.

APPENDIX B: TOTAL ENERGY MINIMIZATION
AND SELF-CONSISTENT GAP EQUATION

In our considered generalized Hamiltonian H = H0 + HI

in Eq. (2), the kinetic part can be written as

H0 =
∑

k

εkc̃kσ ckσ . (B1)

The expectation value of the kinetic energy by using the wave
function given in Eq. (17) can be obtained as

WKE = 〈�G|H0|�G〉CPT

=
∑

k

∏
(k1,k′

1) ∈ R1
σ1,σ

′
1

∏
(k2,k2

′) ∈ R2
σ2,σ

′
2

εk〈φ0|(α∗
k1

+ β∗
k1

c−k1σ̄1ck1σ1 )ck2σ2 [c̃kσ ckσ ]c̃k′
2σ

′
2
(αk′

1
+ βk′

1
c̃k′

1σ
′
1
c̃−k′

1σ̄
′
1
)|φ0〉

=
∑

k

∏
(k1,k′

1) ∈ R1

σ1,σ
′
1

εk〈φ0|(α∗
k1

+ β∗
k1

c−k1σ̄1ck1σ1 )[c̃kσ ckσ ](αk′
1
+ βk′

1
c̃k′

1σ
′
1
c̃−k′

1σ̄
′
1
)|φ0〉

+
∑

k

∏
(k2,k2

′) ∈ R2

σ2,σ
′
2

εk〈φ0|ck2σ2 [c̃kσ ckσ ]c̃k′
2σ

′
2
|φ0〉

=
∑

(k<kF )∈R1

2εkβkβ
∗
k +

∑
(k<kF )∈R2

2εk. (B2)
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And, similarly, the expectation value of the interaction poten-
tial [in Eq. (2)] is

WI = 〈�G|HI|�G〉CPT

=
∑
kk′

Vkk′ 〈�G|φ̃k′φk|�G〉CPT

=
∑
kk′

Vkk′ 〈�G|φk|�G〉CPT 〈�G|φ̃k′ |�G〉CPT , (B3)

Following the same inner product in both paired and unpaired
regions, we can easily notice that the expectation values of
the pair fields only survive in the paired region, and gives
〈�G|φk|�G〉 = αkβk. Therefore we obtain

WI =
∑

(k,k′)∈R1

Vkk′αkβkαk′β∗
k′ , (B4)

since αk is real. Thus the total energy is WG = WKE + WI in
Eq. (18). Minimizing WG with respect to β∗

k , we obtain a self-
consistent equation (at zero temperature) as

αkβk

1 − 2|βk|2 = − 1

2εk

∑
k′∈R1

Vkk′αk′βk′ . (B5)

Substituting αk, βk, and Ek, we obtain the self-consistent gap
equation

�k = −
∑

k′∈R1

Vkk′
�k′

2Ek′
. (B6)

Similarly, by differentiating the total energy with respect to
βk, we obtain �̃k. This proves that the SC condensation can
be well described by the self-consistent gap equation used in
the main text.

APPENDIX C: DERIVATION OF THE GINZBURG-LANDAU
EXPANSION COEFFICIENTS

The derivation of the Ginzburg-Landau (GL) coefficients is
standard and the results turn out to be the same for both Her-
mitian and non-Hermitian cases. This is because the expansion
parameters depend on the normal state parameter (ξk) and the
interaction potential Vkk′ , which are same in both cases. The
path-integral approach to the derivation of the GL coefficients
requires a Gaussian integral of the Grassmann variables, which
follows an anticommutation relation. This is the only place
were careful treatment for the PT -symmetric Hamiltonian is
required, while the rest of the calculation is standard. We start
with a Hamiltonian written in the form of

H =
∑
kσ

εkc̃kσ ckσ +
∑
k,k′

Vkk′ φ̃k′φk, (C1)

where the pair creation and annihilation operators are defined in
Eq. (3). The momentum summation is spanned over the entire
BZ, but we will split it into the paired and unpaired region when
the SC fields are introduced. Then the action is defined as S =∫ β

0 dτL, where the Lagrangian density L = ∂τ − H (where
τ is the imaginary time at finite temperature). Let us define
c and c̃ as the vectors made of all ckσ and c̃kσ , respectively,
with k ∈ R1-symmetric region. Then the partition function is

defined as

Z =
∫

D[c,c̃]e−S[c,c̃]. (C2)

We define the SC fields �k(and �̃k) according to Eq. (5) in
Sec. II A, but without taking the expectation values over φs.
Then we perform the Hubbard Stratonovich transformation to
the pair fields φk and φ̃k as

−V φ̃φ → φ̃� + �̃φ + �̃�

V
. (C3)

(k dependence is implied.) The partition function hence takes
the form

Z =
∫

D[�,�̃,c,c̃]e−S̄[�,�̃,c,c̃]
∫

D[�,�̃]e− ∫ β

0 dτ �̃�
V ,

(C4)
where

S̄ =
∫ β

0
dτ

[∑
kσ

(c̃kσ [∂τ − εk]ckσ

− �̃kc−kσ̄ ckσ − �c̃kσ c
†
−kσ̄ )

]
. (C5)

Here we have inserted back the form of the SC pair fields from
Eq. (3). By introducing Nambu’s spinor for the generalized
case, ψk = ( ckσ

c̃−kσ̄
), S̃ can be expressed as

S̃ =
∫ β

0
dτ

∑
k

ψ̃k(∂τ − hk)ψk, (C6)

with

hk =
(

εk �k

�̃k −εk

)
. (C7)

The first integral in Eq. (C4) is a typical Gaussian integral if ck
and c̃k are Grassmann variables, that means they anticommute.
This is clearly valid for the Hemitian Hamiltonian. For our
non-Hermitian case also, ck, c̃k maintain an anticommuta-
tion relation since they represent noninteraction Hermitian
fermions. The result is valid even if hk is non-Hermitian. Here
we can make a distinction between the paired and unpaired
regions. It is clear that the Hamiltonian in Eq. (C7) is valid in
the paired region, while in the unpaired region its a diagonal
Hamiltonian with �k. Therefore we can proceed with the
generalized derivation and make this distinction at the end
result. The integration over c and c̃ variables yield

S̄ =
∫ β

0
dτ ln

∏
k

det[∂τ − hk],

=
∫ β

0
dτ

∑
k

Trln[∂τ − hk]. (C8)

Now including the second term from Eq. (C4), we obtain the
effective action as

Seff =
∫ β

0
dτ

[∑
k

Trln[∂τ − hk] − �̃�

V

]
. (C9)
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Next, we Fourier transform to the Matsubara frequency axis
iωn to obtain

Seff =
∑
k,n

Trln[iωn − hk] −
∫ β

0
dτ

�̃�

V
,

(C10)

=
∑
k,n

Trln[G−1(k,iωn)] −
∫ β

0
dτ

�̃�

V
.

We define the 2 × 2 BCS Green’s function (known as Gorkov-
Green’s function) G−1(k,iωn) = iωn − hk. G can also be split
into the diagonal, noninteracting Green’s function G0 and the
off-diagonal SC gap matrix � as G−1 = G−1

0 − �, where

G0 =
(

1
iwn−εk

0
0 1

iwn+εk

)
, (C11)

� =
(

0 �k

�̃k 0

)
. (C12)

(The momentum and frequency dependencies are implied.)
Then, from Eq. (C10), we get

Seff =
∑
k,n

Trln
[
G−1

0 (1 − G0�)
] −

∫ β

0
dτ

�̃�

V
,

=
∑
k,n

Trln
[
G−1

0

] −
∑
k,n,l

Tr[G0�]l

l!
−

∫ β

0
dτ

�̃�

V
,

(C13)

where l is integer. The first term just gives a constant shift
and can be neglected. All the odd powers of � vanish due
to symmetry. Note that G0 is defined for the noninteraction
ground state, which is a Hermitian system and thus it is spanned
over the entire BZ in both H-SC and NH-SC cases. � and �̃

are the average gap values over the paired regions. Therefore
only the surviving terms in the free energy are

F = Seff/β ≈ a(��̃) + b(��̃)2 + c(��̃)3 + d(��̃)4 + . . . .

(C14)

Given that G0 and � are diagonal and off-diagonal terms [see
Eqs. (C11) and (C12)], their product can be easily evaluated
and the final forms of the GL coefficients are

a(T ) = − 1

V
− 1

β

∑
k,n

G11
0 (k,iωn)G22

0 (k,iωn)

= − 1

V
− N (0)

β

∑
n

∫
dε

ω2
n + ε2

= − 1

V
− N (0) ln

�

T
, (C15)

b(T ) = − 1

β

∑
k,n

[
G11

0 (k,iωn)G22
0 (k,iωn)

]2

= −N (0)

β

∑
n

∫
dε(

ω2
n + ε2

)2 = − N (0)

π2T 2
(0.875)ζ (3),

(C16)

c(T ) = −N (0)

β

∑
n

∫
dε(

ω2
n + ε2

)4 = − N (0)

π6T 6
(0.62)ζ (7) ,

(C17)

d(T ) = −N (0)

β

∑
n

∫
dε(

ω2
n + ε2

)6 = − N (0)

π10T 10
(0.492)ζ (11).

(C18)

Here, N (0) is the density of states at the Fermi level and �

is the energy cutoff. We notice that all the parameters depend
on G0, and thus the integration extends to the entire BZ in
both H-SC and NH-SC cases. This is the reason we expect
them to remain the same in both cases. These integrals can be
evaluated exactly for a parabolic band, but for tight-binding
bands, one needs to perform numerical calculations. However,
our purpose of showing that all these coefficients only depend
on the normal state parameters V and εk and that they remain
the same in both Hermitian and non-Hermitian cases is served.

Energy minimization revisited from GL free energy. With the
GL free energy for a generalized Hamiltonian (Hermitian or
non-Hermitian), we can revisit the self-consistent gap equation
of the SC gap by minimizing the free energy. From Eq. (C10),
the effective action for a uniform field can be written as

Seff = −
∫ β

0
dτ

�̃�

V
+

∑
k,n

ln
[
w2

n + ε2
k + ��̃

]
. (C19)

Minimizing T Seff with respect to the order parameter �, i.e.,
by ∂

∂�
(T Seff ) = 0, we obtain

∂

∂�

[
1

β

∑
kn

ln
[
w2

n + ε2
k + ��̃

] − ��̃

V

]
= 0,

(C20)
1

V
= 1

β

∑
k,n

1

w2
n + E2

k

, where Ek =
√

ε2
k + ��̃.

This is the same self-consistent gap equation for a momentum-
averaged pairing potential as obtained in Eq. (B6) before.

APPENDIX D: CURRENT CALCULATION FOR NH SC

In this section, we provide the details of the Meissner effect
calculation and discuss how the substitution of the canonical
momentum in the SC gap can be ignored in the calculations
of the current. The paramagnetic (Jp) and diamagnetic (Jd )
currents, given in Eqs. (9) and (10) in the main text, are

Jp(q) = e
∑
k,σ

vk c̃k−q,σ ck,σ , (D1)

Jd(q) = −e2

c
a(q)

∑
k,σ

1

m∗
k
c̃k−q,σ ck,σ . (D2)

The momentum summation is spanned over the entire Brillouin
zone. As discussed in the main text, there is no Meissner effect
in the normal state, i.e., as SC gaps are set to be zero, the
para- and diamagnetic terms cancel each other. This implies
that we can only focus on the calculation in the paired region,
and then the values in the unpaired region can be obtained
by setting � = 0. Since again, the total contribution is zero,
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we do not need to bother about evaluating them explicitly.
Therefore, without loosing generality, we can restrict ourselves
to the paired region only (the prime over the summation in the
following momentum summation indicates that the summation
is restricted to the paired region only). We henceforth set the
photon momentum q → 0. The k summation can be split into
+k and −k terms, in which we, respectively, get

c̃k,σ ckσ = α2
kγ̃k+γk+ + β2

k(1 − γ̃k−γk−)
+αkβkγk+γk− + αkβkγk−γk+, (D3)

c̃−kσ c−kσ = β2
k(1 − γ̃k+γk+) + β2

k γ̃k−γk− + αkβkγk−γk+
+αkβkγ̃k+γ̃k− . (D4)

Here, αk and βk are the Bogoliubov coherence factors defined
in the main text. Note that v−k = −vk and m∗

−k = m∗
k. Using

it, we obtain the current terms as

Jp(0) = e

′∑
k∈1QBZ,σ

vk[c̃k,σ ckσ − c̃−kσ c−kσ ]

= e

′∑
k∈1QBZ,σ

vk[γ̃k+γk+ − γ̃k−γk−]

= e

′∑
k∈1QBZ,σ

vk[f +
k − f −

k ] (D5)

and

Jd(0) = −e2

c
a(0)

′∑
k∈1QBZ,σ

1

m∗
k

[c̃k,σ ck,σ + c̃−kσ c−kσ ]

= −e2

c
a(0)

′∑
k∈1QBZ,σ

1

m∗
k

[
1 − (

α2
k − β2

k

)
× (1 − γ̃k+γk+ − γ̃k−γk−)

]
= −e2

c
a(0)

′∑
k∈1QBZ,σ

1

m∗
k

[
1 − εk

Ek
(1 − f +

k − f −
k )

]
.

(D6)

Here the summation is restricted to the first quadrant of the
Brillouin zone (1QBZ). We have substituted α2

k + β2
k = 1 and

α2
k − β2

k− = εk
Ek

. Also, the thermal averages of the Bogoliubov
quasiparticles are 〈γ̃k+γk+〉 = f +

k and 〈γ̃k−γk−〉 = f −
k , where

f ±
k are the Fermi distribution functions for the quasiparticles

E±
k in the presence of a magnetic field.
Next, we evaluate E±

k . Note that both the noninteracting
dispersion εk and the gaps �k and �̃k in Eq. (2) in the main
text depend on the momentum, and thus obtain corrections
as the vector potential is turned on. In the low-field limit, we
expand these terms up to the first order “a” as

εk− ea
h̄c

= εk − e

c
vk · a(q), (D7)

�k− ea
h̄c

= �k − 2e

c
uk · a(q),

(D8)

�̃k− ea
h̄c

= �̃k − 2e

c
ũk · a(q).

where the quasiparticle vk = ∂εk
h̄∂k , and the SC gap velocity uk =

∂�k
h̄∂k , and so on. Including the second terms in Eqs. (D7) and
(D8), we obtain the interaction Hamiltonian as

Hint = −e

c

′∑
k,q

a(q).(vkc̃k+q,σ ck,σ + ukc̃k+q,σ c̃−k,σ̄

+ ũkck+q,σ c−k,σ̄ ), (D9)

and a(q) is the Fourier transform of the vector potential A(r)
in the momentum space. Thus the energies for this system
(H = H0 + Hint, where H0 is the usual kinetic part of the
Hamiltonian) can be written as

E±
k = Ek ± e

c
vk · a + 2e

c
(ukαkβ̃k + ũkα̃kβk) · a

= Ek ± e

c
vk · a + 2e

c
wk · a, (D10)

where the gap velocity is defined as wk = (uk
�k
2Ek

+ ũk
�̃k
2Ek

),

which is obtained after substituting for αkβ̃k = �k
2Ek

and

α̃kβk = �̃k
2Ek

. For the case of a purely imaginary order parame-

ter in the H-SC, �k = �
†
k = −�k, so the wk-dependent term

in Eq. (D10) drops out. For the s-wave SC case, where the
SC gap does not depend on the momentum, the second term
drops out. For NH-SC, the second term contributes. Now, from
Eq. (D10), we can see the Fermi distributions as

f ±
k = f (E±

k ) = f (Ek) ± e

c
(v · a)

(
− ∂fk

∂Ek

)

+ 2e

c
(wk · a)

(
− ∂fk

∂Ek

)
. (D11)

Thus

f +
k − f −

k = 2e

c
(vk · a)

(
− ∂fk

∂Ek

)
, (D12)

1 − f +
k − f −

k = 1 − 2f (Ek) − 4e

c
(wk · a)

(
− ∂fk

∂Ek

)
.

(D13)

Now going back to the expression of Jp in Eq. (D6) and from
Eq. (D12) it is easily found that the third term in Eq. (D11)
cancels and the final form of Jp can be written as in Eq. (25) (in
the main text). Now forJd in Eq. (D5) with the above Eq. (D13),

Jp(0) = 2e

c

′∑
k∈1QBZ,σ

(v · a)

(
− ∂fk

∂Ek

)
. (D14)

This term does not include the gap velocity Fk. However, it
appears in the diamagnetic term as

Jd(0) = −4e2

c2
a(0)

′∑
k∈1QBZ,σ

1

m∗
k

[
1 − εk

Ek
(1 − 2fk)

]

+ 4e2

c2
a(0)

′∑
k∈1QBZ,σ

1

m∗
k

εk

Ek
(wk · a)

(
− ∂fk

∂Ek

)
.

(D15)
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The last term in Eq. (D15) is proportional to a2, and thus
this can be neglected in the low-field region. Substituting
(− ∂fk

∂Ek
) = 1

2T
sech2( Ek

2T
) and 1 − 2fk = tanh( Ek

2T
) in Eqs. (D14)

and (D15), we obtain Eq. (25) in the main text.

APPENDIX E: SOME OTHER POSSIBLE INTERACTION
POTENTIAL FOR THE PT -SYMMETRIC PAIRING

We also study some other cases of NH-SC pairing with
a pairing potential for which the order parameter is purely
imaginary (breakingT symmetry) and odd-parity, but invariant
under the combined PT symmetry. We find that the main
results and overall conclusions remained unaltered. Differ-
ent possibilities of pairing potential, Vkk′ , are considered as
(i) Vkk′ = V0/2, (ii) Vkk′ = V0 sin kx sin ky , and (iii) Vkk′ =
V0 sin(k′

x − kx) cos(k′
y − ky). The gaps for these different

cases are compared in Fig. 6. The nature of the SC gaps shows
similar behavior for all the NH-SC cases with different pairing
potentials.

FIG. 6. The self-consistent values of the SC gap �0 for different
PT-symmetric NH-SC cases are, respectively, plotted for the cases
(i), (iii), and (iii), with V0 = 2 for all cases. For all the cases, the
temperature dependence of �0 is similar (note that the second case
is our considered case in the main text) and thus the other relevant
characteristics of PT -symmetric NH-SC according to our results are
also similar.
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