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We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from
first principles. This method can be generally applied to materials where electron-phonon coupling and spin
fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride
(FeB,) with experimental 7, ~ 2.4 K [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)]. We prove that
FeBy is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large
Stoner interaction strength, / = 1.5 eV, as calculated from first principles. The other important factor is its
Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting
susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between
Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon
interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg
theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly
depleted due to coupling to the spin fluctuations. The critical temperature decreases from 7. = 41 K, if they are

not taken into account, to 7, = 1.7 K, in good agreement with the experimental value.
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I. INTRODUCTION

Spin fluctuations are magnetic excitations in materials with-
outlong-range magnetic order. Ferromagnetic spin fluctuations
(FSFs), or paramagnons, specifically arise in materials which
are close to ferromagnetic instabilities, as described by Stoner
theory [1]. In the case of spin singlet Cooper pairing, the
interaction between electrons mediated via FSFs is repulsive,
and therefore competing with Cooper pairing, in addition to the
Coulomb interaction between electrons [2]. On the other hand,
the opposite is true for spin triplet pairing, where paramagnons
are considered as the primary mediators [2], although not the
only ones [3].

Competition between attractive electron-phonon interac-
tion and the repulsive interaction mediated by FSFs forms a
long standing problem that emerged less than a decade after the
theory of Bardeen-Cooper-Schrieffer (BCS) [4]. Among the
earliest attempts for a quantitative analysis, Riblet introduced
the coupling to FSFs in the isotropic McMillan formula for
the critical temperature (7;) [5,6]. Similar attempts have also
been made for antiferromagnetic spin fluctuations [7]. Dolgov
et al. subsequently derived an improved McMillan formula
for T, [8]. The latter can be combined with first-principles
calculations as was done for, e.g., hole-doped CuBiSO, where
pairing to spin fluctuations was found to be very strong and able
to induce spin triplet superconductivity under certain doping
conditions [9]. Another notable example where spin triplet
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superconductivity is rather well established and where FSFs
have been proposed to play a role is Sr,RuOy4 (7, = 1.5 K)
[10], although the microscopic pairing mechanism is still not
completely understood (see Refs. [11] and [12] for reviews on
this topic).

We revisit here the question of spin fluctuations, applying
an advanced computational method we have developed for
this purpose. It consists of first calculating the microscopic
pairing mechanisms, i.e., electron-phonon coupling and cou-
pling of electrons to FSFs. The electron-phonon interaction is
calculated using density functional perturbation theory (DFPT)
[13], similar to what is done in, e.g., Refs. [14—17]. We treat
spin fluctuations by means of the random phase approximation
(RPA), afterwards building it into the anisotropic Eliashberg
equations. Specifically, we calculate the susceptibility from the
electronic band structure as well as the interaction strength,
in this case the Stoner interaction strength. Subsequently, we
self-consistently solve the multiband anisotropic Eliashberg
equations with the full ab initio calculated input [14-19].

Here, we have applied this technique successfully to the
recently discovered superconductor iron tetraboride (FeB4). A
famous example of first-principles materials design, supercon-
ductivity in FeB4 was first predicted in silico by Kolmogorov
etal.in 2010 [20], after which the material was synthesized and
measured to be superconducting with 7, ~ 2.4 K by Gou et al.
in 2013 [21]. The crystal structure of FeB, is orthorhombic
and consists of FeB, polyhedra stacked in columns along the
a direction (where we defined a < b < ¢). A more detailed
description of the crystal structure can be found in Appendix A.
This crystal structure, and in particular the presence of the light
element boron, gives FeB4 a very high mechanical hardness
[21-24].
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Our motivation to study FeB4 in more depth derives from
several aspects. First of all, its T, was severely overestimated
(by an order of magnitude) in the theory of Ref. [20] with
respect to the experimental value [21]. The prediction was
based on the isotropic McMillan-Dynes formula where only
electron-phonon interaction and usual Coulomb repulsion was
taken into account. We recognized this as a smoking gun
for unconventional interactions in FeB4, which we prove to
be FSFs in this paper. Secondly, superconductors containing
Fe have attracted much interest recently, since the discovery
of superconductivity in the iron oxypnictides (e.g., F-doped
LaFeAsO [25]), the iron arsenides (e.g., Ba;_,K Fe,As;
[26], and LiFeAs [27]), and the iron chalcogenides (e.g.,
FeSe [28,29]). In this respect, our analysis contributes to
the understanding of the microscopic mechanisms at work
in the Fe-based superconductors. We must stress, however, that
the properties of spin fluctuations in FeB4 are fundamentally
different from those of other Fe-based superconductors, e.g.,
the iron pnicitides. F-doped LaFeAsO, for instance, shows a
susceptibility peak at nonzero q = (%,%), as discovered by
Mazin et al. [30], and thus a tendency for antiferromagnetic
spin fluctuations. As such, our study establishes Fe-based
superconductors as a diverse family, in which various different
types of spin fluctuations occur. Thirdly, the multiband and
multigap superconductivity in borides such as MgB, [14,16—
19,31-33], OsB, [15,34], and ZrB;, [35,36] is known to be
very rich, and consequently possible relations to superconduc-
tivity in FeB,4 are worthy of further exploration.

This paper is organized as follows. First, in Sec. II, we elabo-
rate on the methodology we develop in this work, building FSFs
calculated from first principles into the anisotropic Eliashberg
equations. In Sec. III, we discuss the multiband electronic
structure of FeB4 (showing its Fermi surface, not available
in the literature to date) and the electron-phonon (e-ph) inter-
action in this compound. We proceed by our first-principles
calculations of the FSFs and their coupling to the electrons
in FeB4 in Sec. IV. This is followed by a discussion of the
superconducting properties of FeBy, the gap spectrum, and the
very good agreement between the theoretical and experimental
T, in Sec. V. Finally, our conclusions are given in Sec. VI.

II. METHODOLOGY

First, we will establish how FSFs can be built into the
anisotropic Eliashberg equations within the random phase
approximation (RPA). The tendency for spin fluctuations is
mainly determined by the susceptibility and in particular its
behavior at the Fermi level (Ef). The bare (i.e., noninteracting)
susceptibility at Er (known as the Lindhard function) is given
by the following function of momentum (q) and Matsubara
frequencies (w,)
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where ng(éy, ;) is the Fermi-Dirac distribution, & ; = Ei ; —
EE is the electronic band structure relative to Eg, and where

we sum over the electronic band indices j and j’. To arrive
at this expression, the constant matrix element approximation
(CMEA) has been employed [37]. The Dirac § functions
are introduced in order to restrict the susceptibilities to the
Fermi surface contributions. We evaluate §(§ ;) numerically

as 6(&x ;) = ﬁexp(—(%)z) with broadening o = 0.01 Ha.

In compounds with more than one atomic species one needs
to take into account that not necessarily all the electronic states
are involved in the FSFs. This is only the case for the states
belonging to the element(s) with a ferromagnetic tendency. To
take the example of FeBy, as we will show in Sec. III, Fe lies at
the origin of the fluctuations. This means that the susceptibility
to FSFs needs to be normalized with the ratio of Fe-electronic
states (Ng.) to the total intraband susceptibility in the limit
q— 0,0 —0,ie., Zj X(?j(O,O). We denote this fraction as
Fre = Nre/ D> j Xj')j (0,0). Thus, for the total susceptibility we
can use the RPA expression

_ -FFeXO(qaiwn)
1 — I Frex%(q,iw,)’

where [ is the ferromagnetic interaction strength. We will
expand on how the latter can be calculated from first principles
in Sec. IV.

Based on the RPA susceptibility we can calculate the
coupling of electrons to FSFs as

At (Qim,) = 3Npe I xR (quip). 3)

Finally, we include FSFs in the anisotropic Eliashberg equa-
tions [14—17] within spin singlet pairing by means of two pair-
ing kernels, one expressing mass enhancement of the electrons
(K™T), the other expressing the net coupling strength (K ™).
As the electron mass is enhanced by both e-ph interaction,
Lep(q,iw,), and FSFs, the kernel K1(q,iw,) = Aep(q.im,) +
Ast(q,iwy,). On the other hand, the coupling strength in the
spin singlet case is depleted, as expressed by K ~(q,iw,) =
Aep(Q,iwy) — Agt(q,iw,). The momentum-dependent e-ph cou-
pling, A¢p(q,iw,), can be calculated within density functional
perturbation theory (DFPT) [13].

@)

III. ELECTRONIC STRUCTURE AND
ELECTRON-PHONON INTERACTION

Here, we apply the approach described in Sec. I to FeBy, in
order to demonstrate that quantitative results can be obtained.
Our investigation starts from the electronic structure of FeBy,
near Ef, calculated using density functional theory (DFT)
as implemented in ABINIT [38]. More detailed information
on the first-principles calculations is given in Appendix B.
The band structure of FeB4 around Ef is shown in Fig. 1(a).
Three bands are observed to cross Ef, as indicated with three
different colors (red, blue, and green). The corresponding
Fermi surface is displayed in Fig. 1(b), where the same colors
are used. Around point R, the center of the cell, there are
two nested ellipsoidal sheets (blue and green), while the third
sheet (red) is more anisotropic. In Figs. 1(c) and 1(d) we
picture the nested ellipsoids individually, so that also the inner
ellipsoid (green) becomes visible. The ellipsoids touch along
all principal directions in the BZ (S-R, T-R, and U-R). Due to
their nesting, & ; — &k4q, 7 ~ 0 in the denominator of Eq. (1),
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FIG. 1. The electronic structure of FeBy, calculated using DFT.
(a) The band structure around the Fermi level (Eg), where three
bands are seen to cross Er. (b) The calculated Fermi surface of FeBy,,
where the colors correspond to those of (a). It consists of two nested
ellipsoids around high-symmetry point R (blue and green), as well as
a third, anisotropic sheet (red). (c) and (d) The two nested ellipsoids
pictured individually in frontal view.

which contributes to the peak around I" in the susceptibility,
and thus to the enhancement of FSFs.

Subsequently, we calculated the phonon dispersion and the
e-ph coupling in FeB4 using DFPT. We show the phonon
dispersion in Fig. 2(a). The highest phonon frequencies reach
almost 120 meV, a considerably high value, due to the very
light B atoms. This maximum frequency is even higher for
FeB, than for other borides such as MgB, [16,17] and OsB,
[15]. It corroborates its extreme hardness, also mentioned
in the introduction. Moreover, the difference in mass be-
tween Fe and B explains why their respective vibrational
modes are well separated, as shown in the phonon density
of states (PHDOS) in Fig. 2(b). In Fig. 2(c), we display the
isotropic Eliashberg function, obtained from the full Eliash-
berg function as the double Fermi surface average o’ F(w) =
({(a*F(k K',))k )x;» and the resulting isotropic e-ph coupling
Mw) =2 fow do' @'~ 'a?F('). The contributions of the two
atomic species to the e-ph coupling are comparable, in contrast
to, e.g., MgB, (where B dominates) [16—18] and OsB, (where
Os dominates) [15]. The e-ph coupling amounts in total to a
very high value, A = 1.13 [39], much too high to corroborate
the experimental T, ~ 2.4 K. This is the motivation for the
following section, where we address FSFs in FeBy.

IV. FERROMAGNETIC SPIN FLUCTUATIONS AND THEIR
COUPLING TO ELECTRONS

In this section we demonstrate the occurrence of FSFs in
FeB,4 from first principles, and we calculate their coupling to
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FIG. 2. Phonons and electron-phonon coupling, calculated within
DFPT. (a) The phonon dispersion, extending as high as ~115 meV. (b)
The phonon density of states (PHDOS), including the contributions
of Fe (purple) and B (green). (c) The isotropic Eliashberg function,
obtained as o’ F(w) = ((«®>F(k K, @) ks (ie., the double Fermi
surface average of the full Eliashberg function), and the corresponding
total e-ph coupling.

the electronic states. First, we calculated the bare susceptibility
of FeB, at Ef, from the band structure shown in Fig. 1, using
Eq. (1). The result is shown in Fig. 3(a), in the static limit, and
for g, = 0. The peak in x° around I' indicates FSFs. It can
be traced back to small-q intraband transitions, as well as to
interband contributions of the nested ellipsoidal Fermi sheets,
as discussed in the previous section.

For small, though nonzero ¢, there are strong interband
contributions to the peak, which ultimately vanish for ¢ — O.
The value of x°(0,0) therefore reduces in principle to the
electronic DOS at Eg. The numerical evaluation of Eq. (1)
depends, however, also on the broadening factor 0. We ob-
tained that we needed a significant broadening of o = 0.01
Ha for a well-converged susceptibility. As such, x°(0,0) is
artificially enhanced beyond the DOS at Er [N(Eg) = 0.70
states/(eV spin)]. The definition of Fg. in Sec. II, entering in
Eqg. (2), nevertheless ensures that this enhancement cancels out
completely in the RPA susceptibility.

The susceptibility peaking at I" is a necessary condition
for FSFs, but is not sufficient for a significant effect of these
FSFs on superconductivity. The important other factor is the
interaction strength, which is given by the Stoner parameter in
the ferromagnetic case. We obtained the Stoner parameter by
introducing nonzero magnetization into the material within a
fixed spin moment (FSM) calculation, resulting in an energy
shift between majority and minority spin states. The results of
this calculation are depicted in Fig. 3(b), where the electronic
density of states (DOS) in different states of magnetization is
shown. In the case where m = 0 (m being the magnetization
per Fe atom) we also depict the contributions of different
atomic states. This DOS corresponds to the electronic structure
shown in Fig. 1. The states at and near Ex are dominated by
Fe-d and B-p character. We found Ng.(Er) = 0.29 states/(eV
spin), compared to the total N(Efr) = 0.70 states/(eV spin). For
nonzero m, the energy shift between spin-up and spin-down
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FIG. 3. (a) The bare susceptibility of FeBy, x°(q,), for g, = 0 and @ = 0 (static), calculated from the band structure at T = 1.5 K. It
shows a strong peak around the I" point, corresponding to FSFs. (b) The electronic density of states (DOS) per formula unit (f.u.) of FeB, for
different levels of magnetization of the Fe atoms: the paramagnetic case with m = 0 (top panel), m = 0.13 up/Fe-atom (middle panel), and
m = 0.24 pg/Fe-atom (lower panel), where in the latter two cases an energy shift between spin-up and spin-down states is apparent. In the top
panel, the contributions of Fe-d, B-s, and B-p states are also shown. (c) The corresponding energy shift, which obeys AE = I'm/uyg for small

m (dashed line), from which we obtain the Stoner parameter / = 1.54 eV for FeB,.

bands can be clearly observed and can be seen to increase with
m in Fig. 3(b).

Extracting the shifts near Ef, clearly visible in Fig. 3(b),
for different values of m we obtain Fig. 3(c). Within Stoner
theory, this shift due to the magnetization obeys the linear
relation AE = Im/ug. For low values of m, the linear relation
isindeed obeyed, as shown in Fig. 3(c), whereby afityields I =
1.54 eV. For higher values of m, the increase in A E weakens, as
expected. Since we obtain that Ng.(Er)l = 0.45 < 1 (Stoner
criterion), FeB,4 indeed does not have a ferromagnetic ground
state. On the other hand, the Stoner parameter is certainly high
enough to induce considerable FSFs.

It is interesting to note the importance of restricting the
interaction strength to the Fe states, mentioned already in
Sec. II. If the total DOS were used instead, FeBs would
come out as marginally ferromagnetic according to N(Eg)I =
1.08 > 1. This may be related to the tendency of DFT in local
spin density approximation (LSDA) or generalized gradient
approximation (GGA) to overestimate static magnetism [9].
However, in our FSM calculations we found the magnetic
moments to be completely localized on the Fe atoms. This
provides us with the physical rationale for limiting the Stoner-
type interaction to Fe states only. Thus, by avoiding to treat /
as a free parameter—as in, e.g., Ref. 9—we remain close to a
fully ab initio approach.

The interaction strength plays a crucial role in the coupling
of FSFs to electrons, according to Eqs. (2) and (3). We
calculated Ay (Kp,w) for FeB, using these formulas, where we
obtained the dependence on kg by convolution with the Fermi
surface. The result in the static limit, w — 0, in particular Ag
in the I'-Y-T-Z plane (k, = 0), is shown in Fig. 4. Itis observed
that there is strong coupling to FSFs in the direction I"-Y, since
in this direction small q’s connect parts of the anisotropic Fermi
sheet (red), evident from Fig. 1(b). In the other directions Ay
drops significantly. In Fig. 4(b) we show XAy in the X-S-R-U
plane (k, = Z), that cuts through the center of the nested
ellipsoidal Fermi sheets. Here, the coupling A shows a broad
peak around R, due to nesting of these sheets with small q. It

diminishes accordingly in all other directions. The total static
coupling of FSFs to electrons, calculated as the Fermi surface
average, amounts to As = (Asr(Kp,0 = 0))g, = 0.55.

0.6
0.55
0.5
0.45
0.4
0.5-
0.4-

FIG. 4. The coupling between electrons and FSFs in FeB,,
st (Kp,,), in the static limit (w = 0), calculated using Eq. (3), and
convoluted with the Fermi surface to obtain the dependence on K.
(a) The coupling for k, = 0. (b) The coupling for k, = Z. The average
over the whole Fermi surface is Ay = (As(Kp,0 = 0))i, = 0.55.
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FIG. 5. The superconducting gap spectrum, A(Kg,7'), of FeB,4 on the Fermi surface at 7 = 0.5 K, calculated using anisotropic Eliashberg
theory with ab initio input (and using p* = 0.1). (a) Gap spectrum obtained when only e-ph coupling is taken into account. (b) Gap spectrum
obtained when both e-ph coupling and interaction with FSFs are taken into account. p(A) represents the distribution of the gap, showing
a single, yet anisotropic gap in both cases. However, the superconducting gap is strongly depleted from the range 5—-8 meV to the range

0.1-0.3 meV, under the influence of the FSFs.

V. SUPERCONDUCTING PROPERTIES

Having established the e-ph coupling and the coupling of
electrons to FSFs in Secs. III and IV, we can now study the
competition between these interactions in relation to super-
conductivity. To this end, we solve the anisotropic Eliashberg
equations including both the e-ph coupling and the coupling
to FSFs in the interaction kernel of the spin singlet channel.
Here, we retain the full momentum and frequency dependence
of the coupling. More information on how we solve the
anisotropic Eliashberg equations numerically is provided in
Appendix C.

We started by solving the anisotropic Eliashberg equations,
taking into account just the e-ph coupling, not yet the inter-
action with FSFs. We show the resulting superconducting gap
spectrum A(kg,T") on the Fermi surface, at low temperature
(T =0.5 K) in Fig. 5(a). The gap spectrum consists of a
single, anisotropic gap with large values for A, ranging from
5 to 8 meV (again at T = 0.5 K). The corresponding critical
temperature obtained from solving the anisotropic Eliashberg
equations for a range of temperatures is 7. = 41 K (using the
standard value for the Coulomb pseudopotential, u* = 0.1).
This value exceeds the experimental value (7, ~ 2.4 K) by
more than an order of magnitude.

When including the effect of FSFs, this changes drasti-
cally. In this case, the superconducting gap spectrum at low
temperature (7 = 0.5 K) is shown in Fig. 5(b). A(kg,T)
presents again a single, anisotropic gap, but now in the range
A(kg,T) ~ 0.1-0.3 meV. With such anisotropic, single-gap,
FeB4 is more similar to OsB, (an orthorhombic material,
like FeB,, also with three bands at Eg) [15] than to MgB,
(a layered hexagonal material), which is a well-established
two-gap boride superconductor [14,18,19,32,33]. As the super-
conducting gap depletes rather uniformly under the influence
of FSFs, as seen in Fig. 5, we conclude that the effect of FSFs
is fairly isotropic in FeBy.

Subsequently, we again solved the anisotropic Eliashberg
equations for a range of different temperatures, now taking into
account both the e-ph coupling and coupling to FSFs (using
w* = 0.1 for the Coulomb pseudopotential). The resulting gap
spectrum as a function of temperature is displayed in Fig. 6.
The critical temperature we obtain is 7. = 1.65 K, in very
good agreement with the experimental value T, ~ 2.4 K [40].
FeBy is thus a superconductor with very strong e-ph coupling,
that in itself would lead to 7. = 41 K, which is however
depleted to 7, ~ 2 K due to FSFs. The very good agreement
with the experimental value demonstrates that FSFs can be
included in the anisotropic Eliashberg equations, to obtain
a quantitatively accurate superconducting gap spectrum. No

0.3

A (meV)

\\\\

01" (A)

0
0.5 0.8 1.1 14 1.6
Temperature (K)

FIG. 6. The superconducting gap distribution as a function of
temperature, calculated using anisotropic Eliashberg theory with ab
initio input, including FSFs. The critical temperature can be seen to
be T, = 1.65 K. The red line represents the average value of the gap
weighted with the distribution.
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earlier analysis was able to include FSFs in the Eliashberg
description of superconductivity with the quantitative accuracy
reported here.

In addition, we investigated the tendency for spin triplet
pairing in FeB,4 due to FSFs. To this end, we adapted the
Eliashberg kernels given in Sec. II to the triplet case. The mass
enhancement remains unaffected (K = Aep 1 Agr), while, on
the other hand, FSFs become attractive in the spin triplet chan-
nel. Moreover, only longitudinal spin fluctuations contribute
to spin triplet pairing [2] (hence a factor 1/3), so that the
coupling kernel in the spin triplet channel amounts to K~ =
Aep + % Solving the anisotropic Eliashberg equations with
these kernels, we did not obtain a gap function with symmetry
A(kp) - —A(—Kkp), i.e., with an odd (ungerade) momentum
dependence. Therefore, within our theoretical framework we
can exclude the possibility of spin triplet pairing in FeBy4 [41].

VI. CONCLUSION

In summary, we presented an advanced approach to treat
both lattice vibrations and ferromagnetic spin fluctuations in
superconductors, entirely from first principles. Specifically,
we extended the framework where the ab initio calculated
electron-phonon coupling (Aep) is used to solve to anisotropic
Eliashberg equations for the gap spectrum (which has been
done for materials like MgB, [14,16—-19] and OsB; [15]). The
first step is to calculate the bare susceptibility of the material
from the electronic structure (in this work also calculated
from first principles), specifically that near the Fermi level
[cf. Eq. (1)]. The next step is calculating the interaction
strength of the ferromagnetic spin fluctuations. This can be
achieved by means of the energy shift between minority and
majority bands in the competing, ferromagnetic phase, which
obeys AE = Im/ug, where the Stoner parameter / yields
the interaction strength. Then, the RPA susceptibility can be
calculated, yielding directly the coupling of ferromagnetic
spin fluctuations with electrons Ag [using Egs. (2) and (3)].
For the spin singlet superconducting channel, the resulting
total coupling is Aep, — Asr, While for the spin triplet channel
it amounts to A, + 4t [41].

We have applied this approach to the recently discovered
Fe-based superconductor iron tetraboride (FeB4) [21], to re-
solve the large discrepancy between the predicted [20] and
measured [21] critical temperature, and to learn more about
its superconducting gap structure. We showed first that the
Fermi surface has contributions from three different bands,
resulting in two nested ellipsoids and an anisotropic sheet.
This nesting at small q is the main contribution to the peak in
the calculated susceptibility of FeB,, for small wave vectors,
corresponding to ferromagnetic spin fluctuations. The Stoner
parameter in FeB, is considerably high (~1.5 eV)—though not
high enough for a ferromagnetic ground state. Accordingly, we
found strong coupling of the spin fluctuations to the electronic
states, in particular to the nested ellipsoids, with an average
of (Asr)k, = 0.55 over the Fermi surface. This mediates a
repulsive interaction between the electrons that is in direct
competition with the strong, attractive interaction mediated by
phonons (with Fermi surface average Ao, = 1.13). By solving
the anisotropic Eliashberg equations, we revealed that the spin
fluctuations are able to reduce the critical temperature from a

very high 7. =41 K to T, = 1.7 K, in very good agreement
with the experimental value (7. = 2.4 K [21]). In spite of this
drastic effect on 7;, we found that the distribution of the gap
spectrum on the Fermi surface, namely a single anisotropic gap
(similar to, e.g., OsB, [15]), is largely unaltered.

The excellent comparison between the results obtained with
our method and the corresponding experiment demonstrates
the potential of an ab initio approach to anisotropic Eliash-
berg theory in describing interactions that coexist and compete
with the electron-phonon interaction. Although ferromagnetic
spin fluctuations showed a primarily detrimental effect on su-
perconductivity in FeBy4, we expect that our approach will lead
to the detection and quantification of spin fluctuations in other
materials with coexisting conventional and unconventional
pairing mechanisms, resulting in nontrivial contributions to
the superconducting gap spectrum and to the superconducting
properties in general.
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APPENDIX A: CRYSTAL STRUCTURE

The oP10 FeB,4 phase (where o stands for orthorhombic,
P for primitive, and 10 for the number of atoms in the unit
cell) consists of the primitive orthorhombic space group Pnnm
(No. 58). As can be found in the supplementary information
of Ref. 21, Fe occupies Wyckoff position 24, i.e., (0,0,0) and
(3.3.3). and B Wyckoff position 4g, i.e., (+x, +y,0) and
(£x + %, Fy+ %, %), where x and y are internal parameters.

The results of our calculations are shown in Table I and
compared to the experimental values. It is observed that the
deviations from the experimental values are all well below 1%.
This very good agreement on the structural level propagates
a high level of accuracy to all further calculations, of the

TABLE I. Comparison between experimental [21] (from room-
temperature, single-crystal x-ray diffraction) and calculated structural
parameters of FeB,, obtained using the PBE exchange-correlation
functional. The relative deviations of the calculated parameters from
the experimental ones are added between parentheses.

Experimental Calculated
a=2999 A 3.023 A (+0.8%)
a=4579 A 4552 A (—0.6%)
b=5298 A 5.309 A (+0.2%)
x = 0.249 0.247 (—0.8%)
y=0.312 0.312 (+0.0%)
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electronic structure, phonons, spin fluctuations, and ultimately
of the superconducting properties.

APPENDIX B: COMPUTATIONAL DETAILS ON THE AB
INITIO CALCULATIONS

Our density functional theory (DFT) calculations make use
of the generalized gradient approximation (GGA), specifi-
cally of the Perdew-Burke-Ernzerhof (PBE) functional, imple-
mented within a plane-wave basis in the ABINIT code [38].
Electron-ion interactions are treated using norm-conserving
pseudopotentials [42], taking into account Fe-3d’4s' and
B-2s%2p! as valence electrons. The energy cutoff for the plane-
wave basis was set to 60 Ha, to achieve convergence of the
total energy below 1 meV per atom. To obtain a very accurate
description of the Fermi surface, a dense 25 x 15 x 15 T"-
centered Monkhorst-Pack k-point grid was used. We use the
notational convention established in Ref. [43] to denote the
high-symmetry k points. The optimized crystal structure was
obtained using a conjugate-gradient algorithm so that forces
on each atom were below 1 meV/A.

Density functional perturbation theory (DFPT) calculations
of the phonon dispersion and the electron-phonon coupling
coefficients were also carried out using ABINIT. Here, we em-
ployeda25 x 15 x 15k-point grid for the electronic wave vec-
torsanda 5 x 3 x 3 g-point grid for the phonon wave vectors.

APPENDIX C: COMPUTATIONAL DETAILS ON THE
ELIASHBERG CALCULATIONS

For the description of superconductivity on an ab initio
level, we need to solve self-consistently the coupled anisotropic
Eliashberg equations with input from first-principles calcula-
tions [14—19]. For spin singlet superconductivity the coupled
anisotropic Eliashberg equations assume the form,

T »
Zk,n =1+ T Z <K+(kk/,nn/) @

——) (€D
@n Jok + AL
n NI

Ak =nT Yy <[K—(kk’,nn’> — W]

’

n

Ak’,n’

X —> /Zk,ns (C2)
‘/a)z, + Aﬁ, ,
n o

where (...)=> 1 %‘:)(. ..) denotes a Fermi surface aver-
age, & are electron energy dispersions, Nr is the density of
states at the Fermi level, T is temperature, and w, = 7T (2n +
1) are fermion Matsubara frequencies. The momentum and
frequency dependent functions Zy , and Ay, describe electron
mass renormalization and even-frequency spin singlet super-
conductivity, respectively, and ©*(w.) is the Anderson-Morel

Coulomb pseudopotential which comes with a cutoff w.. In the
above, the following interaction kernels are used,

K* (kK ,nn') = hep(KK',nn") £ Ay (KK’ ,nn’), (C3)

that include the coupling of electrons to phonons, Aep(kk’,nn’),
and spin fluctuations, Asr(Kk’,nn"). The momentum dependent
electron-phonon coupling is

00 2Q
Aep(KK ,nn') = / dQa?F(k K.Q)— (C4)

0 2+ Q2
with w,, = w, — w,y and the momentum dependent Eliashberg
function

2
o FRK Q) =Nr ) [g[ 3@~ wq). (€5
v
where g and wg, are the phonon branch-resolved electron-
phonon scattering matrix elements and phonon frequencies,
respectively. From the above, one can obtain the isotropic
Eliashberg function as

*F(Q) = ((* F(KK, Q)i )k - (C6)

Similar equations apply also for the electron-spin fluctuation
coupling,

( ’ ) 2N / //( ’ ) ’ ( )
)\. q m d(l) 1 q w C;
sf X 2 2

where x”(q,w) is the imaginary part of the RPA susceptibility.

For spin triplet superconductivity in the unitary limit [41],
Equations (C1) and (C2) still apply except from the fact that
the kernel K~ (kk’,nn’) needs to be substituted by

K(KK',nn') = Aep(KK',nn') + $Ae(kk',nn’).  (C8)

It is worth noting that even in the presence of spin-orbit cou-
pling, inversion and time-reversal symmetries and the combi-
nation thereof still guarantee Kramers degeneracy throughout
the whole Brillouin zone, so that one can work in a pseudospin
space where labeling the superconducting state as singlet or
tripletis possible. Moreover, due to inversion symmetry, singlet
and triplet superconducting components cannot mix, so that
we can look for different solutions (singlet or triplet) of the
Eliashberg equations separately.

The numerical solution of equations ((C1)-(C2)) along with
an efficient calculation procedure of the coupling in equa-
tion (C7) were implemented in the Uppsala Superconductivity
Code (UppSC) [14]. Using UppSC, the coupled equations
((C1)-(C2)), supplemented by the electron and phonon band
structure and the electron-phonon and electron-(para)magnon
coupling, calculated by first principles, were solved self-
consistently in Matsubara space within a strict convergence
criterion of ===t < 1076 and with up to 1000 iteration cycles
allowed. In all the calculations presented here we set u*(w.) =
0.1 for the Coulomb pseudopotential with a sufficient value of
. to ensure that the results are well converged.
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