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We calculate Aslamazov-Larkin (AL) paraconductity σAL(T ) for a model of strongly disordered superconduc-
tors (dimensions d = 2,3) with a large pseudogap whose magnitude strongly exceeds transition temperature Tc.
We show that, within Gaussian approximation over Cooper-pair fluctuations, paraconductivity is just twice larger
that the classical AL result at the same ε = (T − Tc)/Tc. Upon decreasing ε, Gaussian approximation is violated
due to local fluctuations of pairing fields that become relevant at ε � ε1 � 1. Characteristic scale ε1 is much larger
than the width ε2 of the thermodynamical critical region, that is determined via the Ginzburg criterion, ε2 ≈ εd

1 .
We argue that in the intermediate region ε2 � ε � ε1, paraconductivity follows the same AL power law, albeit
with another (yet unknown) numerical prefactor. At further decrease of the temperature, all kinds of fluctuational
corrections become strong at ε � ε2; in particular, conductivity occurs to be strongly inhomogeneous in real space.
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I. INTRODUCTION

Strongly disordered superconductors near quantum phase
transition into an insulator state have attracted great inter-
est during the last years [1–13]. On the experimental side
[5–14], new methods which became available, such as low-
temperature scanning tunneling spectroscopy, make it possible
to study properties of the superconducting state locally with
a nanometer-scale resolution. As a result [5,6], an existence
of a strong density-of-states (DOS) suppression at temper-
atures much above the superconducting transition Tc was
demonstrated. Such a phenomenon is called pseudogap, in
some rough analogy to the phenomenon known for under-
doped high-Tc oxide superconductors; however, the origin
of pseudogap in usual strongly disordered superconductors
like InOx (see Refs. [1,2]), is unrelated to various courses of
pseudogap origin, discussed in relation to a high-temperature
superconductor (HTSC). A detailed semiquantitative theory
of superconductivity, starting from BCS-type model with
localized single-electron states [near three-dimensional (3D)
Anderson localization transition] was developed in Refs. [1,2],
elaborating an approach proposed originally in [15] and devel-
oped numerically in [16].

One of the most general phenomena inherent to disordered
superconductors is known to be fluctuational conductivity
(paraconductivity) predicted long ago by Aslamazov and
Larkin [17]. It is due to appearance of fluctuational (with
finite lifetime) Cooper pairs at temperatures slightly above
Tc. Aslamazov-Larkin (AL) paraconductivity is especially
universal in two-dimensional (2D) superconductors, where
additional conductance per square is

σ�
AL = e2

16h̄

T

T − Tc

independently of any microscopic parameters. This result
is usually considered to be valid as long as σAL is much

smaller than Drude conductance of the metal σ0, i.e., at ε ≡
T/Tc − 1 � Gi = e2/16h̄σ0, that is, in the region of Gaussian
fluctuations. In bulk systems, paraconductivity is less singular,
σAL ∝ (T − Tc)−1/2.

More close to the transition point, within fluctuational re-
gion ε � Gi, interaction between superconducting fluctuations
becomes important and results in the universal scaling behavior
of thermodynamics quantities [18], that is determined exclu-
sively by space dimensionality and order-parameter symmetry.
In what concerns kinetic properties (such as conductivity), the
situation is less clear. Reference [19] provided arguments in
favor of the statement that paraconductivity is more sensitive
to nonlinear effects and deviates from classical AL form
already at ε �

√
Gi, that is, parametrically far from the scaling

region. Basically, the arguments of Ref. [19] were based
upon the suppression of the electron density of states (DOS)
due to superconducting fluctuations: reduced DOS leads to
suppression of the electron-electron inelastic rate; in turn, that
leads to an increase of the order-parameter relaxation time τGL,
with respect to its value known from the Gaussian approxima-
tion τ

(0)
GL = πh̄/8(T − Tc). Since paraconductivity σAL can be

generally shown to be proportional to the product T τGL, the
above consideration suggests its more singular behavior due to
fluctuational suppression of the DOS. However, detailed calcu-
lations of the proposed effect were performed [19] for the case
when strong depairing is present and the whole effect is anyway
weak; it remained unclear if indeed temperature behavior of
paraconductivity changes qualitatively in the range ε �

√
Gi.

In this paper, we provide an analysis of a similar problem
from a different perspective. Namely, we consider a very
strongly disordered superconductor with a well-developed
pseudogap �P . An existence of pseudogap �P is due to
(i) localized nature of single-electron eigenstates ψi(r), and
(ii) phonon-induced attraction between electrons which leads
to formation of localized electron pairs (with opposite spins)
populating eigenstates ψi(r). The energy gain due to formation
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of such a pair is �P . Next, hybridization matrix elements Jij

provide virtual hopping of electron pairs between different
localized eigenstates. If this hopping is sufficiently strong, a
superconducting coherent state is formed below some critical
temperature Tc (for detailed theory of pseudogapped supercon-
ductivity, see [2]).

Below we consider the case of �P that is much larger
than Tc, like it was found in InOx thick films studied in
Ref. [5]. In such a case, one may neglect, to a first ap-
proximation over Tc/�P � 1, the presence of single-electron
states: the single-particle DOS will be set to zero. We will
show, nevertheless, that the whole qualitative picture of critical
fluctuations, including their dynamics, remains the same as for
usual disordered superconductors, as long as we stick to the
Gaussian fluctuation region. The major difference we found is
that now τ

(0)
GL = πh̄/4(T − Tc), i.e., twice larger than the result

of the standard theory.
This result is valid as long as thermal fluctuations are weak

and their interaction can be neglected. For such a region to exist
at ε � 1 in a pseudogapped superconductor, a special assump-
tion is necessary; namely, we consider the model with interac-
tion matrix elements Jij possessing large coordination number
Z � 1 for the relevant eigenstates which have eigenenergies
εi,εj located within about Tc from Fermi energy. The presence
of large parameter Z allows us to derive a dynamical Ginzburg-
Landau (GL) functional for superconducting fluctuations at
T near Tc and to calculate paraconductivity at ε � ε1, where
explicit value of ε1 � 1 depends both on Z and on space di-
mensionality d (we consider d = 2,3). At smaller ε interaction
between fluctuations becomes strong enough to affect kinetic
coefficient of the Ginzburg-Landau functional, thus, the kinetic
problem cannot be solved analytically; however, we provide
some arguments in favor of the same type power-law singular-
ity in paraconductivity σAL ∝ (T − Tc)(d−4)/2 to exist down to
much smaller values of ε � ε2. Here, ε2 provides a boundary
of the region where all thermodynamic fluctuational effects
become strong, it is analogous to the Ginzburg parameter in the
usual theory of second-order phase transitions; the important
point is that ε2 � ε1 as long as ε1 � 1.

The rest of the paper is organized as follows: in Sec. II
we formulate our model based upon Anderson pseudospin
[20] representation of the even-only sector of BCS Hamil-
tonian for localized single-electron states; we provide initial
mean-field-like analysis in Sec. II A and then in Sec. II B we
develop Popov-Fedotov semionic diagrammatic technique that
is convenient to treat long-range and long-time properties of
the model near the critical point. Section III is devoted to
the derivation of the dynamic Ginzburg-Landau functional
and to the calculation of the paraconductivity within Gaussian
approximation for 2D and 3D systems. In Sec. IV we analyze
leading non-Gaussian corrections and estimate characteristic
temperature scale ε1; we find that it scales as Z−1/2 and Z−2/3

in 2D and 3D cases, correspondingly; we also analyze the effect
of these non-Gaussian corrections upon dependence of σAL on
ε. Then, in Sec. V we consider all other effects beyond the
leading Gaussian approximation; these effects are (a) the lack
of self-averaging due to strong spatial fluctuations of disorder,
and (b) infra-red-dominated thermal fluctuations of collective
modes. We show that corresponding reduced temperature scale
ε2 ∝ 1/Z in the 2D model, and ∝ 1/Z2 in 3D; note that it is the

same scaling as it is known for the Ginzburg number Gi in usual
phase transition theory. Section VI contains our conclusions.
Some technical details are presented in Appendices A, B, C,
and D.

II. MODEL AND DIAGRAM TECHNIQUE

The starting point of our approach is representation of
the paired electron system in terms of pseudospin operators
introduced long ago by Anderson [20]:

S−
i = ai↓ai↑, S+

i = a
†
i↑a

†
i↓, 2Sz

i = a
†
i↑ai↑ + a

†
i↓ai↓ − 1.

(1)

Here, operators ai↑ and ai↓ and, correspondingly, a
†
i↑ and

a
†
i↓, represent electron annihilation (creation) operators for

ith single-particle eigenstate ψi(r) which are assumed to be
localized. Then, operators Sα

i introduced in (1) obey standard
spin- 1

2 commutation relations. The Hilbert space spanned by
the set of Sα

i operators constitutes a part of the whole Hilbert
space of the electron system; namely, we omit the states
with some eigenstates ψi(r) to be single occupied. This is a
reasonable approximation as long as two-electron local binding
energy �P is much larger than all energy/temperature scales
relevant for the problem to be considered (see Ref. [2]).

The minimal Hamiltonian that describes development of
superconducting correlations between localized electron pairs
is of the form

H = −2
∑

i

εiS
z
i − 1

2

∑
ij

Jij (S+
i S−

j + H.c.), (2)

where εi are single-electron eigenvalues which are assumed to
be distributed independently with the box distribution function
P (ε) = 1

2W
θ (W − |ε|). The exact shape of the distribution

function is important only for the Tc definition; as we will
show below, the critical behavior near the transition (such as
paraconductivity) depends only on the shape of the distribution
function at ε � |T − Tc|. As long as density of states ν0 =
P (0) is finite, all the results will hold the same.

Matrix elements Jij ≡ J (r i − rj ) ∝ ∫
ddr ψ2

i (r)ψ2
j (r) ac-

tually depend in nontrivial way on the distance r = r i − rj

as well as on the energy difference εi − εj ; to simplify the
problem, we employ below a model where Jij are assumed
to have large radius R � 1, and its Fourier transform takes
the form J ( p) = J (1 − p2R2) in the long-wavelength limit.
Here and thereafter we take the concentration of the localized
states n to be unity, i.e., we measure all lengths in terms of
n−1/d . In that sense, R � 1 corresponds to large concentration,
and all the summation over localized states

∑
i f (r i) can be

replaced by integration
∫

d r f (r). Also, we should note that
J here corresponds to zero Fourier harmonic of J (r), and can
parametrically differ from typical value of Jij ∼ J/Rd .

It will be seen below that our major results rely upon the
possibility to derive an effective dynamic Ginzburg-Landau
theory valid at the temperatures close to Tc. In that respect, the
neglect of the energy dependence of the matrix elements Jij

seems to be harmless, as long as effective number of neighbors
Z is large. This condition Z � 1 is indeed crucial for our
theory to be constructed. It is not evident that such a condition
can be fulfilled within a microscopic model of superconductor
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near localization threshold developed in Ref. [2]. However, we
believe that the analysis provided below within the assumption
of large Z is useful, in spite of the absence of microscopic
justification of such a model at the present moment.

The disorder is assumed to be large, and the temperature is
assumed to be small, so that W � J � T .

A. Mean field critical temperature and order parameter

The BCS order parameter, which is the anomalous average,
corresponds to nonzero in-plane spin magnetization 〈Sx,y

i 〉.
The natural choice for the order parameter for the mean field
treatment is thus the following:

�α
i =

∑
j

Jij

〈
Sα

j

〉
, α = x,y (3)

while the ordinary superconducting complex order parameter
takes the form � = �x + i�y .

In the mean field approximation, one decouples spins living
in effective magnetic field created collectively by other spins:

HMF = −
∑
i,α

hα
i σ α

i , (4)

with Pauli matrix σα
i = 2Sα

i and effective magnetic field
hi = (�x

i ,�
y

i ,εi). The Hamiltonian (4) yields trivial partition
function for each spin Zi = 2 cosh(β|hi |), with β being the
inverse temperature β = T −1. From this partition function
we immediately extract the average magnetization 〈Sα

i 〉 =
T
2

∂ ln Zi

∂hα
i

, which yields the following self-consistency equations:

∑
j

Jij ηj�
α
j = �α

i , ηj =
tanh β

√
ε2
j + �2

j

2
√

ε2
j + �2

j

. (5)

Note that matrix Jijηj entering these equations is non-
Hermitian; however, it can be made Hermitian trivially by
rescaling �i → �i/

√
ηi yielding a new matrix

√
ηiηjJij .

These equations acquire a nontrivial solution if the matrix has
a unity eigenvalue. The critical temperature Tc can be defined
as the highest temperature that is consistent with the same
condition for � = 0.

Under the assumption of a very large interaction radius R,
one can simply average all ηi over εi and assume a homoge-
neous order parameter �α

i ≡ �α . These simplifications lead
to the self-consistency equation, which is nearly equivalent to
the BCS one:

1 = J

2

∫
dε P (ε)

tanh
(
β
√

ε2 + �2
)

√
ε2 + �2

. (6)

For the box-shaped distribution P (ε), the critical temperature
that follows from this equation reads as

Tc = 4eγ

π
We−1/g, g = ν0J. (7)

Here, γ ≈ 0.577 is Euler’s constant. The parametric depen-
dence Tc ∼ We−1/g is not sensitive to the exact shape of the
distribution function, only the numerical prefactor is. Relevant
parameters of the distribution function are nonzero DOS ν0 =
P (0) and a typical width W .

FIG. 1. DOS of the random matrix Jij
√

ηiηj for 200 × 200
system with the following parameters: R = 5, J = 1, W = 3, β ≈
βc ≈ 60. Red curve: analytical fit given by SCBA approximation (see
Appendix A for more details).

Note the absence of factor 2 in denominator in the argument
of tanh in Eq. (6); this is due to the absence of odd-electron
states in the Hilbert space of our model. In result, the value of
Tc is twice larger than in the BCS theory.

The value of the order parameter at T = 0 is given exactly
by the standard BCS formula

�(0) = 2We−1/g. (8)

Equation (6) is exactly valid in the limit of R → ∞ only. For a
finite R, in order to find Tc, one should consider actual matrix
Jij

√
ηiηj for a given realization of {εi} and look for β that

corresponds to its highest eigenvalue equal to 1. Below we
provide major results of the corresponding numerical analysis
(the details are presented in Appendix A).

Taking into account the large yet finite R leads to the shift of
the criterion for superconductivity from the value given by (7)
to the larger temperatures. Typical behavior of the DOS at large
R obtained by means of numerical diagonalization and disorder
averaging is shown on Fig. 1. The “main body” of the DOS fits
reasonably well with the one predicted by the self-consistent
Born approximation (SCBA) developed in the Appendix A,
and the width of the exponential tail is proportional to the
Ginzburg number Gi ∼ ρ2/(4−d) with ρ given by (38) and (39).
Oscillatory behavior is an artifact caused by finite size of the
system.

B. Semionic description and Keldysh diagram technique

In order to study the dynamical properties of the order
parameter and develop a diagram technique, we choose the
Fedotov-Popov representation for spin- 1

2 operators [21,22].
Namely, for each spin we introduce a two-component spinor
ψ = (ψ↑,ψ↓) describing a pair of fermions (called semions
for the reason that will become clear soon), and represent spin
operators in terms of semions [below σ̂ α is the set of Pauli
matrices acting in the (↑,↓) space]:

Sα
i = 1

2ψ
†
i σ̂

αψi. (9)

The physical subspace contains two states and corresponds to
the presence of exactly one semion: ψ†

αψα = 1; in order to get
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rid of two extra (unphysical) degrees of freedom, one should
introduce an imaginary chemical potential μ = − i

2πT for the
semions [21]. In the imaginary-time Matsubara representation,
such an addition to the chemical potential is equivalent to
the additional phase shift equal to ±π/2 for fermionic fields
translation over period along the imaginary-time axis: ψα(τ +
β) = (±i)ψα(τ ), thus, these modified fermions were coined
“semions.”

The Hamiltonian (2) expressed in terms of semionic degrees
of freedom reads as

H = −
∑

i

εiψ
†
i σ̂

zψi − 1

4

∑
ij,α

(ψ†
i σ̂

αψi)Jij (ψ†
j σ̂

αψj ). (10)

This expression for the Hamiltonian allows us to build a
Keldysh diagram technique for calculation of spin-spin–
correlation functions. After decoupling the four-semion inter-
action using the Hubbard-Stratanovich order-parameter field
� (see Appendix B for the detailed derivation), we arrive at
the following Keldysh action describing semionic as well as
order-parameter degrees of freedom:

iS[ψ̄,ψ,�]

= i

∫
dt

[
−�αĴ−1τ̌x�

α + ψ̄

(
Ĝ−1 + 1√

2
�̌μσ̂ α�α

μ

)
ψ

]
.

(11)

Here, index μ ∈ {cl,q} denotes “classical” and “quantum”
Keldysh components; vertices �̌cl = τ̌0, �̌q = τ̌x with τ̌α being
Pauli matrices acting in Keldysh space; and Ĝ−1 = i∂t + εi σ̂

z

is a matrix, diagonal in the real space.
The quadratic part of the action is used to build the following

“bare” propagators for the order parameter Lαβ(t − t ′) =
i〈�α(t)�β(t ′)〉 [which appears to be diagonal in spin space
(L(0))αβ = δαβL(0)]:

L
(0)
R/A(ω,q) = J (q)/2, (12)

and for the semions Gσσ ′(t − t ′) = −i〈ψσ (t)ψ†
σ ′(t ′)〉 (with

σ,σ ′ ∈ {↑,↓}):

Ĝ
(0)
R/A(ω) =

(
(ω ± iγ + ε)−1 0

0 (ω ± iγ − ε)−1

)

= P̂
↑
G

↑
R/A(ω) + P̂

↓
G

↓
R/A(ω). (13)

Here, P̂
↑,↓ = 1

2 (1 ± σ̂ z) are the projectors onto the z axis. The
imaginary part γ should be taken positive infinitesimal.

Finally, in the equilibrium, the standard Keldysh relation
holds:

LK (ω) = B(ω)�L(ω), B(ω) = coth
βω

2
, (14)

and

GK (ω) = F(ω)�G(ω), with

F(ω) = f(ω) − i

cosh βω

2

, f(ω) = tanh βω, (15)

where the shorthand notation �(. . . ) = (. . . )R − (. . . )A is
introduced. The only modification is that semions acquire an
imaginary part in their distribution function, which is due to

the imaginary chemical potential μ = −iπT /2. That does
not produce any problem since semions themselves do not
correspond to any physical degrees of freedom, while original
spins do.

Below we will use the developed diagram technique in order
to calculate the order-parameter correlation function L(ω,q)
above the transition temperature, but in its close vicinity, where
critical slowing down takes place.

C. Electric current

Anderson pseudospin operators S±
i create and annihilate

pair of electrons on site i. The electromagnetic gauge transfor-
mation thus acts as U(1) rotation on the spin operators S±

i →
S±

i e±2ieα(r i ) (with e being electron charge, while speed of light
is taken c = 1). Accompanied by the gauge transformation for
the vector potential A(r) → A(r) − ∇α this should leave the
action (11) unchanged.

Real space enters problem via the Ĵ = J (p̂ = −i∇) ma-
trix. The gauge field A thus enters the action by replacing
momentum by the “covariant derivative” P̂ = p̂ − 2eAσ̂ y .
The long-wavelength limit corresponds to Ĵ−1 ≡ Ĵ−1( P̂) ≈
J−1(1 + P̂

2
R2).

The electrical current induced by Cooper pairs can be
extracted from the action using the following relation:

j = δS

δ A
= 4eR2

J
�α

[
σ̂

y

αβ p̂ − 2eAδαβ

]
�β. (16)

This relation holds on the classical field theory level, and it is
translated to an operator identity of the corresponding quantum
theory.

III. GAUSSIAN FLUCTUATIONS
AND PARACONDUCTIVITY

In this section we consider the fluctuation propagator of the
order parameter L(ω,q) in the simplest Gaussian approxima-
tion, and calculate the corresponding fluctuation contribution
to electric conductivity.

A. Order-parameter propagator

On the Gaussian level, the order-parameter Green function
Ľ is given by the Dyson series shown on Fig. 2, with analytic
expression given by

Ľ−1 = (Ľ(0))−1 − Š, (17)

Sαβ
μν (ω) = i

2

∫
d�

2π
Tr[�̌μσ̂ αĜ(� + ω)�̌ν σ̂

βĜ(�)]. (18)

The expression for the self-energy part coincides with
the unperturbed spin-spin–correlation function S

αβ

i (t − t ′) =
i〈σ̂ α

i (t)σ̂ β

i (t ′)〉. Note that Ŝ is a diagonal in real-space matrix,
which depends on the onsite random energy εi . Since we are
interested in 〈L〉ε, we need to average the whole Dyson series
(Fig. 2). We employ an approximation of large radius R which
guarantees that propagator L changes considerably on a long
spatial scale which includes many individual “spins” Si ; thus,
we can build a kind of “impurity diagram technique” with
regard to random local fields εi .
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FIG. 2. Upper figure: Dyson series for the order-parameter Green
function L given by Eq. (17); dashed wavy line corresponds to
L̂(0) = Ĵ /2. The crossed circle, shown in the lower figure, is spin-
spin–correlation function Ŝ given by (18) acts as the “polarization
operator” for the order-parameter propagator. The crossed circle
indicates that it is a diagonal operator in real space (but it still has
nontrivial time structure). Spin-space indices α,β ∈ {x,y,z}; vertices
have also Keldysh structure �̌μ, μ ∈ {cl,q}. Dashed lines correspond
to the semionic Green functions given by (13).

The Dyson equation for the average propagator 〈Ľ〉 reads
as

〈Ľ〉−1
ε = (Ľ(0))−1 − �̌. (19)

To the leading order in large R we can average all the Ši

independently and put �̌ ≈ 〈Š〉ε. In Sec. V we will take into
account additional terms beyond this simplest approximation.

We now proceed with the calculation of the self-energy (18).
The Keldysh space can be traced out immediately; the retarded
(μ = q, ν = cl) component reads as follows:

S
αβ

R (ω) = i

2

∫
d�

2π
Tr (σ̂ αĜR(� + ω)σ̂ βĜK (�)

+ σ̂ αĜK (� + ω)σ̂ βĜA(�)). (20)

We perform all the calculations by keeping γ finite, as we will
refer to them later in Sec. IV B; however, within Gaussian ap-
proximation for fluctuations the limit γ → 0 is sufficient. The
terms arising after substitution of semionic bare propagators
given by Eq. (13) can be divided onto two groups. The first
group corresponds to semions residing on the same branch,
∝G↑G↑ or ∝G↓G↓. It appears to vanish in the limit γ → 0,
while for finite γ it is odd in ε → −ε and thus vanishes upon
further averaging over ε. The second group, where semions
reside in different branches, can itself be naturally divided into
diagonal and off-diagonal in spin-space parts. Introducing the
unit vector in the z direction n = (0,0,1), and performing the
energy integration, we obtain following results:

S
αβ

R (ω) = (δαβ − nαnβ)S(diag)
R (ω) + iεαβμnμS

(off)
R (ω), (21)

where in the limit γ � T ,ε we find

S
(diag)
R (ω) ≈ f(ε)ε

ε2 − (ω/2 + iγ )2
, (22)

S
(off)
R (ω) ≈ f(ε)ω/2

ε2 − (ω/2 + iγ )2
, (23)

and f(ε) is given by Eq. (15). In the limit γ → +0, these
correlation functions describe trivial dynamics of a single-spin
precession in a constant magnetic field εn.

The next step is to perform averaging over ε to calculate
�R(ω) ≈ 〈SR(ω)〉ε. The off-diagonal part is odd in ε → −ε

even at finite γ and vanishes upon averaging, thus, the only
nontrivial contribution is due to S

(diag)
R (ω). In the limit ω �

T , it is natural to consider real and imaginary parts of the
correlation function independently. The real part is static, it
determines the critical temperature of the transition, while the
imaginary part is ω dependent and describes purely dissipative
dynamics of the order-parameter fluctuations:

〈
Re S

(diag)
R (ω)

〉 ≈
〈
f(ε)

ε

〉
ε

= 1

W
ln

4eγ W

πT
, (24)

〈
Im S

(diag)
R (ω)

〉 = πν0f

(
ω

2

)
≈ πω

4WT
. (25)

Note that the major contribution to the static part comes from
logarithmically broad energy range between T � ε � W ,
while the imaginary part is given by ε ∼ ω as it describes real
resonant spin-flip processes which lead to the dissipation of
the order-parameter fluctuations. The presence of a linear in ω

term is thus a direct consequence of the nonzero single-spin
density of states ν0 = P (ε � T ).

The above calculation leads to the following form of the
order-parameter propagator:

LR(ω,q) = 1/2ν0

ε + q2ξ 2
0 − iωτ

, (26)

with

ε = ln
T

Tc

≈ T − Tc

Tc

� 1, ξ0 = R√
g

, τ = π

4T
, (27)

and Tc given by the same expression as given above (7).
The dimensionless parameter ε describes the distance to
the superconducting transition, ξ0 corresponds to the “zero-
temperature” coherence length, and τ−1 defines the decay rate
of the collective mode far from Tc. At small ε, coherence
length and relaxation time diverge as ξ (ε) = ξ0/

√
ε and τ/ε,

correspondingly.
We should emphasize that the form of the propagator (26)

is independent of the exact shape of the distribution function
provided it has nonzero DOS ν0 = P (ε = 0) and does not
change significantly at ε � ω. The only parameter sensitive
to the exact shape is Tc.

This form of the propagator is reminiscent of the ordi-
nary time-dependent Ginzburg-Landau (TDGL) [23] theory
describing the dynamics of the order parameter in the metals
close to the superconducting transition. The difference is that
in our theory ξ0 does not scale with Tc as it does in disordered
metals, where ξ0 ∼ √

D/Tc; another important difference is
that the parameter τ we found is twice larger compared to the
value known for disordered metals, where τ = π/8T .

B. Fluctuational conductivity

We found in the preceding section that dynamics of our
order parameter appears to be similar to the usual TDGL.
Paraconductivity in superconductors above Tc was calculated
a long time ago by Aslamazov and Larkin [17], while its
calculation using TDGL formalism can be found in Ref. [23].
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FIG. 3. Diagrammatic representation of Q kernel given by
Eq. (29). Wavy lines correspond to the order-parameter Green
functions L(ω,q), and current vertices are ĵ i

αβ = 4R2

J
σ̂ y

αβ (−i∇i) [see
Eq. (16)].

In this section we briefly recapitulate the calculation and
discuss the obtained results.

In order to obtain the expression for the electric conductivity
of the system, one can apply the Kubo formula

σ ij (ω,q) = i
Q

ij

R (ω,q) − Q
ij

R (0,q)

ω
, (28)

where current-current correlation function in real space-time
reads as

Qij
μν(r − r ′,t − t ′) = −i

〈
j i
μ(r,t)j j

ν (r ′,t ′)
〉
, (29)

and Eq. (28) contains its Fourier transform to (q,ω) represen-
tation.

Within the Gaussian approximation over fluctuations, the
only diagram contributing to the Q kernel is given by Fig. 3,
and the corresponding expression yields [here p± = p ± q

2 ,
p = (�, p), and q = (ω,q)]

Q
ij

R (ω,q) = 32iν2
0ξ 2

0 e2
∫

d�

2π

dd p
(2π )d

pipj

× [LR(p+)LK (p−) + LK (p+)LA(p−)]. (30)

Note here that in the static limit ω → 0, the expression for the
uniform (q = 0) Aslamazov-Larkin conductivity is diagonal
and reads as σAL = i∂QR/∂ω, which can be further simplified:

σAL = 16

d
ν2

0ξ 4
0 e2

∫
d�

2π

dd p
(2π )d

p2B′(�)(�L(�, p))2. (31)

Now, we substitute Eq. (26) for the propagator L(ω,q),
perform integration over energy using residues, and switch
to integration over dimensionless momentum P = pξ0/

√
ε to

arrive at

σAL = e2

ξd−2
0 ε2−d/2

8

d
T τ

∫
dd P
(2π )d

P 2

(1 + P 2)3
≡ e2sd

ξd−2
0 ε2−d/2

,

(32)

where s2 = 1
8 and s3 = 1

16 . Finally, we find paraconductivity
in the form

σAL = e2

h̄
×

{
1/8ε, (2D)

1/16ξ0
√

ε, (3D)
(33)

(where we have restored h̄ by dimensionality). This result ap-
pears to be twice larger compared to the ordinary Aslamazov-

Larkin result [17]. The discrepancy can be traced back to the
fact that τ is twice larger compared to the ordinary metals,
which we have briefly mentioned above. While in ordinary
superconductors the AL paraconductivity provides a relatively
small correction to the standard Drude conductivity σD , in
our system with a large pseudogap, paraconductivity σAL may
occur to be the dominant contribution: the only alternative
conduction channel is due to individual electrons hopping
between localized states, whose contribution is suppressed
additionally due to Tc � �P condition. For the same reason,
one should not worry about other fluctuational corrections to
conductivity (of the Maki-Thompson and DOS types) which
are known to exist [23] in usual disordered superconductors.
Indeed, usual types of corrections are related with modification
of single-electron conductivity due to pairing correlations,
while in our case single-particle transport is suppressed due
to large pseudogap.

Below we will study different kinds of corrections to the
Gaussian approximation we used, and show that Eq. (33)
provides a very good approximation if ε � ε1 [see Eqs. (38)
and (39)]. Then, we analyze corrections that appear at smaller
values of ε.

IV. LOCAL NOISE EFFECT

Non-Gaussian effects due to interaction between fluctuating
collective modes are generally known to become important for
thermodynamics quantities in the close proximity of the critical
point at ε � Gi, where Ginzburg number Gi ∼ Z−2/(4−d).
However, it was noticed in Ref. [19] that for dynamics
quantities (in particular, for paraconductivity) interaction cor-
rections may become large in a parametrically broader range
of reduced temperature ε. In this section we show that a similar
phenomenon comes about in our model as well. Namely, we
find a rather special type of interaction corrections that affect
the dependence of the relaxation time τGL on ε, which become
relevant already at ε � ε1 ∼ Gi1/d , whereas all static quantities
are still well described within the Gaussian approximation.

Specific kind of interaction corrections relevant at ε � ε1

can be understood as a result of local “back-action” of the
order-parameter (superconducting) fluctuations upon dynam-
ics of individual “pseudospins” Si . Indeed, Keldysh action (11)
describes its dynamics under the fluctuating local “magnetic
field” (�x

i (t),�y

i (t),εi). Since local correlation functions of the
field �i(t) coincide with the propagator L(ω,r,r ′) calculated at
r = r ′ = r i , the action (11) together with Dyson equation (17)
constitute a closed set of self-consistent equations. Solution of
these equations would involve (i) finding dynamical correlation
functions of a spin Si under the action of dynamic magnetic
field with a given correlation function of the local “noise
function” Ci(t − t ′) = 〈�α

i (t)�β

i (t ′)〉; (ii) calculation of the
propagator L(ω,r,r ′) via Dyson equation; (iii) self-consistent
determination of the local noise function for each site i. In
general, the above scheme contains a macroscopic number of
variables and thus it is very complicated. The problem can
be grossly simplified if site-i-dependent noise function can
be approximated by a single universal function: Ci(t − t ′) →
C(t − t ′). In Sec. V we will see that such an approximation
is indeed valid in the range Gi � ε � ε1. Currently, we take
it for granted and study the effect of such a transverse noise
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FIG. 4. Semionic self-energy correction �̂(ω) due to its interac-
tion with the order parameter, which describes the “spin noise” effect.

upon local spin-spin dynamics, order-parameter dynamics,
and, eventually, upon paraconductivity.

The key characteristic of the noise is provided by the
propagator at the coinciding points L(ω,r = r ′). This quantity
itself is ultraviolet divergent (with momentum integration
should be cut off at � ∼ R−1), but relevant ω- and ε-dependent
parts can be separated and are determined by the infrared
behavior:

LR(ω) ≈ 1

8πν0ξ
d
0

{
ln(�2ξ 2

0 ) − ln(ε − iωτ ), (2D)

�ξ0 − √
ε − iωτ , (3D).

(34)

The “local noise” described by this propagator is small pro-
vided ξ0 is large enough.

A. Spin relaxation and renormalization

The effect of the “noise” caused by the order-parameter
fluctuations on the spin-correlation function can be studied per-
turbatively using the Keldysh action (11). There are, in general,
two types of such corrections: to a semionic propagator and to
a vertex part, and we start from the first one.

The simplest diagram for the semionic propagator correc-
tion is shown on Fig. 4. Below we will focus only on the “↓”
semionic branch, as the expressions for “↑” can be obtained
simply by replacing ε → −ε. The corresponding analytic
expression for the retarded component of the self-energy reads
as

�
↓
R(ω,ε) = − i

2

∫
d�

2π
[G↑

R(�)LK (ω − �)

+G
↑
K (ω − �)LR(�)]. (35)

For ω � T one can neglect the second term proportional to
semionic “distribution function” F(ω) because the bosonic one
is singular B(ω) ≈ 2T/ω. Under this assumption, the self-
energy part depends only on the simple combination of ω and
ε, namely, �

↓,↑
R (ω,ε) ≡ �R(� = ω ± ε) with

�R(�) = T

8πν0ξ
d
0 �

{
ln ε−i�τ

ε
, (2D)√

ε − i�τ − √
ε, (3D).

(36)

Although semions do not correspond to real quasiparticles
in the system, their properties nevertheless describe the phys-
ical spin-correlation function. Namely, Im �R corresponds to
the real processes of spin relaxation, and Re �R describes
renormalization of the spectrum. In the lowest order of per-
turbation theory, these two effects can be studied separately,
and we start with the spin-relaxation processes.

The spin-flip rate γ , which enters the semionic Green
function exactly as infinitesimal γ did in Eq. (13), is defined
by the imaginary part of �R taken on the “mass shell” ω =

ε ⇒ � = 2ε:

γ (ε) ≈ T

8πν0ξ
d
0

1

ε
·
{

arctan 2ετ
ε

, (2D)

Im
√

ε + 2iετ (3D).
(37)

This rate was obtained on the perturbative level, and is valid
only provided the rate is small compared to the spin-coherent
precession frequency γ (ε) � ε. This criterion clearly cannot
be satisfied for all ε as γ (ε → 0) approaches constant value. A
new energy scale ωc emerges, that separates spins with mainly
dissipative dynamics (ε � ωc) from spins with coherent dy-
namics (ε � ωc). This effect can affect paraconductivity if the
energy scale ωc is large enough, namely, if ωc � εT (note that
ωc itself can, in principle, depend on ε). The above criterion
can be reformulated as a criterion for proximity to the transition
ε � ε1 with

ε1 =ρ1/2, ρ = 1

16ν0ξ
2
0 T

= gW

8R2
0Tc

, (2D) (38)

ε1 =ρ2/3, ρ = 1

16
√

πν0ξ
3
0 T

= g3/2W

8
√

πR3
0Tc

, (3D). (39)

The form of the expression for ωc depends on the reduced
temperature ε:

ε � ε1 : ωc =
{
Tρ/ε, (2D)

Tρ
√

π/4ε, (3D)
(40)

ε � ε1 : ωc =
{
Tρ1/2, (2D)

Tρ2/3, (3D).
(41)

For the whole analysis to be consistent, we need the condition
ρ � 1 to be fulfilled. Parameter ρ is inversely proportional to
the coordination number ρ ∼ 1/Z.

The real part of the self-energy Re �R renormalizes the
spectral weight of the spin-correlation function Im SR in the
following manner:

Im S
(diag)
R (ω)

= 1

4

∫
d�

2π
[�G↓(� + ω)�G↑(�) + {↑ ↔ ↓}]

× [F(�) − F(� + ω)]. (42)

Since we are studying two effects from Im �R and Re �R sep-
arately, it is sufficient to substitute �G↑,↓(ω) = −2πiδ[ω ±
ε − Re �R(ω ∓ ε)]; at low frequencies we arrive at

Im S
(diag)
R (ω) = πω

2T

[
[1 − Re �′

R(2ε)]−1δ[2ε − ω

+ Re �R(2ε) − Re �R(ω)] + {ε → −ε}].
(43)

This spectral weight affects relaxation time of the order
parameter τ via the relation

ωτ = 1

2ν0

〈
Im S

(diag)
R (ω)

〉
ε
. (44)

However, evaluation of Eq. (44) shows that the Gaussian value
for the important parameter T τ = π/4 remains unchanged. We
conclude that on the lowest order of perturbation theory, the
effect coming from Re �R does not affect the order-parameter
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FIG. 5. Vertex correction to the order-parameter self-energy
(Fig. 2) connecting upper and lower semionic lines. This diagram
vanishes due to its spin structure.

dynamics (and thus paraconductivity), and it is sufficient to
focus on the spin-relaxation processes only.

Finally, let us focus on the vertex-part corrections to the
spin-correlation function shown in Fig. 5; the corresponding
analytic expression reads as

δSαβ
μν (ω) = −1

4

∫
dω1

2π

dω2

2π
L

γδ

λρ (ω2) Tr (�̌μσ̂ αĜ(ω1)σ̂ γ �̌λ

× Ĝ(ω1 − ω2)�̌ν σ̂
βĜ(ω1 − ω2 − ω)

× σ̂ δ�̌ρĜ(ω1 − ω)). (45)

After working out the spin structure, one can see that

two nontrivial contributions are proportional to Tr(σ̂ αP̂
↑

σ̂ μP̂
↓
σ̂ β P̂

↑
σ̂ μP̂

↓
) (and the same with ↑ ↔ ↓); and after

summation over μ = x,y, these contributions exactly vanish.
We conclude that lowest-order nontrivial correction comes
only from dressing semionic Green function in the loop, as
it is shown in Fig. 4.

B. Correction to the order-parameter propagator

The semionic renormalization discussed above affects the
spin-correlation function, which enters the Dyson equation
for the order parameter. The prime effect is upon the dissi-
pative part of the order-parameter propagator L(ω,q), which
is determined by the spectral weight of the spin-correlation
function [see Eq. (44)]. The major contribution to the above
average over local energies ε comes from ε ∼ ω � T , thus, the
factor linear in ω comes just from the expansion of the Fermi
distribution function f(ω) ≈ βω. This allows us to write the
following formula for the important dimensionless parameter
T τ , which now can depend on frequency ω (we remind that
paraconductivity is proportional to it, and on the Gaussian level
this parameter was π/4):

T τ (ω) = − 1

4ν0

∫
d�

2π
〈�G↓(� + ω)�G↑(�)〉ε. (46)

In the previous section, we have shown that real part of
semionic self-energy Re �R does not affect the product T τ ,
while Im �R can be accounted for by the substitution of the
propagators in the form (13) with nonzero γ , given by (37):

T τ (ω) = 1

4

∫
dε γ (ε)

γ 2(ε) + (ε − ω/2)2
. (47)

Integration can be performed numerically (plots are shown on
Fig. 6). Striking feature of all the curves is that they exhibit

FIG. 6. Frequency dependence of T τ (ω) for 2D (upper) and 3D
(lower) at ε = 3ε1 (blue), ε = 5ε1 (orange), and ε = 10ε1 (green) as
given by Eq. (47).

nonmonotonous behavior. This analysis is consistent provided
ω � ωc, where the deviation of T τ from π/4 is small.

At low frequencies ω � ωc the kinetic term in the propaga-
tor L(ω,q) is governed by the contribution coming from the
spins with local fields ε � ωc, which obey nearly dissipative
dynamics, which is difficult for analytical study. However, it
is still possible to bring up some qualitative arguments that
show that the product T τ retains the same order of magnitude
and can be modified by some numerical factor ∼1 only.
First, we note that at ε � ωc coherent contribution to spin
dynamics is negligible (formally, we set here ε = 0) and the
only energy scale that governs dynamics of these spins is
given by ωc. Symmetrized spin-spin correlation C(t − t ′) =
〈{S+(t),S−(t ′)}〉 = ϕ(ωc|t − t ′|) where function ϕ(z) decays
fast at z � 1, while ϕ(0) = 1. After transformation to the
frequency domain, we find that the Keldysh component of the
spin-correlation function is S

(diag)
K (ω) � 1

ωc
ϕ̃( ω

ωc
), where ϕ̃(z)

is some even function. Using now the fluctuation-dissipation
relation, one finds that Im S

(diag)
R (ω) � − ω

ωcT
ϕ̃( ω

ωc
). This form

can be used now together with Eq. (44), in order to estimate the
product T τ . Fraction of spins with small local energies εi � ωc

is of the order of ∼ωc/W . Multiplying it with Im S
(diag)
R (ω) and

using Eq. (44), we find that T τ ∼ ϕ̃(0) ∼ 1.
This qualitative argument shows that the T τ (ω � ωc) is

still a constant of the order of unity, which, however, may
differ from the π/4.

C. Effect on the paraconductivity

Let us now study the implication of the non-Gaussian
effect discussed above upon the paraconductivity. We need to
consider the corrections to the Q kernel given by Fig. 3. In
the leading order one should consider the same diagram, but

014506-8



PARACONDUCTIVITY OF PSEUDOGAPPED SUPERCONDUCTORS PHYSICAL REVIEW B 97, 014506 (2018)

with dressed order-parameter Green functions, which we have
studied in the previous section.

As it can be seen from the calculation in Sec. III B, the main
contribution to the paraconductivity comes from the order-
parameter fluctuations with energies ωτ ∼ ε and momenta
pξ0 ∼ √

ε. In the previous section we have shown that the back
effect coming from the dynamics of “noisy spins” changes the
constant T τ (ω) at frequencies ω � ωc only. Thus, we conclude
that this renormalization is negligible provided ωc � εT =
|T − Tc|, which, in turn, leads to the applicability criterion for
Eq. (33) in a form ε � ε1 with ε1 given by Eqs. (38) and (39).

At smaller ε, the contribution of spins whose dynamics is
strongly affected by the noise, becomes dominant. However, as
we saw in the previous subsection, this effect can hardly change
the kinetic coefficient τ more substantially than by some factor
of order unity; therefore, we expect Aslamazov-Larkin–type
paraconductivity [Eq. (33)] to be valid qualitatively even at
smaller ε, down to ε � ρ2/(4−d). Another type of correction
that comes into play at still lower ε will be considered in the
next section.

V. OTHER TYPES OF FLUCTUATIONAL CORRECTIONS

In the previous section a special kind of a fluctuational
correction was demonstrated, which becomes relevant for
kinetic properties of our system in a relatively broad range
of reduced temperatures ε � ε1, where ε1 ∼ ρ1/2 in 2D and
ε1 ∼ ρ2/3 in 3D. On the other hand, a standard Ginzburg
criterion for the width of the fluctuation-dominated region
near second-order phase transition reads as ε � ε2 ≡ Gi ∼
Z− 2

4−d , where Z ∼ 1/ρ is an effective number of “interacting
neighbors” [see Eqs. (38) and (39)]. Thus, we conclude that
ε2 ∼ εd

1 � ε1 for d = 2,3.
Below we will consider some additional corrections to the

Gaussian approximation of Sec. III, which are specific to the
presence of strong disorder in our model; we will show that
these effects also become relevant at ε � ε2 only. Namely, we
concentrate on the corrections to the approximation �̌ = 〈Š〉ε
for the self-energy of the order-parameter propagator L(ω,q),
as defined by the Dyson equation (19).

In the calculation shown in Sec. III A we have studied
the order-parameter propagator averaged over the disorder
by means of the Dyson equation (19), where in the leading
approximation we used the self-energy �̌ = 〈Š〉ε. The same
approximation was employed in the calculation of all other
quantities we have studied, including paraconductivity itself.
In this section we will study the deviations from the results of
this approximation, using the semion diagram technique.

A. Corrections to L(ω,q)

Locator expansion for the propagator L(ω,q) aver-
aged over distribution of {εi} contains terms of the form
Ľ(0)ŠĽ(0)Š . . . ŠĽ(0). Previously, we proceeded with separate
averaging of each Š term in this expansion. The first correction
to this approximation contains simultaneous averaging of two
locators Š, as shown in Fig. 7; the corresponding analytical
expression is 〈Sαμ

R (ω1)Sνβ

R (ω2)〉
ε
. We present calculations of

such an object in Appendix C, making use of Eqs. (21)–(23).
For our purpose it is sufficient to consider here the limit of

FIG. 7. Correction to the averaged over disorder order-parameter
self-energy �̌ − 〈Š〉ε . Dashed “impurity” line corresponds to simul-
taneous averaging of two spin-correlation functions Š over ε

ω1,2 → 0, to obtain

〈(
S

(diag)
R (0)

)2〉
ε
≈ 14ζ (3)

π2WT
. (48)

The structure of the correction shown in Fig. 7 appears to be
diagonal in the (α,β) space, δ�αβ

R (ω) = (δαβ − nαnβ)δ�R(ω),
and the whole correction to the self-energy is given by

δ�R(ω) = LR(ω)
〈(
S

(diag)
R (0)

)2〉
. (49)

The static (ω = 0) contribution to δ�R(ω) corresponds
to the renormalization of Tc, which was already studied
in Appendix A [see Eq. (A12) and comments below]. The
frequency-dependent part at ωτ � ε contains a singularity at
small ε:

δ�R(ω) − δ�R(0) ≈ − iωτ

4πT ξd
0

×
{ 14ζ (3)

π2ε
, (2D)

7ζ (3)
π2

√
ε
, (3D)

(50)

which should be compared with the bare ω-dependent term in
L−1(ω,q) [see Eq. (26)]. Then, we find that the correction (50)
is small provided{

ε � W

T ξ 2
0

∼ ρ, (2D)

ε � (
W

T ξ 3
0

)2 ∼ ρ2, (3D)
(51)

which coincides with the usual Ginzburg criterion discussed
in the beginning of this section.

B. Spatial fluctuations of the conductivity

It was assumed implicitly during the calculation of para-
conductivity in Sec. III B (and further discussion in Sec. IV C)
that conductivity is uniform through the system and thus can
be characterized as the kernel σ (r − r ′) in the linear relation
between current density and electric field j (r) = ∫

σ (r −
r ′)E(r ′)d3r ′. In the disordered medium, conductivity contains
spatial fluctuations, so that the kernel becomes a function of
two coordinates separately σ (r − r ′) → σ (r,r ′). In order to
satisfy current conservation law ∂αjα = 0, with the current
given by jα(r) = ∫

σ (r,r ′)Eα(r ′)d r ′, the local electric field
Eα must fluctuate in space:

δEα(r) = − 1

dσ
Eα

∫
δσ (r,r ′)d r ′. (52)

It results [24] in the additional contribution to the average
conductivity of the form

δσ

σ̄
= − 1

d
K(r = 0), (53)
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FIG. 8. Lowest-order diagram representing the fluctuations of the
conductivity K(r − r ′).

where correlation function K(r − r ′) is defined as follows:

K(r − r ′) = 1

σ̄ 2

∫
dx d y〈δσ (r,x)δσ (r ′, y)〉. (54)

Below we will calculate this correlation function K(r −
r ′). The diagram of the lowest order is shown in Fig. 8. This
diagram consists of two parts: two independent loop integrals,
which are similar to the Q kernel given by Eq. (30) and which
we denote as Rij (ω,q), and an “impurity line,” which to the
leading order can be taken in the static limit 〈(S(diag)

R (0))2〉.
Since one can put an “impurity” either on upper or lower Green
function, which corresponds to replacement q → −q in the
expression for Rμν(ω,q), there are, in total, four terms in the
expression for the conductivity fluctuations:

K(q) = 〈(
S

(diag)
R (0)

)2〉[i∂ω[Rii(ω,q) + Rii(ω,−q)]

dσAL

]2

ω=0

.

(55)

The explicit calculation of the R is provided in Appendix D;
using the dimensionless function F( Q = qξ0/

√
ε) and substi-

tuting bare value of conductivity given by Eq. (32), we arrive
at the following general expression:

K(q) = 28ζ (3)

π2s2
d

1

ν0T ε2
F2( Q). (56)

The relative scale of spatial fluctuations of the conductivity is
thus given by K(r = 0). Both asymptotics (D6) and (D9) (for
d = 2 and 3, respectively) show that the integral that defines
K(r = 0) is convergent; finally, it yields

K(r = 0) = cd

ν0T ε2−d/2ξd
0

, (57)

with the prefactor c, which can be obtained numerically:

cd = 28ζ (3)

π2s2
d

∫
dd Q
(2π )d

F2( Q) =
{

0.141, (2D)

0.049, (3D).
(58)

Now, let us discuss the obtained result. The Aslamazov-
Larkin formula (33) works only provided the correction K(r =

0) � 1. The result is essentially the same as the one obtained in
the previous section: the correction is small provided Eq. (51)
holds.

VI. CONCLUSIONS

We have shown in this paper that the fluctuational conduc-
tivity effect, originally predicted by Aslamazov and Larkin 50
years ago, remains nearly the same in the case of strongly pseu-
dogapped superconductors with just absent single-electron
density of states. The role of single-electron states is taken
over by the localized electron pairs, and the effect of that
replacement reduces just to the factor-of-2 change of the
numerical coefficient sd in Eqs. (32) and (33) with respect
to to the classical Aslamazov-Larkin result, while power-law
dependence of paraconductivity on ε = ln(T/Tc) remains the
same. Our results were derived under the assumption that hop-
ping of (initially) localized pairs occurs with a large effective
“coordination number” Z ∼ ρ−1 [see Eqs. (38) and (39)].

The universal character of the AL paraconductivity (espe-
cially in 2D) makes it a convenient experimental tool for de-
termination of the critical temperature when R(T ) dependence
is of considerable width, like it occurs in strongly disordered
superconductors. For this reason, the issue of universality of
the value of numerical coefficient sd is of interest. First, we
note that it does not depend upon the shape of the local energy
distribution function P (ε) as long as it is flat on the scale of
very small ε ∼ Tc. Some nontrivial structure at this energy
scale in the effective distribution P (ε) may come about in
the generalized model where long-range interaction of the
type of Sz

i U (r i − rj )Sz
j is included, that can be traced back

to the Coulomb interaction between charges of localized pairs.
The effect of such an interaction will be studied separately.

Since our condition of a very large pseudogap �P � Tc

may be found too restrictive in applications, one might be
interested in generalization of our result for moderate value
of �P ∼ Tc. That can be done in a rather straightforward
way, once we note that the whole issue of the coefficient sd

in Eq. (33) is controlled by the expansion of the effective
spin distribution function f(ω) = tanh βω over small ω. In
the standard TDGL theory [23] for disordered superconduc-
tors, the fermionic distribution function f (ω) = tanh βω

2 stays
instead of f(ω), thus making the coefficient in front of T τ

twice smaller than in our problem [see Eq. (27)]. For the
general case of �P ∼ Tc, we can use an observation presented
in Appendix B to the paper [2]: for an arbitrary �P /T , a
generalized distribution function is

f(ω,�P ) = sinh βω

cosh βω + e−�P /T

which interpolates between tanh βω

2 and tanh βω upon increase
of �P /T . As a result, for generic �P values, the enhancement
factor in sd , with respect to the standard AL result, is given
by 2/(1 + e−�P /Tc ), i.e., it quickly becomes close to 2 for
moderate �P /T � 1.5.

All the above discussions refer to the Gaussian fluctuation
region ε � ε1 [see Eqs. (38) and (39)]. At smaller ε, nonlinear
corrections to the dynamics of the order parameter become
important; they are discussed in Sec. IV. However, we present
the arguments that power-law character of σAL(ε) dependence
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is not changed due to these “local noise” effects, while the
coefficient sd becomes somewhat different. Even more close
to Tc, at ε � ε2 = Gi, all types of fluctuational corrections
become relevant, which makes calculation of σAL(ε) difficult.
Moreover, in this close proximity of Tc, conductivity becomes
spatially inhomogeneous, as evidenced by Eq. (57).

A specific feature of fluctuational conductivity in super-
conductors close to superconductor-insulator transition is that
it may much exceed bare (unrelated to superconducting cor-
relations) conductivity already in the region of ε � ε1 where
Gaussian approximation is valid. This is due to the absence in
our case of the standard Drude contribution of the normal-metal
type. Instead, Aslamazov-Larkin paraconductivity competes
with hopping conductivity of individual electrons, that is
further suppressed at T � �P . Finally, we mention again
that the AL effect is the only fluctuational contribution to
conductivity in a pseudogapped superconductor. In particular,
it makes possible to account for nonlinear (in applied electric
field) effects, using the approach [25] applicable for any
TDGL-type theory.
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APPENDIX A: MEAN FIELD APPROXIMATION
AND FINITE R EFFECTS ON Tc

This Appendix is devoted to analytical and numerical study
of the critical temperature Tc at the mean field level. In
Sec. II A we have formulated the following condition for the
appearance of order parameter: the largest eigenvalue of the
matrix Jij

√
ηiηj should be larger than unity. This criterion

was then solved in the limit R → ∞ yielding Eq. (7). Here,
we consider leading corrections to this result at large R.

We start our analysis with analytical treatment of the
spectrum (DOS) of matrix Jij

√
η(εi)η(εj ), averaged over the

distribution P (ε). For this purpose, we express the DOS in
terms of Green function ĜE = (E − η̂1/2Ĵ η̂1/2 + i0)−1 as
ν(E) = − 1

πN
Tr ĜE , and expand it in Dyson series. The latter

can be rewritten more conveniently in terms of auxiliary matrix
F̂E = η̂−1/2ĜEη̂1/2Ĵ :

F̂E = F̂
(0)
E + F̂

(0)
E η̂F̂

(0)
E + F̂

(0)
E η̂F̂

(0)
E η̂F̂

(0)
E + · · · , (A1)

with F̂
(0)
E = Ĵ /(E + i0). Under the assumption of large radius

R, we can apply an ordinary impurity diagram technique
utilizing the equation 〈ηiηj 〉 = δij 〈η2〉 + (1 − δij )〈η〉2. The
first approximation for the self-energy corresponds to trivial
mean field analysis performed in Sec. II A and reads as �̂(1) =
〈η〉. In order to study the DOS near the spectrum edge, we
utilize the self-consistent Born approximation (SCBA) and
consider the following self-energy correction:

�̂(2) = 〈〈η2〉〉 · (F̂E)ii . (A2)

In the momentum representation, the Dyson equation for the
SCBA then reads as

F−1
E (q) = J (q)−1(E + i0) − 〈η〉 − 〈〈η2〉〉F (E), (A3)

with F (E) = ∫
(dq)FE(q). This allows us to write a single

self-consistency equation for F (E):

F (E) =
∫

dd q/(2π )d

J−1(q)(E + i0) − 〈η〉 − 〈〈η2〉〉F (E)
. (A4)

The next step is to express the density of states in terms of
the function F (E). First, we note that ĜE = η̂1/2F̂EĴ−1η̂−1/2,
and thus Tr ĜE = Tr(F̂EĴ−1). In the UV limit q → ∞ we have
J (q) → 0, which leads to the delta peak at zero energy. Since
we are studying the edge of the spectrum, we can subtract
the value (E + i0)−1 and focus at E > 0. Utilizing then the
equation for F (E), we obtain the following general expression
for the DOS:

ν(E > 0) = − 1

πE
Im(F (E)[〈η〉 + 〈〈η2〉〉F (E)]). (A5)

We now proceed with solving Eq. (A4). We switch to dimen-
sionless momentum Q = qR and dimensionless variables:

λ = E

J 〈η〉 − 1, �(λ) = F (E)〈η〉Rd, j ( Q) = J (q)/J,

(A6)
leaving us with the single small dimensionless parameter,
which controls the SCBA:

α = 〈〈η2〉〉
Rdt〈η〉2

= 1

Rd

[
14ζ (3)

π2

βW

ln2 4eγ βW

π

− 1

]
∼ g2e1/g

Rd
� 1.

(A7)

The dimensionless form of Eq. (A4) then reads as

�(λ) =
∫

dd Q/(2π )d · j ( Q)

λ + i0 + 1 − j ( Q) − αj ( Q)�(λ)
, (A8)

and DOS is expressed in terms of � function as follows:

ν(E) = − 1

πERd
Im[�(λ) + α�2(λ)]. (A9)

The long-wavelength limit j ( Q) = 1 − Q2 is sufficient for
the study of the DOS behavior near the spectrum edge E ≈
J 〈η〉, that is, |λ| � 1. Performing momentum expansion and
focusing for the sake of simplicity on the 2D case, where the
integral is logarithmic, we arrive at the following equation:

�(λ) ≈ 1

4π
ln

c

λ + i0 − α�(λ)
, (A10)

where c is a constant of order of unity depending on the UV
behavior of j ( Q). In the limit R → ∞, that is α = 0, this
equation leads to the steplike DOS with the sharp edge atλ = 0,
ν(E) ≈ θ (J 〈η〉 − E)/4πR2. Finite but small α rounds out the
step leading to the square-root singularity at the slightly shifted
edge:

ν(E) ≈ 1

πERd

√
λG − λ

2πα
, (A11)

with

λG = α

4π
ln

4πec

α
. (A12)
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FIG. 9. DOS ν(E) for 2D system with parameters W = 3, J = 1,
which corresponds by Eq. (7), T −1

c ≈ 60. Red curve: solution of the
SCBA equation (A8) and substituting the solution to (A9).

The shift of the spectrum edge leads to the renormalization of
the coupling constant Jeff = J (1 + λG) in the expression for
Tc [Eq. (7)], thus increasing the critical temperature slightly.

To support this calculation, we have performed numerical
analysis of the spectrum of corresponding random matrix.
The temperature T = β−1 was taken close to the mean field
value of the critical temperature (7), so that the spectrum edge
is estimated to be close to unity. The Jij matrix was taken
Gaussian, so that its Fourier transform has the form J (q) =
J exp(−q2R2); in that case, the integration in Eq. (A8) can
be performed explicitly, leaving the single algebraic equation
for �, which is then solved numerically to obtain the analytic

FIG. 10. R dependency of the width of the tail extracted from
Fig. 9. Line corresponds to R−2.

fitting curve. The amount of disorder realization varied from
∼30 000 (for the smallest system) to ∼6000 for the largest one.

The typical DOS pictures shown on Fig. 9 consists of the
“main body” of the DOS, which is fitted by the SCBA formula
reasonably well, and the exponential tail of localized states
which always arises when one deals with random matrices. The
oscillatory behavior is due to finite-size effects and momentum
quantization in a system of finite size; they tend to increase
upon increasing R and decreasing L. The superconductivity
appears when the mobility edge separating localized and
delocalized states crosses unity eigenvalue. Clearly, the edge
of the spectrum is larger than unity, and the SCBA result (A11)
gives the better estimation of the position of the edge as well
as the whole curve.

The width of the tail � is known to be related to the Ginzburg
number Gi ∼ ρ2/(4−d) ∝ R−2d/(4−d). To support this claim, we
performed numerical simulations for system with various R

and estimated the R dependency of the width of the tail. The
beginning of the tail was determined by the intersection of
the tangent line to the curve in the inflection point with the x

axis (see Fig. 9). The end of the tail was chosen as the point
where the DOS value is equal to 4 × 10−5. The best fit of the
�(R) dependency is shown on Fig. 10, and corresponds to
�(R) ∼ R−2, which agrees with the prediction for d = 2.

APPENDIX B: KELDYSH DIAGRAM TECHNIQUE
FOR PSEUDOSPINS

In this Appendix we will derive the Keldysh action and rules
for diagram technique used to describe the pseudospin model
(2) and its semionic representation (10) following Kiselev and
Opperman [26]. We introduce the standard Keldysh time con-
tour C = (−∞,∞) ∪ (∞,−∞) for the model and introduce
the following action for the semions:

iS[ψ̄,ψ] = i

∫
C

dt

(
ψ̄Ĝ−1ψ + 1

4
(ψ̄σ̂ αψ)Ĵ (ψ̄σ̂ αψ)

)
, (B1)

where Ĝ−1 = i∂t + εiσ
z is the diagonal matrix in real space,

and implied summation over coordinates. We introduce the
two-component real Hubbard-Stratanovich field� = (�x,�y)
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with the following action:

iS[�] = −i

∫
C

dt �αĴ−1�α, (B2)

and perform a shift to decouple four-semion interaction �α →
�α − 1

2 Ĵ ψ̄σ αψ , arriving at following action:

iS[ψ̄,ψ,�] = i

∫
C

dt(−�αĴ−1�α + ψ̄(Ĝ−1 + σ̂ α�α)ψ).

(B3)

This action effectively describes spin- 1
2 lying in a fluctuating

magnetic field (�x
i (t),�y

i (t),εi), whose dynamics itself is
coupled to the spins via the interaction vertex. This is thus
a clear generalization of a simple static mean field model
described in Sec. II A.

The next step is to separate fields lying on the upper and
lower parts of the Keldysh contour as � = (�+,�−) (and
similarly for ψ), and introduce a Keldysh rotation switching
to “classical” and “quantum” bosonic fields: �′ = (�cl,�q);
and their analog for fermions: ψ ′ = (ψ1,ψ2)T , ψ̄ ′ = (ψ̄1,ψ̄2),
via the following relations:

� = Ǒ�′, ψ = Ǒψ ′, ψ̄ = ψ̄ ′Ǒτ̌z, (B4)

with matrix Ǒ = (τ̌x + τ̌z)/
√

2 and τ̌α being Pauli matrices
acting in Keldysh space. This rotation yields following Keldysh
structure of the propagators:

Ľ = i〈��T 〉 =
(

LK LR

LA 0

)
, (B5)

Ǧ = −i〈ψψ̄〉 =
(

GR GK

0 GA

)
. (B6)

Finally, the “rotated” action is given by Eq. (11). In
principle, one can perform Gaussian integration over semionic
degrees of freedom and obtain the effective action describing
only the order-parameter dynamics:

iS[�] = −i

∫
dt �αĴ−1τ̌x�

α + Tr ln

(
Ĝ−1 + 1√

2
�̌i σ̂

α�α
i

)
.

(B7)

We remind that the order-parameter fields � ≡ �α
μ(r i) have

the following indices: “spin space” α ∈ (x,y), Keldysh space
μ ∈ (cl,q), and real space r i , while the semionic fields ψ ≡
ψσ,μ(r i) reside in “semionic pseudospin space” σ ∈ {↑,↓},
Keldysh space μ ∈ {1,2}, and real space r i .

APPENDIX C: “IMPURITY” DIAGRAM TECHNIQUE

The aim of this Appendix is to develop an “impuritylike”
diagram technique which is used in Sec. V to study the
deviations from the mean field approximation presented in
Sec. III due to the averaging over the distribution of {εi}. The
key element of the diagram technique that depended on the ε is
the “crossed circle” presented on Fig. 2, which represents spin-
correlation function S

αβ

R (ω). Upon averaging the, e.g., Dyson
series (17), the next nontrivial object arising is simultaneous
averaging of two spin-correlation functions corresponding to
the single site 〈Sαμ

R (ω1)Sνβ

R (ω2)〉
ε
, which corresponds to the

“impurity line” connecting two crossed circles in our diagram
technique.

We proceed with the calculation of analytic expression for
“impurity line” utilizing the spin structure (21) and expressions
(22) and (23). The cross term 〈S(diag)

R (ω1)S(off)
R (ω2)〉

ε
drops out

due to its parity, while nonzero terms for ω1,2 � T yield

〈
S

(diag)
R (ω1)S(diag)

R (ω2)
〉
ε

=
〈

f2(ε)ε2

[(ω1/2 + i0)2 − ε2][(ω2/2 + i0)2 − ε2]

〉
ε

≈ 14ζ (3)

π2WT
+ iπ

4WT 2

ω2
1 + ω2

2 + ω1ω2

ω1 + ω2 + i0
, (C1)

〈
S

(off)
R (ω1)S(off)

R (ω2)
〉
ε

= ω1ω2

4

〈
f2(ε)

[(ω1/2 + i0)2 − ε2][(ω2/2 + i0)2 − ε2]

〉
ε

≈ iπ

4WT 2

ω1ω2

ω1 + ω2 + i0
. (C2)

APPENDIX D: CALCULATION OF CONDUCTIVITY
CORRELATION FUNCTION

Here, we briefly discuss the calculation of the conductivity
fluctuations 〈δσ (r,x)δσ (r ′, y)〉 in the lowest order of perturba-
tion theory given by the diagram shown on Fig. 8. The analytic
expression for the loop integrals Rij appearing in Sec. V B
reads as follows:

Rij (ω,q) = i
8ξ 4

0

W 2

∫
d�

2π

dd p
(2π )d

pip
j
+[B(�−)LR(�+, p+)[LR(�−, p+)LR(�−, p−) − LA(�−, p+)LA(�−, p−)]

+B(�+)[LR(�+, p+) − LA(�+, p+)LA(�−, p+)LA(�−, p−)]]. (D1)

In the low-frequency limit, we take B(�) ≈ 2T/�, and perform integration over energy � using residues, arriving at

Rij (ω,q) = 16WT ξ 4
0

∫
dd p

(2π )d
pip

j
+

ε + ( p2 + q2/4)ξ 2
0 − iωτ/4(

ε + p2−ξ 2
0

)(
ε + p2+ξ 2

0

)(
ε + p2+ξ 2

0 − iωτ/2
)[

ε + ( p2 + q2/4)ξ 2
0 − iωτ/2

] . (D2)

This integral is taken at finite external momentum and thus it can have nontrivial tensor structure. We are interested in the diagonal
conductivity, which is δσ = 1

d
σ ii . The next step is to make momentum integration dimensionless introducing P = pξ0/

√
ε,
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expand it in frequency, take trace Rii/d ≡ R, and introduce dimensionless function F( Q):

i∂ωR(ω = 0, Q) = − W

ξd−2
0 ε3−d/2

π

d

∫
dd P
(2π )d

P2 + P Q/2

(1 + P2
−)(1 + P2

+)2

(
1

1 + P 2 + Q2/4
+ 2

1 + P2
+

)
≡ − W

ξd−2
0 ε3−d/2

F( Q). (D3)

We now switch to the calculation of this function in arbitrary spatial dimensionality.
a. 2D case. Using substitution a = 1 + P 2 + Q2/4, we perform angular averaging, arriving at

F( Q) = 1

16

∫ ∞

0
P 3dP

12a4 + Q2(2P 2Q2 − 5a2)(a + 2P 2)

a3(a2 − P 2Q2)5/2
. (D4)

Finally, we integrate over momentum; using substitution Q = 2 sinh θ , the integral yields

F(Q = 2 sinh θ ) = 1

64 cosh2 θ

(
1 + 3

2θ

sinh 2θ

)
, (D5)

with the following asymptotic behavior:

F(Q) ≈ 1

16
·
{

1, Q � 1

1/Q2, Q � 1
(2D). (D6)

b. 3D case. We use the same substitution a = 1 + P 2 + Q2/4, and angular averaging yields

F( Q) = 1

12π

∫ ∞

0
dP

P

a3

[
a + 2P 2

Q
arctanh

PQ

a
− aP (a3 − 4a2P 2 + 2P 4Q2)

(a2 − P 2Q2)2

]
. (D7)

Again, using the same substitution Q = 2 sinh θ , the integral yields

F(Q = 2 sinh θ ) = 1

192 cosh2 θ

(
2 + 1

cosh2(θ/2)

)
, (D8)

with the following asymptotic behavior:

F(Q) ≈ 1

192
·
{

3, Q � 1

8/Q2, Q � 1
(3D). (D9)
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