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Inhomogeneous perpendicular magnetic anisotropy as a source of higher-order
quasistatic and dynamic anisotropies
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We investigate the influence of lateral variations of the second-order perpendicular anisotropy in thin films
on the effective anisotropies required to represent this structure using a macrospin approximation. Second-order
and fourth-order effective anisotropies are required for the macrospin approximation. In the case of quasistatic
calculations, the fourth-order effective anisotropy is closely linked to deviations of the average magnetization
angle from the field direction and lateral variations of the magnetization direction in the structure leading to
dependence on the field strength and the lateral length scale of anisotropy variations of the effective anisotropies.
We find that the field and lateral length-scale dependence of the effective anisotropies extracted from simulations
of the magnetization dynamics are profoundly different from those of the quasistatic simulations. This is caused
by resonance localization that depends on the orientation of the external magnetic field.
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I. INTRODUCTION

The presence of a strong perpendicular anisotropy is of sig-
nificant importance for materials intended for use in spintronic
devices. For example, a significant reduction of the switch-
ing current density while maintaining the thermal stability
for spin transfer torque magnetic random-access memories
(STT-MRAM) can be achieved by utilizing a perpendicular
anisotropy [1,2]. One common observation in these materials
is that in order to accurately describe their quasistatic or
dynamic properties one has to include both second-order (K2)
and fourth-order uniaxial anisotropy (K4) contributions to the
anisotropy energy density Eaniso [3–7]:

Eaniso = K2cos2θM + K4

2
cos4θM, (1)

where θM is the angle of the magnetization with respect to the
film normal. We note that the nomenclature for the anisotropy
constants is inconsistent in the literature, as they are also re-
ferred to as first-order and second-order anisotropy constants.
With the above definition, the film normal is an easy axis of the
corresponding anisotropy contribution for Ki < 0, but the op-
posite sign convention is also commonly used in the literature.

By using a second-order perturbation of the tight binding
model, Bruno was able to show the connection of the asymme-
try in the orbital moment and the second-order anisotropy K2

[8]. However, currently, a clear theoretical picture for the origin
of the fourth-order anisotropy K4 is lacking. While recent
fully relativistic ab initio calculations have shown the presence
of such a term, its magnitude was only 3% of the second-
order anisotropy [9]. Recently, the possibility of macroscopic
anisotropies induced by the Dzyaloshinsky-Moriya interaction
(DMI) [10,11] has regained interest [12], but we are currently
not aware of work investigating the possibility of DMI induced
higher-order anisotropies.

However, using analytical models it has been shown that lat-
eral fluctuations of the second-order perpendicular anisotropy
can lead to the emergence of higher-order anisotropy terms

[13,14]. Here, we report on detailed micromagnetic [15–19]
investigations of lateral variations of the second-order per-
pendicular anisotropy and its influence on the magnetization
dynamics and the quasistatic properties of thin films. We
analyze these micromagnetic simulations, by determining the
parameters that best describe the results using a macrospin
model, i.e., a model that represents the entire system as a single
macrospin with effective anisotropies. This is a common ap-
proach [20–24] and has the advantage that it closely resembles
the way the experimental data of these systems are typically
analyzed. We show that in order to achieve a good macrospin
description of the micromagnetic simulations, a fourth-order
uniaxial anisotropy contribution is required, although the
micromagnetic model does not include such a term.

The manuscript is structured as follows. First, we start with
a description of the theoretical background and explanation of
the methodology relevant for the micromagnetic calculations
and their analysis in the framework of the macrospin model.
In the next section, we discuss the quasistatic properties of the
system, starting with a detailed discussion of the angular de-
pendence of the different contributions to the energy of the sys-
tem and how they contribute to the effective anisotropies that
are required when representing the system with a macrospin
model. We also investigate the field dependence of the effective
anisotropies [25]. In the subsequent section, we discuss the
influence of the length scale of the lateral variations of the
second-order anisotropy on the effective anisotropies. After
this, we analyze the dynamic properties of the system and
compare their dependence on the length scale of the lateral
variations of the second-order uniaxial anisotropy with those
of the quasistatic properties. We conclude with a summary and
discussion of our results.

II. RESULTS AND DISCUSSION

A. Theoretical background (methodology)

A common approach when trying to describe the quasistatic
and dynamic properties of a complex magnetic system is to
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utilize the so-called macrospin model, which does not take
into account the spatial variations of the magnetization in
the system. Even for systems that are known to have spatial
variations, the macrospin model is often used to analyze
experimental data. To investigate the influence of spatial vari-
ations of the second-order uniaxial anisotropy on the magnetic
properties we model the system micromagnetically [15–19].
We then determine the parameters of the macrospin model
that best describe the micromagnetic results. In Secs. II B
and II C we focus on the quasistatic properties of the system
that are obtained after the system has relaxed to equilib-
rium, whereas Sec. II D focusses on the dynamic properties,
that are obtained by analyzing the time dependence of the
magnetization.

For the micromagnetic modeling we use our finite differ-
ences code M3 [26] written in the MATLAB scripting language.
M3 uses a fast Fourier transform (FFT) method to calculate the
magnetostatic interactions. M3 utilizes Newell’s formulation to
calculate the demagnetizing tensor at short distances [27] and
a dipole approximation for the far field. For the current work,
we used the six-neighbor method for the exchange interaction
and Neuman boundary conditions [28].

For the simulations, the perpendicular magnetic anisotropy
is assumed to be constant across the film thickness, i.e., in our
model we use the thickness-averaged perpendicular anisotropy.
However, the model takes into account lateral variations of this
thickness-averaged perpendicular anisotropy, which could, for
example, be caused by lateral variations of the strength of the
interfacial perpendicular anisotropy or by lateral variations of
the film thickness. Instead of attempting to model a specific
system, for which one would have to make assumptions about
the details of the interfacial roughness and its influence on
the length scale and amplitude of the lateral variations of
the perpendicular anisotropy, our aim is to capture the basic
physics by using a simplified model.

Our model incorporates lateral variations of the second-
order uniaxial anisotropy in the form of a periodic checker-
board structure, as pictured in Fig. 1. For all simulations
regions A have a second-order perpendicular anisotropy,
K2,A = −1.5×106 J/m3, which is sufficient to overcome the
demagnetizing field and thus results in an easy axis of these
regions along the film normal. While the strength of the
second-order perpendicular anisotropy K2,B � 0 of regions
B was varied for different simulations, the film normal for
these regions is always a hard axis. In the micromagnetic
simulations, both regions have no intrinsic fourth-order uni-
axial anisotropy, i.e., K4,A = K4,B = 0. However, as will be
shown below, the frustration between these two regions caused
by their different second-order uniaxial anisotropies leads to
the emergence of a fourth-order anisotropy contribution of
the system when analyzed in the macrospin approximation.
For the saturation magnetization of the system we chose
MS = 1000 kA/m, while the exchange constant was set to
A = 1×10−11 J/m. The wavelength Lx,y of the pattern was
chosen to be the same along both in-plane directions and for
the following discussion was set to Lx = Ly = 30 nm, the
cell size was 1 nm×1 nm×1 nm. The influence of the length
scale of the lateral anisotropy variations is investigated in detail
in Sec. II C.

FIG. 1. (a) Periodic checkerboard pattern used for the simu-
lations, regions A have a second-order perpendicular anisotropy
K2,A = −1.5×106 J/m3 whereas for regions B K2,B � 0. (b) Relaxed
magnetization with an external magnetic field of μ0H = 1 T applied
at an angle of θH = 5◦ with respect to the film normal.

B. Magnetic field dependence of the quasistatic properties

To determine the quasistatic properties of the system, an
external magnetic field �H is applied at different angles θH

with respect to the film normal. After relaxing the system, the
magnetization will locally be aligned with the effective field,
i.e., the sum of all internal fields. Overall, the magnetization
appears to be mostly aligned along the direction of the strong
external magnetic field. However, a close inspection shows
that the degree of alignment differs in the two regions, as
shown in Fig. 1(b). To quantitatively analyze these simulations,
we calculate the average angle of the magnetization θM =
1
N

∑
i θM,i with respect to the film normal and the different

contributions to the total energy density of the relaxed structure
averaged over all N cells in the simulation volume. The
micromagnetic simulations enable the determination of the dif-
ferent contributions to total energy density Etotal of the system
[15–19,26]. This includes the demagnetizing energy Edemag

caused by the dipole-dipole interaction between the magnetic
cells in the simulation volume [27]. In addition, the orientation
of the magnetization in each cell with respect to the film
normal will lead to an energy density contribution Eanisotropy

due to the local anisotropy described by Eq. (1). Furthermore,
the orientation of the magnetization in each cell with respect
to the external magnetic field leads to a spatially varying
Zeeman energy density contribution EZeeman [29]. Finally, the
exchange interaction [29] leads to an exchange energy density
contribution Eexchange that depends on the misalignment of the
magnetizations in neighboring cells [28]:

Etotal = Edemag + Eanisotropy + EZeeman + Eexchange. (2)

The micromagnetic model enables us to determine all en-
ergy contributions independently after the system has relaxed
to its equilibrium.

In Fig. 2, the total energy density and the individual
contributions are shown as a function of the average angle of
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FIG. 2. Dependence of (a) the total energy density, (b) the demagnetizing energy density, (c) the anisotropy energy, (d) the exchange energy
density, and (e) the Zeeman energy density on the average magnetization angle θM obtained after relaxing the magnetization with the indicated
external magnetic field applied at different angles. The solid lines are a fit using the macrospin model, see Eq. (3). The dashed lines in (b) and
(c) represent the expected angular dependence for the demagnetizing energy density of an infinite thin film and the volume averaged anisotropy
energy density, respectively.

the magnetization for a perpendicular second-order anisotropy
in regions A of K2,A = −1.5×106 J/m3 and a second-order
anisotropy in regions B of K2,B = 0 J/m3. For these simu-
lations, the applied magnetic field was varied from μ0H = 1
to 50 T.

As can be seen in Fig. 2(a) for applied fields less than 2 T the
total energy density of the system has maxima along the out-
of-plane (θM = 0◦) and the in-plane (θM = 90◦) orientations
of the magnetization and a minimum at an intermediate angle.
This is a clear indication that a higher-order anisotropy term
will be required to describe this system using a macrospin
approximation, although the microscopic model did not in-
clude such a term. Furthermore, this canted state of the
magnetization, also known as easy-cone state [30], requires

that the second and fourth-order anisotropy term have opposite
signs [31,32]. The solid lines in Fig. 2(a) show a fit to the
simulation results using both a second-order and fourth-order
anisotropy contribution:

E = E0 + K̃2,eff cos2θM + K4,eff

2
cos4θM, (3)

where we use effective quantities to indicate a macrospin
representation of the system. E0 is an angle-independent
offset. The effective anisotropy K̃2,eff in Eq. (3) contains both
shape anisotropy and the uniaxial anisotropy contributions. In
particular, for an infinite, homogenously magnetized thin film,
one could separate these two contributions as follows: K̃2,eff =
μ0M

2
s

2 + K2,eff . However, in the case of lateral variations of
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FIG. 3. (a) Deviation of the average angle of the magnetization
θM from the angle of the applied field θH shown as a function of
the average angle of the magnetization θM . The symbols represent the
results from micromagnetic simulations with different strengths of the
applied field. The red dash dotted line is the result obtained by ignoring
exchange interaction and treating each region as a separate macrospin
for an applied field μ0H = 5 T. (b) Standard deviation σθM

of the
magnetization angle from its average orientation θM as a function
of the same. The symbols represent the results from micromagnetic
simulations with different strengths of the applied field. The red dash
dotted line is the result obtained by ignoring exchange interaction
and treating each region as a separate macrospin for an applied field
μ0H = 5 T, here the difference �θM

= θB−θA

2 between the angle of
the magnetization in region A and B is shown.

the microscopic second-order perpendicular anisotropy K2 the
film is not homogeneously magnetized [see Fig. 3(b)] and thus
the shape anisotropy contribution to K̃2,eff is expected to be
reduced from the value for an infinite film. This can be seen in
Fig. 2(b), where Edemag, the energy contribution due to dipole-
dipole interaction in the structure, is shown separately as a
function of the average magnetization angle. For comparison,
we also show the expectation for the angular dependence of
this contribution for a homogeneously magnetized thin film

(μ0M
2
s

2 cos2θM , dashed line). The main difference between the
micromagnetic and the analytical result for a homogenously
magnetized thin film is indeed a small reduction of the
amplitude of the second-order uniaxial anisotropy. However,
we also observe that a fourth-order contribution is required
to fit the angular dependence of the energy contribution of
the dipole-dipole interaction using Eq. (3). With increasing
external magnetic field, the magnetization in the structures
becomes more homogenous [Fig. 3(b)] and thus the effective
second-order uniaxial anisotropy approaches the thin film limit
[see Fig. 4(a)] and the fourth-order anisotropy contribution
diminishes [see Fig. 4(b)].

In Fig. 2(c), we show the anisotropy contribution to the
total energy density of the system as a function of the mag-
netization angle. For comparison, the angular dependence of
the anisotropy contribution of a homogeneously magnetized
thin film with a second-order uniaxial anisotropy equal to
the volume-averaged anisotropy of the two regions K̄2,eff =
K2,A+K2,B

2 = −0.75×106 J/m3 is also shown (dashed line). One
notes that the energy difference between the out-of-plane easy
axis and the in-plane hard axis is well approximated by the
volume average K̄2,eff . However, a significant fourth-order
anisotropy K4,eff is required to fit this energy contribution using
Eq. (3). Because the fourth-order contribution has the opposite
sign compared to the second-order contribution, this causes
the second-order anisotropy K̃2,eff extracted from the fit to be

FIG. 4. (a) Field dependence of the effective second-order uniax-
ial anisotropy determined by fitting Eq. (3) to the angular dependence
of the different contributions to the total energy, see Fig. 2. The dashed
red line is the volume averaged second-order uniaxial anisotropy. The
pink dashed line represents the demagnetization energy density for
a homogenously magnetized infinite film. The dash dotted red line
is the anisotropy contribution to the effective second-order uniaxial
anisotropy obtained by ignoring exchange interactions between the
regions and treating them each as a macrospin. The dark red dash
dotted line is the Zeeman contribution to the effective second-order
anisotropy using the same simplified model. (b) Field dependence
of the effective fourth-order uniaxial anisotropy. The dash dotted red
lines represent contribution obtained by ignoring exchange interac-
tions between the regions and treating them each as a macrospin,
the anisotropy and Zeeman contribution are shown in red and dark
red, respectively. The blue symbols in both graphs are the effective
anisotropies determined from dynamical calculations, see Sec. II D.

smaller than the volume averaged anisotropy, i.e., K̃2,eff <

K̄2,eff . With increasing external applied field, the effective
second-order anisotropy of this contribution approaches the
volume average K̄2,eff [see Fig. 4(a)], whereas the fourth-order
contribution K4,eff approaches zero [see Fig. 4(b)]. Again,
this is caused by the reduction of the inhomogeneity of the
magnetization with increasing magnetic field [see Fig. 3(b)].

In Fig. 2(d), we show the exchange contribution to the total
energy density of the system as a function of the magnetization
angle. At high fields, this contribution closely follows the
angular dependence of the inhomogeneity of the magnetization
as shown in Fig. 3(b). However, at low fields, the average
magnetization of the structure is not well aligned with the
direction of the external magnetic field [see Fig. 3(a)] leading to
a more complicated magnetization distribution and thus a more
complex angular dependence of the exchange contribution.
As shown in Fig. 2(d), this energy contribution can again
be reasonably fitted using Eq. (3). The second-order uniaxial
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anisotropy contribution due to exchange interaction is positive,
while the fourth-order contribution is negative but comparable
in magnitude. Both contributions diminish with increasing
external magnetic field [see Figs. 4(a) and 4(b)].

Finally, in Fig. 2(e), the angular dependence of the Zeeman
contribution to the total energy of the system is shown. The
angular dependence of this energy contribution is mainly
caused by the angular dependence of the deviation of the
magnetization from the field direction [see Fig. 3(a)], while
the inhomogeneity of the magnetization only plays a minor
role. We would like to point out that even for a system with
no lateral variations of the second-order uniaxial anisotropy,
i.e., K2,A = K2,B , the system will show a similar angular
dependence as the one in Fig. 2(e) for the Zeeman contribution
to the total energy. This is because for finite external fields
applied other than along the film normal (θH = 0◦) or in
the film plane (θH = 90◦) the magnetization is never fully
aligned with the field direction. The description of the angular
dependence shown in Fig. 2(e) using Eq. (3) does not capture
some of the more complex behavior at low fields caused by
large changes and variations of the magnetization direction.
However, the agreement of the fit using Eq. (3) significantly
improves with increasing field. Like the exchange contribution,
the Zeeman contribution leads to a positive second-order and
a negative fourth-order uniaxial anisotropy contribution [see
Figs. 4(a) and 4(b)]. The magnitude of both contributions
is comparable to the exchange contributions. However, the
Zeeman contribution to the fourth-order uniaxial anisotropy
drops off slower with the applied field than the exchange
contribution, see Fig. 4(b).

Figures 4(a) and 4(b) provide a visual summary of the results
discussed in this section. Lateral variations of the second-order
uniaxial anisotropy lead to the presence of a fourth-order
uniaxial anisotropy, if one attempts to describe the system
using a macrospin approximation. The main contributions to
the total effective anisotropies are caused by the anisotropy
contribution to the total energy. The total effective fourth-
order anisotropy has the opposite sign as the total effective
second-order anisotropy, which is a requirement for easy cone
[33–35], which is often observed experimentally. The effective
anisotropies show a complex field dependence that can be
understood by considering all contributions to the energy of
the system, as discussed in detail in this section. Also shown
in Figs. 4(a) and 4(b) as dash-dotted lines [Kmin

2,Anisotropy and
Kmax

2,Zeeman in (a) and Kmax
4,Anisotropy and Kmin

4,Zeeman in (b)] is the
asymptotic behavior one expects by treating both regions sepa-
rately as macrospins and ignoring exchange interaction. As can
be seen in these figures, the micromagnetic results approach
this asymptotic behavior for very large magnetic fields, well
beyond what can typically be achieved experimentally. We
note here that the curves for treating each region separately
as a macrospin and ignoring exchange interaction are obtained
by minimizing the free energy for region A and B separately,
as if each region was an infinite thin film with anisotropy
K2,A and K2,B . The resulting deviation of the average angle
of the magnetization θM = θA+θB

2 from the external magnetic
field direction and the difference �θM

= θB−θA

2 between the
angles in the two regions are shown exemplary in Figs. 3(a)
and 3(b), respectively, as red dash dotted lines for an external

magnetic field of μ0H = 5T. This in turn enables to separately
calculate the anisotropy energy and the Zeeman energy as a
function of the magnetization angle θM and obtain the effective
anisotropies Kmin

2,Anisotropy, Kmax
2,Zeeman, Kmax

4,Anisotropy, and Kmin
4,Zeeman

shown in Fig. 4, here the superscripts indicate that these
values are an upper or lower limit for the corresponding fully
micromagnetic calculations.

C. Influence of the length scale of lateral anisotropy variations
on the quasistatic properties

So far, we have discussed the case of variations of the
second-order uniaxial anisotropy for a fixed wavelength Lx =
Ly = 30 nm. However, in physical samples one expects, for
example, interfacial roughness to lead to variations of the
second-order uniaxial anisotropy over a continuum of length
scales. For the following discussion, we use the same simula-
tion parameters as in in the previous section, but now change
the length scale of the lateral variations of the second-order
uniaxial anisotropy by changing Lx = Ly .

In Figs. 5(a) and 5(b), we show the results of quasistatic
simulations carried out in an external magnetic field μ0H =
5 T . As discussed previously, the angular dependence of the
individual energy contributions was fitted using the macrospin
model description of Eq. (3). As expected for anisotropy
fluctuations on short-length scales, the energy contribution
due to dipole-dipole interaction leads to a significantly lower
effective second-order uniaxial anisotropy K̃2,eff contribution
than one expects for a homogenously magnetized film [dashed
magenta line in Fig. 5(a)]. However, as the length scale of
the anisotropy fluctuations increases, the effective second-
order uniaxial anisotropy contribution due to dipole-dipole
interaction approaches this value. As mentioned previously,
the fourth-order uniaxial anisotropy contribution due to dipole-
dipole interaction is small, given that the applied field is
sufficiently large.

The anisotropy contribution to the effective second-order
uniaxial anisotropy approaches the volume average K̄2,eff =
K2,A+K2,B

2 [red dashed line in Fig. 5(a)] for anisotropy fluctua-
tions over very short-length scales. This is expected, because
in this case the exchange interaction dominates and forces
the moments in neighboring regions to be parallel, thereby
effectively averaging over them. The decrease of the effective
second-order uniaxial anisotropy K̃2,eff with increasing length
scale of the anisotropy fluctuations is correlated with the in-
crease of the fourth-order uniaxial anisotropy contribution. As
discussed in the previous section, this fourth-order contribution
is driven by the inhomogeneity of the magnetization, which
vanishes along the in-plane and out-of-plane orientation of
the applied field. However, for any other angle of the applied
field, the magnetization varies spatially. With increasing length
scale of the lateral anisotropy fluctuations, this inhomogeneity
increases, as neighboring regions are less rigidly coupled,
therefore leading to an increase of the effective fourth-order
uniaxial anisotropy contribution. Furthermore, the energy dif-
ference between the in-plane and out-of-plane field orienta-
tions is always given by the volume average K̄2,eff , because
in these two orientations the magnetization is homogenous
and aligned along the magnetic field direction [see Figs. 3(a)
and 3(b)]. Therefore, with increasing length scale of the
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FIG. 5. (a) Dependence of the effective second-order uniaxial
anisotropy on the lateral length scale of the second-order anisotropy
variations. The dashed red line is the volume averaged second-order
uniaxial anisotropy. The pink dashed line represents the demag-
netization energy density for a homogenously magnetized infinite
film. The dash dotted red line is the anisotropy contribution to
the effective second-order uniaxial anisotropy obtained by ignoring
exchange interactions between the regions and treating them each as a
macrospin. The dark red dash dotted line is the Zeeman contribution
to the effective second-order anisotropy using the same simplified
model. The black dash dotted line is the sum of demagnetization
energy, the anisotropy and Zeeman contribution in the macrospin
approximation. (b) Dependence of the effective fourth-order uniaxial
anisotropy on the lateral length scale of the second-order anisotropy
variations. The dash dotted red lines represent contribution obtained
by ignoring exchange interactions between the regions and treating
them each as a macrospin, the anisotropy and Zeeman contribution
are shown in red and dark red, respectively. The black dash dotted
line is the sum of these contributions. The gray vertical dashed lined
is the length scale λeff , see text for details.

anisotropy fluctuations, the effective second-order uniaxial
anisotropy decreases as the fourth-order uniaxial anisotropy
increases. Both effective anisotropies extracted from the full
micromagnetic model approach the values expected based on
treating the individual regions as macrospins and ignoring the
exchange interaction. See the dash-dotted lines for Kmin

2,Anisotropy
in Fig. 5(a) and for Kmax

4,Anisotropy in Fig. 5(b).
Due to the large applied magnetic field, the contribution

of the exchange interaction to both the effective second-order
and fourth-order uniaxial anisotropy remains relatively small
over the entire range of the length scales investigated. For
very short-length scales of the lateral anisotropy fluctuations
the contributions are small because neighboring regions are
rigidly coupled to each other. For very large-length scales on
the other hand the contributions due to the exchange interaction
diminish because the individual regions are homogeneously

magnetized and only the boundaries between them lead to
an angle-dependent exchange interaction contribution to the
total energy of the system. At intermediate-length scales, this
leads to a maximum for the effective second-order uniaxial
anisotropy [Fig. 5(a)] and to a minimum for the effective
fourth-order uniaxial anisotropy [Fig. 5(b)].

On the other hand, the large applied magnetic field com-
bined with the deviation of the magnetization direction from
the applied field direction, as discussed in the previous section,
also leads to an angular dependence of the Zeeman contribution
to the energy of the system. With increasing length scale of
the lateral anisotropy variations, the effective second- and
fourth-order anisotropies of the full micromagnetic model
approach the values expected based on treating the individual
regions as macrospins and ignoring the exchange interaction,
see the dash-dotted lines for Kmax

2,Zeeman in Fig. 5(a) and for
Kmin

4,Zeeman in Fig. 5(b).
In summary, the total effective fourth-order anisotropy

caused by large-scale lateral variations of the second-order
anisotropy has two main contributions: from the Zeeman
and the anisotropy contribution to the total energy of the
system. As can be seen in Fig. 5(b), these two contributions
have opposite signs. For lateral variations, over shorter length
scales the exchange interaction also contributes significantly
to the total effective fourth-order anisotropy of the system.
Furthermore, in this case, the contribution of the dipole-dipole
interaction to the effective second-order anisotropy deviates
significantly from the thin film limit and thus needs to be taken
into account. Finally, we can compare the variations seen in
Fig. 5 with characteristic length scales of the system. For the
system discussed here, the demagnetizing energy results in a

characteristic length of λd =
√

2A/(μ0M
2
S ) ≈ 4 nm, while the

characteristic length associated with the uniaxial anisotropy
in regions A with a second-order uniaxial anisotropy K2,A =
−1.5×106 J/m3 is λA = √

A/|K2,A| ≈ 3 nm [36]. However,
for a system comprised of regions A and B with different
second-order uniaxial anisotropies one can expect the length

scale λeff =
√

A/|μ0M2
s

2 + K̄2,eff | ≈ 9 nm, associated with the
sum of shape anisotropy and volume averaged anisotropy to
play a more important role [36]. This length scale is shown as a
gray vertical dashed line in Fig. 5 and can indeed be considered
a characteristic length scale of the system.

D. Dynamic properties

To probe the dynamical response of the system, a static
magnetic field �H is applied either along the film normal
( �H = H · ẑ) or in the film plane ( �H = H · ŷ). Initially, the
system is relaxed in the presence of an additional small field �hp

perpendicular to the static magnetic field, i.e., �Htotal = �H + �hp

(see Fig. 6). At t = 0, the small perpendicular field is removed
and the time evolution of the relaxation of the magnetization
is recorded. The time evolution of the magnetization in each
cell of the micromagnetic model is described by the Landau-
Lifshitz-Gilbert equation of motion [29,37–39]:

d �M
dt

= −γ �M× �Heff + 1

MS

�M×α
d �M
dt

, (4)
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FIG. 6. Sketch of the configuration for determining the dynamic
properties of the system. In (a), the out-of-plane configuration and in
(b) the in-plane configuration are shown. The small additional field
�hp is only present during relaxation of the initial state and is removed
at t = 0.

where �M is the magnetization vector, MS is the saturation
magnetization, γ is the gyromagnetic ratio, and α is the damp-
ing parameter. For the simulations discussed below, we used
γ = 2.21×105 m A−1 s−1 and α = 0.007. The effective field
�Heff entering the Landau-Lifshitz-Gilbert equation of motion

includes the external magnetic field, dipole field, anisotropy
field and exchange field. In Fig. 7(a), an example of the
resulting time evolution of the average magnetization is shown
when the external magnetic field (μ0H = 2T ) is applied along
the film normal. To enable a quantitative analysis of the time
dependence of all cells in the simulation volume, we calculate
the power spectral density for each cell and calculate the
average power spectral density [19,40], as shown in Fig. 7(b).
The resulting spectrum reveals a number of resonant features
that correspond to the fundamental resonance mode and higher
order lateral standing spin wave modes in the structure. By
plotting the contribution of each cell to the average power
spectral density at the different resonance frequencies, one can
visualize the mode profiles [see power spectral density maps
shown as insets of Fig. 7(b)].

For the fundamental mode in the out-of-plane configura-
tion one notes that regions B with K2,B = 0 J/m3 contribute
significantly more to the power spectral density. In other

words, the resonance is preferably localized in region B.
In Fig. 8, the dependence of this localization on the lateral
length scale of the anisotropy variations is quantified by
plotting the ratio of the power spectral density contribution
PA of region A to the total power spectral density Ptotal. As
expected in the limit of vanishing small length scales both
regions contribute equally to the resonance, due to the strong
exchange coupling between neighboring regions effectively
averaging out the variations. As discussed above, when the
static magnetic field is applied perpendicular to the film plane
with increasing length scale of the lateral anisotropy variation
the resonance becomes increasingly localized in region B, as
expected [41]. However, in the in-plane case, the situation is
reversed, i.e., here with increasing length scale the resonance
becomes increasingly localized in region A. In both cases, the
resonance is localized in the region of the structure with the
lower excitation energy, as can be expected. Correspondingly,
this increased localization with increasing length scale of the
lateral anisotropy variations causes the resonance frequency
to approach the resonance frequency fB of a film with an
anisotropy K2,B in the out-of-plane case, whereas in the same
limit the resonance frequency in the in-plane case approaches
the resonance frequency fA of a film with an anisotropy K2,A.
This has important consequences for the effective anisotropies
that one extracts from the dynamical data. The Kittel equations
for systems with a second- and fourth-order perpendicular
anisotropy are given by [33,42]

f⊥ = γ ′(H − Meff,⊥), (5a)

f‖ = γ ′√H (H + Meff,‖), (5b)

with γ ′ = γ /2π and the effective out-of-plane and in-plane
magnetizations given by

Meff,⊥ = 2K̃
dyn
2,eff

μ0MS

+ 2K
dyn
4,eff

μ0MS

(6a)
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FIG. 7. (a) Time evolution of the average magnetization components Mx and My for a 20 nm×20 nm structure with K2,A = −1.5×10−6 J/m3

and KB = 0 J/m3 with an external magnetic field of μ0H = 2 T applied along the film normal θH = 0◦. A small additional field hp = 0.006 T
along the x axis was removed at t = 0. The inset shows the time evolution during the first tenth of a nanosecond. (b) Shows P(My), i.e., the
power spectral density of the y component of the magnetization averaged over all cells in the simulation volume for the same parameters as in
(a). The insets of this figure show the power spectral density maps for the first three resonances at frequencies f⊥1 = 54.9 GHz (fundamental
resonance mode), f⊥2 = 184 GHz, and f⊥3 = 288 GHz. Here the color indicates the contribution of each cell to the power spectral density, with
dark red indicating the largest and dark blue zero contribution.
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FIG. 8. (a) Dependence of the contribution of region A to the
total power spectral density of the fundamental mode on the lateral
length scale Lx,y of the variations of the anisotropy. (b)–(d) show
spectral maps with the static field applied in-plane whereas (e)–(g)
show spectral maps with the static field applied out-of-plane. For (b)
and (e) Lx = Ly = 10 nm, for (c) and (f) Lx = Ly = 20 nm, and for
(d) and (g) Lx = Ly = 60 nm.

and

Meff,‖ = 2K̃
dyn
2,eff

μ0MS

, (6b)

respectively. From the numerical simulations, one can there-
fore extract the dynamic effective second-order uniaxial
anisotropy K̃

dyn
2,eff and effective fourth-order uniaxial anisotropy

K
dyn
4,eff that describe the dynamical data in a macrospin approx-

imation (see blue data points in Fig. 9). The definitions of
K̃

dyn
2,eff and K

dyn
4,eff are the same as those of K̃2,eff and K4,eff ,

the additional superscript indicating that these quantities are
determined from the magnetization dynamics of the system.
For comparison, the results from quasistatic calculations at the
same external magnetic field [similar to Figs. 5(a) and 5(b)] are
also included in Fig. 9 (black data points). The limiting cases
for the quantities determined from dynamical simulations can
be understood as follows. For lateral anisotropy variations at
vanishingly small length scales, i.e., Lx,y → 0, the exchange
coupling will effectively average out these variations and thus
the effective second-order uniaxial anisotropy will approach
the volume average of the two anisotropies K̄2,eff . In this limit,
the resonance has equal contributions from regions A and B for

both the in-plane and out-of-plane configurations. Therefore
the effective magnetizations for both configurations will be
equal and thus K

dyn
4,eff vanishes for Lx,y → 0 [see Fig. 9(b)]. For

lateral anisotropy variations, over very large-length scales, i.e.,
Lx,y → ∞, the resonance in the out-of-plane configuration
will become localized in region B whereas the resonance in
the in-plane configuration will become localized in region A.
Therefore

f⊥ −−−→
Lx,y→∞

fB (7a)

and

f‖ −−−→
Lx,y→∞

fA (7b)

And, consequently,

K̃
dyn
2,eff −−−→

Lx,y→∞
μ0M

2
s

2
+ K2,A (8a)

and

K
dyn
4,eff −−−→

Lx,y→∞
K2,B − K2,A. (8b)

As can be seen in Figs. 9(a) and 9(b), our simulation
results for the dynamic higher-order anisotropies approach
these predicted values (blue dashed lines) for large length
scales. However, the length scale dependence of the effective
anisotropies obtained from the dynamic response of the system
is significantly different from those obtained from quasistatic
calculations for the same applied field. As these differences
persist over the entire range of length scales of the anisotropy
variations, including the asymptotic behavior at short and
large length scales, we also expect a difference between the
anisotropies obtained from quasistatic and dynamic measure-
ments for physical samples. For those, interface roughness will
lead to a continuous distribution of the second-order uniaxial
anisotropy and the relevant length scales will be determined
by the type of interface morphology present in the samples
and its characteristic parameters [43]. The dynamic response
of the system also shows a markedly different field dependence
of the effective anisotropies when compared to the quasistatic
results (see Fig. 4). While the effective anisotropies are weakly
dependent on the external applied field through its influence
on the equilibrium configuration of the magnetization the
amount of localization has a much stronger influence. This
is particularly evident for the dynamic fourth-order effective
anisotropy, which remains at a finite positive value even for the
largest fields used in Fig. 4(b), whereas the quasistatic results
approach zero in this limit. We would like to point out that
recent experimental observations of a field dependence of the
second-order effective anisotropy [25] appear to be consistent
with the predicted sensitivity of the effective anisotropies
to the equilibrium configuration at low fields. Clearly, more
systematic experimental work is needed to verify whether
spatial variations of the second-order anisotropy are indeed
responsible for these observations.
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FIG. 9. Effective second-order uniaxial anisotropy as a function of the lateral length scale Lx,y of the variations of the anisotropy. The
anisotropy K̃

dyn
2,eff for the dynamic simulations is shown as blue symbols whereas the anisotropy K̃2,eff determined from quasistatic simulations

is shown as black symbols. The dashed black line shows the thin film limit with an average anisotropy, i.e., μ0M2
s

2 + K2,A+K2,B

2 . The dashed

blue line represents the large-length scale limit for the dynamical simulations μ0M2
s

2 + K2,A. (b) Effective fourth-order uniaxial anisotropy as a

function of the lateral length scale Lx,y of the variations of the anisotropy. The anisotropy K
dyn
4,eff for the dynamic simulations is shown as blue

symbols whereas the anisotropy K4,eff determined from quasistatic simulations is shown as black symbols. The dashed blue line represents the
large-length scale limit for the dynamical simulations K2,B − K2,A. In both figures, the dash dotted black lines are the limiting values expected
for the quasistatic effective anisotropies, obtained by treating each region as a macrospin and ignoring exchange interaction, see Sec. II C.

III. SUMMARY AND DISCUSSION

In summary, we have analyzed how lateral variations
of a second-order uniaxial anisotropy affect the effective
anisotropies required to describe the system in the framework
of a macrospin model. For the quasistatic and dynamic
calculations discussed in this manuscript, we find that second-
order and fourth-order effective anisotropies are sufficient to
capture the main properties of the system in the macrospin
model. For the quasistatic properties, we find that the effective
fourth-order uniaxial anisotropy is closely linked to deviations
of the average magnetization angle from the field direction
and the lateral variation of the magnetization direction in
the structure. This results in a strong field dependence of
the effective anisotropies. The dependence of the effective
anisotropies on the lateral length scale of the variations of
the second-order uniaxial anisotropy are profoundly different
for the quasistatic and dynamic calculations. The underlying
reason for this difference is that the quasistatic properties are
averaged over the entire sample volume whereas the observable
dynamic properties depend sensitively on the degree of
localization of the resonance. This localization depends not
only on the lateral length scale of the anisotropy variations, but
also on the field orientation. While there have also been some

reports on the differences between anisotropies determined
using quasistatic and dynamic methods [44–46], more ex-
perimental work is needed to clarify this aspect, particularly,
for systems with perpendicular anisotropy. Interpretation of
experimental results for systems where lateral variations of
the second-order anisotropy are caused by interfacial rough-
ness will be complicated by the continuous distribution of
anisotropies in the system. Thus, in order to make a quanti-
tative comparison, a careful characterization of the interfacial
roughness will be required [43,47]. However, we would like
to point out that a continuous distribution of the second-order
anisotropy is expected to result in a significant inhomogeneous
broadening of the resonance that increases with the distribution
of the anisotropy fields [41], very much in line with what has
recently been reported for CoFe/Ni multilayers [48].
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