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Topological superconductivity in the extended Kitaev-Heisenberg model
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We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently
proposed symmetric off-diagonal exchange �. By performing a mean-field analysis, we classify all possible
superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving
the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically
nontrivial states. For � < 0, we find a competition between a time-reversal symmetry-breaking chiral phase with
Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice.
On the other hand, for � � 0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus
yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal
symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a
symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected
topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into
a Z2 nontrivial phase even at lower doping.
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I. INTRODUCTION

The possibility of realizing the Kitaev interaction on the
honeycomb lattice with its spin-liquid ground state [1] in
a solid-state setting [2] has led to a flurry of experimental
and theoretical research. The necessary combination of lattice
geometry, crystal field, spin-orbit coupling, and strong corre-
lations was found to be realized at first in Na2IrO3 [3], then in
Li2IrO3 [4], and more recently in α-RuCl3 [5]. However, all
of these materials were later found to be magnetically ordered
at low temperatures [6–8], which highlights the importance
of further interactions. In addition to the bond-dependent
Kitaev interaction K , these materials also exhibit nearest-
neighbor Heisenberg exchange J [3] and further, possibly even
long-range, interaction terms [9,10]. Of special prominence is
the symmetric off-diagonal exchange �, which is symmetry
allowed in the most general setup [11]. This term is proven
crucial for explaining some of the observed magnetic orderings
[12,13] and is found to have a significant magnitude in all
three compounds [14]. Taken together, these results point to
the importance of studying a KJ� model, also named the
extended Kitaev-Heisenberg model. Even though the spin-
liquid remains elusive in the ground state, there are possible
signatures of it above the magnetically ordered phases [15,16].
Alternative routes to find spin-liquid phases are therefore
currently being explored, such as hydrogen intercalation [17]
and high-field measurements [18,19].

Another line of previous works proceeded to look at the
superconducting phases produced by the Kitaev interaction
on the honeycomb lattice. Since this model is realized in
(spin-orbit-coupled) Mott insulators, introducing doping is
thought to lead to similar physics as in other Mott insulators,
such as the doped cuprates [20–23]. Initially, two different
slave-boson mean-field analyses yielded a time-reversal sym-
metric [24] or a time-reversal breaking phase [25], both with

spin-triplet symmetry. Later works were able to reconcile
the two, leading to a phase diagram where the time-reversal
broken phase appears at very low doping and the time-reversal
symmetric one at higher doping in the most common situation
of a ferromagnetic Kitaev interaction [26,27]. Whereas the
time-reversal breaking state always has nontrivial topology
with a nonvanishing Chern number [25], the time-reversal
symmetric state can be tuned into a topological phase either by
doping [24], a Zeeman field [28], or impurities [29]. Further
including the finite Heisenberg exchange has been shown to
lead to a competing superconducting spin-singlet pairing [24].
An exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing
state as also been proposed when a specific kind of spin-
orbit coupling is dominant [30]. Finally, the superconducting
pairing driven by the Kitaev-Heisenberg model has also been
studied on the triangular lattice [31]. None of these studies
have, however, taken into account the symmetric off-diagonal
exchange �, which has been shown to be crucially important
for determining the undoped magnetic phase.

In this work, we investigate the influence of this symmetric
off-diagonal exchange � on the superconducting phase at
doping levels high above the spin-liquid state. We do this by
performing a slave-boson mean-field analysis of the super-
conducting pairing driven by the extended Kitaev-Heisenberg
model. We are able to rewrite the off-diagonal exchange in
terms of spin-triplet superconducting pairing, which mixes
the d-vector components. A full symmetry analysis of the
possible superconducting pairing states, taking into account
that the interaction arises from spin-orbit-coupled materials,
significantly extends the possible odd-parity pairing channels
beyond earlier reported analyses.

Performing self-consistent calculations, we find three dif-
ferent superconducting states: (i) A chiral solution at interme-
diate doping for � < 0 with a nonzero Chern number. This
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solution hosts a single chiral Majorana mode on any open
boundary. The extension of this region in the phase diagram
depends strongly on the size of the interaction parameters. (ii)
A nematic and time-reversal invariant phase also for � < 0
but at higher doping and directly competing with the chiral
state. This state breaks the C3 rotation symmetry of the lattice
and thus produces an experimental signature that discriminates
it sharply from (iii), a time-reversal invariant phase for � > 0
corresponding to the previously found solution for � = 0 [24].
However, when including a finite �, the d vector becomes
locked perpendicular to the honeycomb lattice, which breaks
the fourfold degeneracy found without �. We find that all
these spin-triplet states are stable even when including a small
to moderate Heisenberg interaction, that by itself generates
spin-singlet superconductivity.

We are also able to topologically classify the time-reversal
symmetric states using a Z2 invariant, which is nontrivial
for doping levels above the Lifshitz transition at δ = 0.25.
In addition, we refine the topological classification by in-
corporating the appropriate spin-orbit coupling in the kinetic
energy. This results in the destruction of a previously discussed
symmetry-protected topological state found below δ = 0.25
[28]. However, we show that this spin-orbit kinetic term can in-
stead trigger another topological transition into a Z2 nontrivial
state. Taken together, our results show a remarkable sensitivity
of the symmetry and topology of the superconducting phase
to the inclusion of the finite � interaction present in real
Kitaev honeycomb materials. These materials thus offer an
extraordinary playground for investigating the appearance of,
and the transitions between, a multitude of different topological
superconducting states.

The rest of this paper is organized as follows. We begin
by introducing the extended Kitaev-Heisenberg model and
its mean-field decoupling in the superconducting channel in
Sec. II. Thereafter, we present a complete symmetry analysis
of the spin-triplet superconducting states in Sec. III. In Sec. IV
we present our numerical self-consistent calculations. We
first focus on the time-reversal breaking state, followed by
discussing the different time-reversal symmetric solutions
grouped by the parameter regime in which they appear. Finally,
we study the influence of the spin-orbit-coupled kinetic energy
term in Sec. V, before ending with some concluding remarks
in Sec. VI.

II. MODEL AND METHOD

Considering extended Kitaev-Heisenberg materials as Mott
insulators at half-filling, we aim to study the possible supercon-
ducting instabilities arising upon the introduction of additional
charge carriers. To this end, we consider the Hamiltonian

H = Hk + HKJ� (1)

on the honeycomb lattice, with a kinetic term Hk that
encapsulates the doping and the interaction Hamiltonian
HKJ� , which consists of three terms [11]: the Kitaev term K ,
which is a bond-dependent Ising-type interaction, an isotropic
Heisenberg interaction between nearest-neighbor spins of
strength J , and finally a symmetric off-diagonal interaction
of strength �, which couples the spin components that are not

FIG. 1. Sketch of the honeycomb lattice with the octahedral cages
typical for materials hosting the extended Kitaev-Heisenberg model.
The Kitaev interaction on the red, blue, and green bonds involve
the x, y, and z components, respectively, while the other two spin
components in parentheses are active in the off-diagonal exchange
on the corresponding bond. Black arrows mark the spin coordinate
system. The spin component involved in the Kitaev exchange on a
particular bond is always perpendicular to the corresponding nearest-
neighbor vector δi .

involved in the Kitaev interaction. It can be written as

HKJ� = J
∑
〈i,j 〉

(
Si · Sj − 1

4
ninj

)
+ K

∑
〈i,j 〉

S
γ (i,j )
i S

γ (i,j )
j

+ �
∑
〈i,j 〉

(
S

α(i,j )
i S

β(i,j )
j + S

β(i,j )
i S

α(i,j )
j

)
, (2)

where Si represents the effective spin moment jeff = 1
2 present

at every site i of the honeycomb lattice. It can be written in
terms of the fermionic creation and annihilation operators as
S

γ

i = c
†
i,σ,oσ

γ
σ,σ̄ ci,σ̄ ,o, where c

†
i,σ,o creates an electron at site i

on sublattice o = a,b with (pseudo)spin σ . Furthermore, σγ

represents the γ = x,y,z Pauli matrices in spin space. The
functions α(i,j ), β(i,j ), and γ (i,j ) = x,y,z, depending on the
nearest-neighbor bond between sites i and j (see Fig. 1 for de-
tails), where α(i,j ) �= β(i,j ) �= γ (i,j ), while ni = c

†
i,σ,oci,σ,o

is the electron density operator. All sums run only over the three
nearest-neighbor bonds δ1 = (1,0), δ2 = 1

2 (−1,
√

3), and
δ3 = 1

2 (−1, − √
3), in units of the nearest-neighbor distance.

It is possible to recast the extended Kitaev-Heisenberg
Hamiltonian in a form more convenient for the study of
superconducting pairing, by introducing spin-singlet and -
triplet operators defined on the nearest-neighbor bonds 〈i,j 〉:

s
†
ij = 1√

2

∑
σ,σ̄

c
†
i,σ,ac

†
j,σ̄ ,bi(σyσ0)σ,σ̄ ,

tα
†

ij = 1√
2

∑
σ,σ̄

c
†
i,σ,ac

†
j,σ̄ ,bi(σyσα)σ,σ̄ , (3)

where α = x,y,z, and σ are the Pauli matrices acting on spin
space, with σ0 being the 2×2 identity matrix.

Because of the density-density term, introduced to include
doping effects, the Heisenberg term can then be written purely
in terms of the singlet operators [32,33]

Si · Sj − 1
4ninj = −s

†
ij sij .

014504-2



TOPOLOGICAL SUPERCONDUCTIVITY IN THE EXTENDED … PHYSICAL REVIEW B 97, 014504 (2018)

Further, the Kitaev term on the z bond takes the form [24]

Sz
i S

z
j = 1

4

(−s
†
ij sij + tx

†

ij txij + t
y†

ij t
y

ij − t z
†

ij t zij
)

(for the x and y bonds, the negative sign appears in front of
the respective triplet term). Finally, we also rewrite the off-
diagonal terms with the help of the triplet operators:

Sα
i S

β

j + S
β

i Sα
j = 1

2

(
tα

†

ij t
β

ij + t
β†

ij tαij
)
.

In a next step, we perform a mean-field decoupling by
replacing the singlet and triplet operators by their expecta-
tion values in the usual way treating superconductivity. For
complete generality, we retain independent order parameters
on each bond, such that there are in total 12 different or-
der parameters. This allows us to fully capture the orbital
dependence of the superconducting order. Three of these 12
are singlet order parameters, one for each nearest-neighbor
bond, which we combine in a vector � = (�1,�2,�3). The

remaining nine are triplet order parameters, which make up
the usual d vector, with each component dα containing three
nearest-neighbor bond order parameters dα = (dα

1 ,dα
2 ,dα

3 ). For
concise notation, we compile all nine triplet order parameters
in a matrix of the form

d =
⎛
⎝dx

1 dx
2 dx

3

d
y

1 d
y

2 d
y

3

dz
1 dz

2 dz
3

⎞
⎠, (4)

with each row representing one d-vector component and each
column one of the three nearest-neighbor bonds. The resulting
mean-field Hamiltonian is given by

H� =
∑
〈i,j 〉

(
�ij s

†
ij +

∑
α

dα
ij t

α†
ij + H.c.

)
, (5)

where we have dropped constant terms that only change the
overall energy of the system. The order parameters in Eq. (5)
are defined via the self-consistency equations

� = 1√
2

(
−J − K

4

)
(〈siδ1〉 , 〈siδ2〉 , 〈siδ3〉),

dx = 1√
2

(
−K

4

〈
txiδ1

〉
,
K

4

〈
txiδ2

〉 + �

2

〈
t ziδ2

〉
,
K

4

〈
txiδ3

〉 + �

2

〈
t
y

iδ3
〉
)

,

dy = 1√
2

(
K

4

〈
t
y

iδ1

〉 + �

2

〈
t ziδ1

〉
, − K

4

〈
t
y

iδ2

〉
,
K

4

〈
t
y

iδ3

〉 + �

2

〈
txiδ3

〉)
,

dz = 1√
2

(
K

4

〈
t ziδ1

〉 + �

2

〈
t
y

iδ1

〉
,
K

4

〈
t ziδ2

〉 + �

2

〈
txiδ2

〉
, − K

4

〈
t ziδ3

〉)
. (6)

Here, the vectors run over the three nearest-neighbor bonds.
We see directly that the Heisenberg term J only gives rise
to singlet pairing, whereas the Kitaev K and off-diagonal �

exchange terms generate triplet pairing. Moreover, � couples
two different triplet components on the same bond, e.g., the
x and z triplets on the δ2 bond. Including only K does not
generate such coupling. Overall, this leads to a competition
between triplet states driven by the K and � terms and singlet
states from the J interaction. We also expect from Eq. (6) that
including � will lead to a much more complex triplet state.

At half-filling, the extended Kitaev-Heisenberg interaction
is the effective interaction in a (spin-orbit) Mott insulator. It is
thus reasonable to expect finite doping to induce superconduc-
tivity, similar to the situation considered in other Mott insula-
tors [20–23]. Taking this starting point, we model the kinetic
part of the Hamiltonian by the tight-binding Hamiltonian

Hk = −t̃
∑

〈i,j 〉,σ
(c†i,σ,acj,σ,b + H.c.) + μ̃

∑
i,σ,o

(c†i,σ,oci,σ,o). (7)

The hopping t̃ is restricted to nearest-neighbor bonds 〈i,j 〉,
which gives rise to the well-known graphenelike band structure
with Dirac cones at the Brillouin zone points K and K ′. To
exclude the double site occupancy, we include the Gutzwiller
approximation in t̃ through a U(1) slave-boson mean-field
approach, which leads to a rescaling of the effective hopping
amplitude [20–23,34,35]. Thus, t̃ = tδ, where t is the bare
hopping parameter, and δ corresponds to the hole-doping

level, such that the number of electrons per site is given
by 1 − δ. This approximation also requires an adjustment of
the chemical potential μ̃ for each δ, which we perform by
calculating the filling at μ̃ and demanding it to equal to 1 − δ.
The same approach has previously been successfully applied
both for the Heisenberg [33,36,37] and Kitaev-Heisenberg
[24,27] interactions on the honeycomb lattice. Even though
this method does not allow to directly connect to the spin-liquid
state at half-filling, it has proven to be reliable at not too
low doping levels [26]. We finally comment that the kinetic
energy term in Eq. (7) does not explicitly take into account
any spin-orbit effects on the kinetic energy. The strong spin-
orbit coupling present in materials described by the extended
Kitaev-Heisenberg Hamiltonian is of course included insofar
as it leads to the formation of the effective jeff = 1

2 states and
their anisotropic K and � interactions. In Sec. V, we also
consider how including a symmetry-allowed spin-orbit driven
hopping influences the superconducting states.

III. SYMMETRY ANALYSIS

We start the analysis of superconductivity in the extended
Kitaev-Heisenberg model by performing a classification of the
superconducting order parameters. This can always be done
in terms of the irreducible representations (irreps) of the point
group of the model, as they determine the possible solutions
of the self-consistent nonlinear gap equation.
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The kinetic part of the Hamiltonian is symmetric under
the symmetries of the point group D6h, but the symmetry of
the interaction, and subsequently also the mean-field Hamil-
tonian, is reduced to D3d , due to the bond dependence of
the interaction. The classification furthermore needs to take
into account that the materials realizing the extended Kitaev-
Heisenberg model exhibit strong spin-orbit coupling, which
is implicitly taken into account from the very start when
writing the interaction Hamiltonian (2). This requires a locking
of the orbital and spin symmetry transformations together
during the classification [38]. For example, a C3 rotation of
the lattice has to be performed together with an equivalent
rotation around the (1,1,1) axis in spin space to leave the
Hamiltonian (1) invariant. With the choice of spin coordinate

system as presented in Fig. 1, the (1,1,1) axis namely points
perpendicular to the honeycomb plane, and a C3 rotation
around this axis therefore maps Sx → Sy → Sz → Sx . As
a consequence, this spin-orbit coupling leads to a mixing
of the three triplet components in the basis functions of the
irreps.

For the purpose of studying the effect of the off-diagonal
exchange, only the triplet order parameters need to be classi-
fied. The analysis of the spin-singlet pairing is not affected by
the spin-orbit coupling and has been discussed earlier [33]. For
the nine triplet order parameters, there are in total nine basis
functions: one for the A1u irrep, two transforming according to
A2u, and six that correspond to Eu. Using the matrix notation
introduced in Eq. (4), the nine basis functions are

dA1u
=

⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠, dA2u,1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, dA2u,2 =

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠,

dEu,1 =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, dEu,2 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, dEu,3 =

⎛
⎝0 1 0

0 0 −1
0 0 0

⎞
⎠,

dEu,4 =
⎛
⎝ 0 1 0

0 0 0
−1 0 0

⎞
⎠, dEu,5 =

⎛
⎝0 0 1

0 0 0
0 −1 0

⎞
⎠, dEu,6 =

⎛
⎝ 0 0 1

−1 0 0
0 0 0

⎞
⎠.

(8)

Here, we have chosen to present them in a non-normalized
and nonorthogonal representation, which simplifies the iden-
tification of the solutions obtained from the self-consistent
calculations.

The six Eu basis functions can be identified as being
constructed from three different sets ({1,2},{3,4},{5,6}) that
are not related by symmetry, and which do not correspond
directly to the d-vector components. All basis functions of this
irrep will be degenerate and can generally form some linear
combination at Tc. An intuitive picture of the different sets can
be gained by considering the diagonal and the two off diagonals
of the matrix presentation⎛
⎝dx

1 0 0
0 d

y

2 0
0 0 dz

3

⎞
⎠,

⎛
⎝ 0 dx

2 0
0 0 d

y

3
dz

1 0 0

⎞
⎠

⎛
⎝ 0 0 dx

3
d

y

1 0 0
0 dz

2 0

⎞
⎠.

Each of these (off) diagonals is linked by the C3 rotation
that simultaneously rotates the d vector in spin space and the
three nearest-neighbor bonds. The resulting mapping consists
of dx → dy → dz → dx and δ1 → δ2 → δ3 → δ1 and thus
does not relate these (off) diagonals to each other. As a
consequence, the symmetry analysis has to necessarily treat the
full d vector instead of its individual components. Using these
(off) diagonals we see how the A2u irreps are fully symmetric,
i.e., their components are always 1, whereas the A1u irrep adds
an additional minus sign between different off diagonals. In
the Eu irrep, the (off) diagonals follow a (1,0,−1) pattern that
makes them odd under the application of the C3 rotation. This
pattern on nearest-neighbor bonds is actually equivalent to that
of the singlet order parameters belonging to the E2g irrep of
the D6h point group [33].

We can in fact already make some qualitative statements
about the expected symmetries by using the basis functions
as a “one-shot” input into the self-consistency equations (6).
The basis function dA1u

is an eigenfunction of this operation,
with eigenvalue K

4 − �
2 , so we can likely expect it to be

stable for K < 0 and � > 0. The diagonal function dA2u,1,
involving only diagonal entries, is also an eigenfunction, but
with eigenvalue −K

4 , such that it should be stable for K > 0.
Other eigenvectors can be constructed from the difference
between two basis functions of the Eu irrep. The linear
combination dEu,3 − dEu,5 , for example, is an eigenvector with
eigenvalue K

4 + �
2 , which indicates that this linear combination

might be favored at K < 0 and � < 0. Since several of the
Eu basis functions are degenerate at Tc, the exact solution
is likely some kind of of linear combination of them, but
the exact combination can only be determined by fully solv-
ing the self-consistent equations numerically. Still, we can
from these simple arguments already predict that the symmetry
of the superconducting state is very strongly influenced by the
sign of �.

IV. SELF-CONSISTENT PHASE DIAGRAM

Having performed the general symmetry analysis in the
previous section, we now turn to actually solving for the
superconducting order parameters. We do this by diagonalizing
the mean-field Hamiltonian

H = Hk + H�

using a random starting order parameter and then calculating
the expectation values in the self-consistency conditions (6).
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The thus-obtained new order parameters are fed back to the
Hamiltonian and we iterate the procedure until we reach full
self-consistency.

The exact values of the extended Kitaev-Heisenberg model
for either of the materials, which are discussed to realize it,
are still under debate [12,14,15,39–45]. Furthermore, several
studies have shown that the parameters are very sensitive to
deformations of the lattice [9,46–48]. Only some very general
conclusions can be drawn at the current moment: the Kitaev in-
teraction K is usually dominant and ferromagnetic, the Heisen-
berg interaction J is subdominant and mainly antiferromag-
netic, and the off-diagonal exchange � can have either sign, but
is usually smaller than K . We thus restrict our parameter space
by setting K = −t and varying the strength of the off-diagonal
interaction between −t < � < t . In a second step, we study the
stability of the observed solutions when switching on a finite
Heisenberg interaction with 0 < J < t , which generates a com-
petition between spin-triplet and -singlet superconductivity.
This choice of parameters also allows us to connect to previous
results obtained at � = 0 [24]. The hole doping is adjusted
by varying the doping level δ in the interval between 0.1 and
0.3, which includes a van Hove singularity in the density of
states at δ = 0.25. It has been shown in previous works that
the decoupling scheme used here produces reliable results at

0.1

0.25

0.35

−1 −0.5 0 0.5 1

0.3

0.2

0.15

FIG. 2. Phase diagram of the triplet order parameters for K =
−t for positive and negative values of the symmetric off-diagonal
exchange term � as a function of doping δ > 0.1. For � > 0, the
time-reversal symmetric solution dTRS (cyan) is stable at all doping
levels. Beneath δ = 0.25 (dashed line), it hosts a symmetry-protected
topological phase, while above the stronger Z2 invariant becomes
nontrivial. Three different solutions appear for � < 0. At large
doping, the superconducting order dnematic (purple) breaks the C3

symmetry, but is topologically equivalent to dTRS, both above and
below δ = 0.25. In the orange region, an order parameter dchiral,
breaking time-reversal symmetry and classified by a nonzero Chern
number, appears. The solution in the yellow region at low doping
mixes two irreps.

such not too small doping levels [26,27]. Going to lower doping
levels might require a different decoupling scheme that more
directly connects to the spin-liquid state of the Kitaev model
at half-filling. Also, at very low values of δ, the ratio between
interaction terms and the hopping can become artificially large
within our scheme, possibly resulting in numerical instability.
We thus leave the analysis close to the spin liquid to future
studies and focus solely on the higher doping range.

Starting by excluding the Heisenberg interaction J , we find
triplet superconducting states throughout the full parameter
space. This is illustrated in Fig. 2, where we plot the �-δ
phase diagram of the possible superconducting phases at
intermediately low to high doping. As seen, we find multiple
different topological phases, breaking symmetries ranging
from time-reversal symmetry, to crystalline symmetries by
forming a nematic state. Very interestingly, just changing the
sign of � results in very different superconducting phases,
which means that � = 0 is exactly at a phase transition for
all doping levels. In total, we identify four different regions,
which we discuss in detail below.

A. Time-reversal symmetry-breaking states

We first identify a chiral, time-reversal symmetry-breaking,
odd-parity solution appearing at intermediate doping levels and
� < 0 (see orange region in the phase diagram in Fig. 2). This
is the only time-reversal symmetry-breaking solution that we
find. The order parameter takes the form

dchiral = η

⎛
⎝ 0 1 e±i2π/3

e∓i2π/3 0 e±i2π/3

e∓i2π/3 1 0

⎞
⎠

= η

⎧⎨
⎩1

2

⎛
⎝ 0 2 −1

−1 0 −1
−1 2 0

⎞
⎠ ± i

√
3

2

⎛
⎝ 0 0 1

−1 0 1
−1 0 0

⎞
⎠

⎫⎬
⎭

= η

(
1

2
(dEu,3 + dEu,4 − 2dEu,5 + dEu,6)

± i

√
3

2
(dEu,4 − dEu,3 + dEu,6)

)
, (9)

where the solutions ± are degenerate and of opposite chirality.
We note directly that this order parameter is nonunitary
as d∗

chiral �= dchiral [38]. Moreover, since the solution breaks
time-reversal symmetry, but is still intrinsically particle-hole
symmetric, it belongs to the Altland-Zirnbauer class D and is
thus classified by a Chern number C in 2D [49].

We calculate the Chern number for various values of the
order-parameter strength η in Eq. (9) using the numerical
algorithm developed in Ref. [50] and present the results in
Fig. 3(a). For all values of the order-parameter strength η and
doping level δ, the resulting Chern number is nonzero and
the solution thus topologically nontrivial. In particular, we
find that the Chern number evolves with η. This is illustrated
in Fig. 3(a), which shows the Chern number C calculated at
δ ≈ 0.14 for one of the two degenerate solutions. At weak
pairing, with η � t , the Chern number is even and large,
C = −4. Upon reaching a threshold ηc1, a topological phase
transition occurs into a state with Chern number C = −1. At
even higher values η > ηc2, another transition takes place into
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FIG. 3. Properties of the chiral superconducting state dchiral found
at intermediate doping levels at � < 0. (a) Non-self-consistent value
of the Chern number C for different order parameter strength η at
doping δ = 0.14. Self-consistency only realizes the C ± 1 state. (b)
Energy spectrum on a zigzag nanoribbon for η = 0.4t and δ = 0.14.
There is one chiral edge state on each open boundary.

a phase with C = 2. The other degenerate solution always
yields a Chern number with opposite sign. At the critical values
of η, at which the topological invariant changes, we find that
the band gap closes at the M point of the Brillouin zone.
The exact values of η for these phase transitions depend on
the doping level. Due to the bulk-boundary correspondence,
the finite Chern number in the chiral state is manifested in |C|
number of surface states on each open boundary. In Fig. 3(b),
we illustrate this for η = 0.4t and δ = 0.14, where |C| = 1,
by presenting the energy spectrum of a strip of honeycomb
lattice with zigzag edges. There are two states crossing the
bulk energy gap, which correspond to one chiral edge state on
each zigzag edge.

While the chiral state in Eq. (9) is topologically nontrivial
for any, even arbitrarily small, values of η, we find that only the
solution with C = ∓1 is actually realized in our self-consistent
calculations. The boundaries of the orange region in Fig. 2
correspond exactly to the lines where the order-parameter
strength η, calculated from the self-consistency equations,
reaches the critical values ηc1 and ηc2, respectively. Because
the self-consistently calculated strength of the order parameter
depends on the exact values of the interaction parameters, the
boundary of the orange region in Fig. 2 depends rather strongly
on the interaction strength. Repeating the calculations with
smaller ratios of K/t and �/t , we find that the chiral solution
is still realized, but shifted to smaller doping values.

When we also allow for a finite strength of the Heisenberg
coupling J , the chiral spin-triplet state remains very stable.
In Fig. 4 we show the evolution of the absolute value of
the Chern number calculated from the self-consistent solution
obtained for δ = 0.19, � = −0.6t , and K = −t for increasing
values of J . We find that the chiral solution with |C| = 1 is
stable up to J ≈ 0.65t . At higher J , there is a transition to a
spin-singlet chiral d-wave state with C = ±2 and eventually
also into a singlet extended s-wave state, which is topologically
trivial. Shortly before the spin-singlet superconducting states
are becoming favored, we find a small, and possibly unstable,
intermediate region with a time-reversal symmetric spin-triplet
solution with |C| = 0. The symmetry of this transition region
corresponds to the nematic phase discussed in Sec. IV B 3. The
transition to the chiral d-wave state is analogous to the case of
� = 0 [24], only the exact value of the transition is here slightly
increased relative to the � = 0 case. The transitions between

0

0.5

1

1.5

2

Triplet Singlet

0 0.2 0.4 0.6 0.8 1

FIG. 4. Absolute value of the Chern number C of the supercon-
ducting state obtained self-consistently at δ = 0.19, K = −t , and
� = −0.6t , as a function of the Heisenberg interaction 0 < J < t .
Gray shading marks the region of dominant triplet pairing. The chiral
solution with |C| = 1 is dominant up to high values of J . Upon
transitioning into the singlet state, a chiral d-wave solution with
|C| = 2 is obtained until an extended s-wave state is stabilized at
large values of J . A small intermediate region is also possibly present
with a topologically trivial triplet state.

different spin-singlet states have also been reported for the pure
Heisenberg interaction [33,51]. We can therefore conclude that
the time-reversal symmetry-breaking chiral triplet state is sta-
ble even in the presence of substantial Heisenberg coupling J .

B. Time-reversal symmetric states

The remaining phases in the �-δ phase diagram in Fig. 2 all
preserve time-reversal symmetry, while keeping an odd parity
due to their spin-triplet nature. The different phases can be
grouped together by the parameter ranges in which they occur.
In particular, we separate the analysis according to the sign of
� in the phase diagram. However, before proceeding, we first
review some previous results in the case of � = 0, which are
relevant for our subsequent discussion of the finite � phases.

1. Review of � = 0

In the absence of the off-diagonal exchange �, the remain-
ing interactions K and J do not mix the three different triplet
components. The individual d-vector components can then be
classified without taking into account the spin-orbit coupling
[24]. A symmetry analysis in this case yields three different
irrep basis vectors for each component (see Appendix A for
more details). Employing the same mean-field approach as
used here, Hyart et al. [24] found that each d-vector component
transforms according to the 2D Eu irrep for all studied doping
levels, as long as J < Jc ≈ 1

2K . Moreover, the three d-vector
components were always found to be degenerate, forming in
total four degenerate linear combinations with different direc-
tions of the d vector. In band space, these degenerate solutions
all correspond to time-reversal symmetric, completely gapped
odd-parity or p-wave states.

From the viewpoint of topological protection, all these
� = 0 solutions were found to exhibit a transition from a Z2

trivial to nontrivial state upon doping across the van Hove
singularity at δ = 0.25, represented by the dashed line in Fig. 2
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[24]. This transition is based on a weak coupling result: the Z2

invariant of a fully gapped, odd-parity superconducting order in
the presence of inversion symmetry is given by the parity of the
number of time-reversal invariant momentum (TRIM) points in
the Brillouin zone enclosed by the normal-state Fermi surface
[52,53]. In the case of the honeycomb lattice, the Fermi surface
encloses the two K and K ′ points at doping below δc = 0.25,
such thatZ2 = 0. At δc, the Fermi surface undergoes a Lifshitz
transition and after that only encloses the � point, such that
Z2 = 1.

However, even at doping levels below the van Hove sin-
gularity the system was found to be in a symmetry-protected
topological phase since spin rotation symmetry of the kinetic
part allows to write the full Hamiltonian in a block-diagonal
form [28]. These individual blocks each have a nonvanishing
spin Chern number Cσ = ±2, which leads to the appearance of
a pair of Dirac cones on an open boundary. As we will discuss
in Sec. V, this symmetry protection is however broken when
the appropriate spin-orbit-coupling terms are also included in
the kinetic energy and not just in the Kitaev exchange.

2. � > 0

Having reviewed the superconducting phase present at
� = 0, let us immediately turn to including a positive �. Here,
we find the same superconducting order for all studied doping
levels, cyan colored in Fig. 2. This order transforms according
to dTRS = ηdA1u

given in Eq. (8). It corresponds to one of the
degenerate linear combinations present without the symmetric
off-diagonal exchange term �, with the d vector now locked
to point perpendicular to the honeycomb plane.

To understand why only this particular linear combination
appears as the solution for � > 0, we have to look into the
definition of the spin coordinate system for the interaction
Hamiltonian. The Kitaev exchange appears from virtual hop-
ping processes between jeff = 1

2 states on edge-sharing oxygen
octahedra, as illustrated in Fig. 1. Due to interference between
different virtual hopping paths in the plane of the shared edge
and the honeycomb lattice ions, only the spin component
perpendicular to that plane interacts in the Kitaev exchange.
For example, in the case of the x bond in Fig. 1, this is set
to be the Sx axis. However, a different, downward-pointing,
spin coordinate axis S̃x = −Sx could have been defined. The
Kitaev exchange KSx

i Sx
j is symmetric under such a change

of basis. Similarly, on the other two nearest-neighbor bonds,
there is also always a choice of coordinate axis up or down for
the spin component involved in the Kitaev exchange, without
changing the interaction. Three bonds, each with a choice of
up and down, give eight different spin coordinate systems that
produce the same Kitaev exchange, but only four of them are
right handed, as needed. The resulting four choices are

(Sx,Sy,Sz), (Sx, − Sy, − Sz),

(−Sx,Sy, − Sz), (−Sx, − Sy,Sz), (10)

when written in terms of the spin axes used in Fig. 1.
This symmetry of the interaction is broken, as soon as a finite

off-diagonal exchange � is included. The extended Kitaev-
Heisenberg Hamiltonian is no longer unchanged between the
different choices of spin coordinate systems in Eq. (10) because

the off-diagonal exchange includes terms of the form Sx
i S

y

j . In
our choice of coordinate system, all off-diagonal terms come
with a positive sign in HKJ� [see Eq. (2)]:

�
(
S

y

i Sz
1 + Sz

i S
y

1 + Sx
i Sz

2 + Sz
i S

x
2 + Sx

i S
y

3 + S
y

i Sx
3

)
.

Using, e.g., the second coordinate system in Eq. (10) would
transform �Sx

i S
y

j → −�Sx
i S

y

j and thus does not leave the
interaction invariant. Hence, the parametrization of the off-
diagonal exchange fixes the spin coordinate system and breaks
the fourfold symmetry of the interaction at � = 0. The
symmetry classification in Sec. III was performed using the
first set of quantization axis in Eq. (10). If the Hamiltonian
is written using any of the other three sets, the symmetry
classification needs to be adjusted. For example, the axis
perpendicular to the honeycomb plane, that was necessary for
the the C3, or 2π

3 rotation, will no longer correspond to the
(1,1,1) axis in the new choice of coordinates. Performing the
symmetry analysis in the four different coordinate systems,
the basis function of theA1u irrep will always correspond to one
of the other four linear combinations found to be degenerate
at � = 0.

The overall conclusion is that including a positive off-
diagonal exchange � locks the d vector perpendicular to the
honeycomb plane. This process strongly singles out one of the
four degenerate states at � = 0 as the ground state. Since the
off-diagonal exchange � > 0 does not change the symmetry
of the superconducting order, the topological classification by
Hyart et al. [24,28] carries over. However, we find that includ-
ing a finite � enhances the magnitude of the superconducting
order. Comparing, for example, the amplitude η at � = 0 with
that at � = t for a fixed doping, there is an increase by up to
an order of magnitude. Finally, including a finite Heisenberg
interaction leads to a transition to a chirald wave and eventually
an extended s-wave singlet superconducting order. We find that
a finite � > 0 slightly increases the critical value Jc at which
the transition occurs.

3. � < 0

For negative values of �, we also observe time-reversal
symmetric solutions in addition to the time-reversal breaking
superconducting order already discussed in Sec. IV A. The
dominating phase is obtained at intermediate to high doping
levels (see purple region in Fig. 2). We identify several
parametrizations which are degenerate in energy in this region.
They can all be expressed as purely real linear combinations
of the basis vectors of the Eu irrep

dnematic =
∑

i

aidEu,i . (11)

The coefficients of the first two basis functions of the Eu irrep,
a1 and a2, are always at least an order of magnitude smaller
than the other coefficients. This results in the three d-vector
components being of different magnitude. One particular
example for these solutions is

dnematic′ =
⎛
⎝ 0 0 1

−1 0 1
−1 0 0

⎞
⎠ = (dEu,6 + dEu,4 − dEu,3). (12)
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FIG. 5. Square of the absolute value of the intraband triplet order
parameter |dintra(k)|2 in the first Brillouin zone for (a) the time-reversal
symmetric nematic order and (b) the chiral time-reversal breaking
order, both present at � < 0. Breaking of the C3 symmetry is clearly
visible in (a).

To gain more insights into this state, we transform the
order parameter into the band picture, where the normal-state
Hamiltonian Hk is diagonal. Then, the superconducting pairing
can be divided into intraband and interband contributions.
The corresponding transformations are explained in detail in
Appendix B. Because we expect the intraband contribution to
be dominant at the doping levels relevant for this state, we
plot the square of the absolute value of the intraband pairing
|dintra(k)|2 in the first Brillouin zone in Fig. 5. Figure 5(a)
clearly shows that the C3 symmetry is broken for this order,
manifesting a clear nematicity in this phase. In contrast,
Fig. 5(b) displays the intraband order parameter dchiral for the
chiral time-reversal symmetry-breaking states, which retains
the full rotational symmetry of the honeycomb lattice.

We have also confirmed that the subdominant interband
order parameter has the same spatial symmetries as the
intraband pairing. Finally, numerical calculations of the en-
ergy band gap also show a clear nematicity by breaking the
C3 symmetry. Thus, the dominating time-reversal symmetric
solution for � < 0 is a nematic state, with the nematicity
clearly distinguishable in experiments measuring the energy
gap. The remaining spatial symmetry of the order parameter
in the nematic states corresponds to a C ′

2 rotation. This directly
explains the energy degeneracy of several solutions in this
phase,1 as they correspond to different spontaneous choices
of symmetry axis for the C ′

2 symmetry. Finding several degen-
erate solutions is thus a natural consequence of the nematic
order. In fact, the nematicity of this time-reversal symmetric
order is in agreement with very recent results showing that
odd-parity superconducting orders classified by a 2D irrep
in 3D superconductors with strong spin-orbit coupling must
either have chiral or nematic symmetry [54]. Assuming these
results are extendable to 2D systems, the retained time-reversal
symmetry of the purple region in Fig. 2 implicates a nematic
state, as we also find.

Even though the nematic phase has a different spatial sym-
metry than the dTRS state observed at � � 0, the topological
classification is actually completely equivalent. Both phases

1Numerically, we find very near degenerate states, as a perfect
energy degeneracy is hard to achieve due to finite sampling in the
Brillouin zone.

preserve time-reversal symmetry, have an order parameter
with odd parity, and are gapless. Thus, the value of the Z2

is fully determined by the normal-state Fermi surface in the
weak-coupling limit. This leads to a nontrivial Z2 = 1 for
doping levels above the Lifshitz transition at δc = 0.25, but
Z2 = 0 below. But, as also discussed in Sec. IV B 2, at δ < 0.25
there is an additional symmetry protection through Cσ = ±2.
Furthermore, we find that the influence of the Heisenberg
interaction J on the nematic order is also very similar to the
dTRS case, with a transition to the singlet chiral d-wave state
as discussed in Sec. IV B 2, but only for large J .

Finally, at low doping, we observe a phase, where the
order parameter mixes the Eu and A2u irreps, but remains
invariant under time-reversal symmetry. This region is small
and marked in yellow in the phase diagram in Fig. 2. The
topological classification is equivalent to the time-reversal
symmetric solutions discussed earlier. However, because this
solution is found so close to the limits of our theory, it is
likely an artifact of the artificially strong coupling. In fact,
when choosing smaller interaction parameters, this region is
quickly pushed below the δ = 0.1 boundary. Therefore, we do
not analyze this solution further.

V. SPIN-ORBIT COUPLING

Above we have classified, both topologically and sym-
metrywise, all different superconducting states appearing in
the extended Kitaev-Heisenberg model using a natural in-
corporation of doping effects given by the total Hamiltonian
H = Hk + H�. In this section, we discuss the influence of
an additional spin-orbit-coupled hopping term in the kinetic
energy. This Kane-Mele–type spin-orbit coupling was first
identified in Na2IrO3 [55], where it stems from a second-
nearest-neighbor hopping pathway between unlike t2g orbitals
via the Na ions in the center of the honeycombs [56,57]. This
hopping process has later also been found to be present in
the other materials realizing the extended Kitaev-Heisenberg
model [14]. It takes the form

HSO = it ′
∑

〈〈i,j 〉〉,σ,σ̄ ,o

(
c
†
i,σ,oσ

γ (i,j )
σ,σ̄ cj,σ̄ ,o + H.c.

)
, (13)

where the Pauli matrix σγ (i,j ) involved in the hopping process
depends on the link to the second nearest neighbor 〈〈i,j 〉〉,
similar to the way the Kitaev exchange involves different spin
components.

Adding HSO to the kinetic energy does not allow the de-
composition of the Hamiltonian into diagonal blocks anymore
since this term breaks the SU(2) symmetry of the kinetic
Hamiltonian. Thus, the symmetry-protected phase with Cσ =
±2 discussed previously in Sec. IV B 1, and found in all the
time-reversal symmetric states at δ < 0.25, cannot be viewed
as a realistic prediction for materials described by the extended
Kitaev-Heisenberg model. In Fig. 6(a), we support this state-
ment by presenting the edge-state spectrum of a zigzag strip
with open boundary conditions. The superconducting order
corresponds to dTRS and the doping level is δ = 0.2, i.e., well
within the presumed symmetry-protected topological phase.
Adding the spin-orbit hopping term HSO to the kinetic energy
immediately lifts the symmetry protection of the edge states,
leading to a gapping of both Dirac cones, as clearly seen in the
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FIG. 6. Influence of the spin-orbit hopping term HSO on the topo-
logical classification of the time-reversal symmetric superconducting
states. (a) Edge-state spectrum of dTRS including t ′ = 0.02 at δ = 0.2.
The subgap states are gapped (see zoom-in inset). (b) Evolution of
the normal-state Fermi surface at constant filling δ = 0.2 for different
values of the spin-orbit hopping t ′. (c) Edge-state spectrum of dTRS at
� = 0.5, δ = 0.2, and t ′ = 0.3. The system is in a Z2 nontrivial state
driven by t ′ despite δ < 0.25.

inset. This shows explicitly that the spin-orbit-induced kinetic
energy breaks the symmetry needed to enter theCσ = ±2 state.

To study more systematically the influence of the spin-orbit
hopping term in Eq. (13) on the time-reversal symmetric
superconducting states, we self-consistently calculate the order
parameter for � = 0.5 at the doping level δ = 0.2 and tuning
t ′ up to 0.5t . The symmetry of the superconducting solution
does not change compared to t ′ = 0 for this range of values,
realizing dTRS throughout. However, the effect on the band
structure leads to a new topological transition. The change in
the dispersion caused by t ′ is accompanied by two Lifshitz
transitions, illustrated in Fig. 6(b). The Fermi pockets around
the K and K ′ points, that make up the Fermi surface at doping
δ < 0.25 in the absence of t ′, first give way for a pocket around
the � point, before the Fermi surface eventually forms pockets
around the M points for increasing values of t ′. During the first
transition, the number of TRIM points in the Brillouin zone
points enclosed by the Fermi surface changes from an even
to an odd number. This leads to a topological phase transition
into a Z2 nontrivial state [52,53]. This is the same topological
argument as used across the doping-driven Lifshitz transition
at δc = 0.25, but in this case it takes place at fixed doping
and is instead driven by t ′. We illustrate these topological
states in Fig. 6(c), which shows the spectrum of a zigzag
strip with open boundary conditions for the dTRS solution at
� = 0.5, δ = 0.2, and t ′ = 0.3. The topologically protected
subgap states appearing on the edges of the ribbon due to
the change into the nontrivial Z2 state after the first t ′-driven
Lifshitz transition are clearly visible. While we presented these
results only for the time-reversal symmetric order stable at

� � 0, the same arguments also directly apply to the nematic
order since it is topologically equivalent to dTRS.

The chiral state dchiral is not affected by the inclusion of
the additional spin-orbit hopping. We have performed self-
consistent calculations again at δ = 0.2, i.e., deep within the
region where the chiral order is stabilized, and find that the
spin-orbit kinetic energy does not affect the symmetry of
the order parameter. The change of the Fermi surface with
increasing t ′ does also not lead to a change in the topological
invariant. When time-reversal symmetry is broken, the parity
of the Chern number in the weak-coupling limit is also
determined by the number of TRIM points enclosed by the
Fermi surface, however, spin-degenerate bands now have to be
counted individually [53]. This leads to an even Chern number
at weak coupling for any Fermi surface of the spin-degenerate
normal state on the honeycomb lattice. As a consequence, the
t ′-driven Lifshitz transition does not influence the topology
of the chiral superconducting state. Nonzero values of t ′ will,
however, somewhat change ηc1 and ηc2 governing the transition
in an out of the C = 1 phase, and thus the transition from the
dchiral to the dnematic phase. We thus find that the boundaries of
the time-reversal symmetry-breaking region generally move to
lower doping regions upon increasing t ′.

To summarize, including a finite spin-orbit hopping term to
appropriately account for spin-orbit effects also in the kinetic
energy results in notable modifications of the topological
classification of all time-reversal symmetric superconducting
states in the extended Kitaev-Heisenberg model. The Cσ = ±2
symmetry found at δ < 0.25 for t ′ = 0 in all time-reversal sym-
metric states is now formally broken, with gapped boundary
states as a direct consequence. However, a large magnitude t ′
of the spin-orbit hopping term can drive a Lifshitz transition
of the normal-state Fermi surface also below δ = 0.25, such
that a Z2 nontrivial state topological state appears. This latter
state is equivalent to the state found at δ > 0.25, but it is here
driven by t ′ and not the doping level. The time-reversal broken
phase is, however, not influenced by t ′.

VI. CONCLUDING REMARKS

We have studied the possible superconducting orders arising
upon doping the extended Kitaev-Heisenberg model on the
honeycomb lattice, while keeping the full periodicity of the
lattice. We find that the previously ignored symmetric off-
diagonal exchange term � only influences the triplet supercon-
ducting channels and there causes a mixing of the components
of the d vector. This mixing is also necessarily manifested
in the symmetry analysis that we perform, which becomes
significantly more involved compared to if � is ignored. As
a consequence, we find multiple topological states, which are
also very sensitive to the sign of �.

Performing self-consistent calculations, we map out the �-δ
phase diagram at intermediately low to high doping levels,
which displays several remarkable spin-triplet superconduct-
ing phases. A spin-triplet chiral solution of nontrivial topology
and breaking time-reversal symmetry is realized for � < 0 at
intermediate doping levels. We calculate the Chern number
and show that this phase hosts a single topological edge state
on each open boundary. Other chiral phases with different
Chern numbers, but with the same order-parameter symmetry,
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are in principle also possible, but are never stabilized in the
self-consistent calculations. Instead, we discover a competing
spin-triplet state with nematic symmetry present for � < 0
at higher doping levels. It retains time-reversal symmetry,
but manifests itself by breaking the C3 rotational symmetry
down to C ′

2 for both the order parameter and energy gap. This
nematicity should be visible in angular-resolved experiments,
such as the specific heat [58] or NMR studies of the Knight
shift [59], as recently established for Cu-doped Bi2Se3.

We find that the boundary between the chiral and nematic
phases depends strongly on the ratio between interaction
strength and bandwidth, but always lies such that only the chiral
state with |C| = 1 is stabilized and is thus also heavily doping
dependent. This opens for the possibility to tune between the
chiral and nematic phases by simply changing the doping of
the material. A competition between a chiral and nematic state
arising for a 2D irrep in spin-orbit-coupled, odd-parity super-
conductors has recently been discussed in general terms in 3D
superconductors [54]. Here, we find a very similar situation but
in a class of 2D materials. The reduced dimensionality results
in both the chiral and the nematic phases being fully gapped,
in contrast to nodal features proposed at the north/south poles
in the 3D chiral state. Expanding this work to analyze the
boundary between the chiral and nematic states observed in
the extended Kitaev-Heisenberg model could provide further
insights into the remarkable connection we find between Chern
number and stability for the chiral state.

While the � < 0 phase diagram shows this intricate compe-
tition between chiral and nematic states, we find that � > 0 sta-
bilizes the spin-triplet superconducting symmetry previously
obtained at � = 0. However, including a finite � > 0 results
in the spin-orbit coupling locking the d vector perpendicular to
the honeycomb plane, which lifts a fourfold degeneracy present
when ignoring �. The superconducting state at � > 0 retains
the full rotational symmetry of the lattice and is also time-
reversal invariant. This means that there are clear experimental
signatures differentiating between the superconducting orders
stabilized by positive and negative values of �. In fact, the
large sensitivity of the superconducting state to the sign of �

can be used as an accurate probe for determining the value
of � in these materials. We also certify that all identified
spin-triplet solutions remain stable under the inclusion of small
to moderate Heisenberg interactions, as present in all known
materials realizing the extended Kitaev-Heisenberg model,
despite this term favoring a spin-singlet chiral d-wave state.

In addition, we study the influence of including a finite spin-
orbit hopping term in the kinetic energy, that should be present
in relevant materials. This term lifts the symmetry protection
of the topological state of all time-reversal symmetric states
below the critical doping of δ = 0.25. However, the same
spin-orbit term can also drive a topological phase transition
into a state with a nonzero Z2 invariant for the time-reversal
symmetric phases, due to a Lifshitz transition at constant
filling.

In this work, we have found and discussed all supercon-
ducting phases arising at intermediately low to high doping.
Comparing to the studies of the Kitaev-Heisenberg model
without the presence of the symmetric off-diagonal exchange,
the question also arises as to how these phases develop at lower
doping. In these regions, the superconducting states should

be constrained by the proximity to the spin-liquid state at
half-filling present when J = � = 0 [25], which might require
a different slave-boson approach. We must therefore leave
the study of competition between the spin-liquid state and
superconductivity at low doping levels to future work.

In conclusion, our findings of a multitude of different
topological, chiral, and nematic superconducting states gen-
erated upon intermediate to high doping unveil an interesting
superconducting phase diagram that should extend the large
interest in the extended Kitaev-Heisenberg model beyond the
proposed spin-liquid ground state in the undoped case.
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APPENDIX A: SYMMETRY CLASSIFICATION
WITHOUT SOC

When considering spin and orbital degrees of freedom
independently, the action of the symmetry operations in the
point group leave the spin, and therefore the d vector, un-
touched. Then, the three d-vector components can be treated
individually. This is the classification performed in Ref. [24]. In
this case are three basis functions for each d-vector component,
one belonging to the A1u irrep and two to the Eu irrep. The
classification for each component is completely analogous,
such that the resulting basis functions for each component in
not normalized and not orthogonalized form are

dγ

A1u
= (1,1,1), dγ

Eu,1 = (−1,0,1), dγ

Eu,2 = (−1,1,0),
(A1)

for γ = x,y,z and each of the three nearest-neighbor bonds.
When grouping the basis function by irrep, there are thus three
basis functions for the 1D A1u irrep and six basis functions in
the 2D Eu irrep.

APPENDIX B: BAND PICTURE

The kinetic Hamiltonian Hk can be Fourier transformed to
yield

Hk =−
∑
k,j,σ

teik·δj (c†k,σ,ack,σ,b + H.c.) + μ̃
∑
k,σ,o

c
†
k,σ,ock,σ,o,

(B1)

which is diagonalized by the unitary transformation(
ck,σ,a

ck,σ,b

)
= 1√

2

(
1 1

e−iφk −e−iφk

)(
bk,σ,1

bk,σ,2

)
. (B2)

Here, bk,σ,l annihilates an electron in band l, while φk =
arg(

∑
j eik·δj ). Introducing the shorthand notation εk =

−t | ∑j eik·δj |, the kinetic part of the Hamiltonian in band space
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takes the diagonal form

Hk =
∑
k,σ

((εk + μ)b†k,σ,1bk,σ,1 + (−εk + μ)b†k,σ,2bk,σ,2).

(B3)

The mean-field pairing Hamiltonian H� can likewise be
transformed into this band basis. This has already been done
for the singlet order parameter [33], so here we focus on the
triplet-pairing terms, which transform as

∑
j

dα
j t

α†
k,j =

∑
j

dα
j

1√
2

∑
σ,σ̄

c
†
k,σ,ac

†
−k,σ̄ ,be

−ik·δj i(σyσα)σ,σ̄ (B4)

=
∑

j

dα
j

1

2
√

2

∑
b1,b2

∑
σ,σ̄

b
†
k,σ,b1

b
†
−k,σ̄ ,b2

e−ik·δj eiφk (τ z − iτ y)b1,b2 i(σyσα)σ,σ̄ (B5)

=
∑

j

dα
j

1

2
√

2

∑
b1,b2

∑
σ,σ̄

1

2
(b†k,σ,b1

b
†
−k,σ̄ ,b2

− b
†
−k,σ̄ ,b2

b
†
k,σ,b1

)e−ik·δj eiφk (τ z − iτ y)b1,b2 i(σyσα)σ,σ̄ (B6)

=
∑

j

dα
j

1

2
√

2

∑
b1,b2

∑
σ,σ̄

b
†
k,σ,b1

b
†
−k,σ̄ ,b2

1

2
[e−ik·δj eiφk + (−1)δb1 ,b2 eik·δj e−iφk ](τ z − iτ y)b1,b2 i(σyσα)σ,σ̄ (B7)

=
∑

j

dα
j

1

2
√

2

∑
b1,b2

∑
σ,σ̄

b
†
k,σ,b1

b
†
−k,σ̄ ,b2

[− sin(k · δj − φk)iτ z − cos(k · δj − φk)iτ y]b1,b2 i(σyσα)σ,σ̄ . (B8)

The matrices τ γ act on band space and allow us to introduce the intraband and interband triplet order parameters

dα
intra(k) =

∑
j

dα
j sin(k · δj − φk), (B9)

dα
inter(k) =

∑
j

dα
j cos(k · δj − φk). (B10)

Note that sin and cos terms are here exchanged in comparison to the singlet intraband and interband pairings. Diagonalizing the
full Hamiltonian yields the quasiparticle spectrum, which can be written as

E(k) =
√

ξ1(k)2 + ξ2(k)2 + |dintra(k)|2 + |dinter(k)|2 + M, (B11)

where ξ1/2(k) = ±εk + μ is the dispersion of the two bands and the last term M contains terms mixing intraband and interband
pairings, and differing depending on whether the pairing is unitary or not.
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