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Stored and absorbed energy of fields in lossy chiral single-component metamaterials
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Here we present theoretical results for estimation of electromagnetic field energy density and absorbed energy
in dispersive lossy chiral single-component metamaterials which consist of an ensemble of identical helical
resonators as inclusions. The shape of the helical resonator can vary over a wide range, from a straight wire to
a flat split ring. An interaction of the inclusions with harmonic circularly polarized electromagnetic plane waves
is studied. We focus on how the inclusion shape influences the mentioned metamaterial properties. The derived
general solution for the problem is in good agreement with previous partial and alternative solutions obtained for
split ring resonators, straight wires, and helices. The study reveals the optimal geometry of helical lossy resonators
for their strongest selectivity of interaction with circularly polarized radiation.
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I. INTRODUCTION

Knowledge of electromagnetic field energy stored and
dissipated in various materials is important both from the
physical point of view and for applications (for instance, these
quantities define the efficiency and bandwidth of antennas,
including nanoemitters). It is known that the electromagnetic
field energy density in materials can be uniquely defined in
terms of the effective material parameters only in the case of
negligible losses [1]. For artificial materials based on metal or
dielectric inclusions of various shapes, called metamaterials,
absorption can be neglected when the operational frequency is
far from the resonant frequencies of the inclusions and from
the lattice resonance if the material is periodic. However, the
most interesting phenomena take place in resonant regimes. If
the material exhibits considerable losses near the frequency of
interest, it is not possible to define the stored energy density
in a general way, i.e., to express that in terms of the material
permittivity and permeability functions [1]. Only if the internal
structure of the medium is known and a specific dispersion
model (like the Lorentz or Drude dispersion) is applicable is it
possible to define and find the stored reactive energy in terms of
the dispersion model parameters (the resonant frequency or the
plasma frequency as well as the damping factor) even if losses
are significant. Electromagnetic field energy density in such
lossy materials has been addressed several times and a number
of different methods have been developed [2–7]. In Ref. [2],
for example, the energy of electromagnetic field in absorptive
one-component dielectric nonchiral medium is determined.
In Ref. [3], a general approach that allows one to determine
the stored energy density in complex composite microwave
materials has been presented (note that Ref. [7] gives an
important correction to the method reported in Ref. [3]).

In this paper we study energy density and absorption in
chiral composites formed by helical inclusions. Energy density
in lossy chiral media has been studied in recent papers [8–10].
These papers determine the energy density for the case of linear
polarization and complement our studies, which focus on the
effects of polarization selectivity of interaction with circularly

polarized radiation in composites with helices of different
shapes. Using microscopic and macroscopic models, paper
[10] provides solutions for the average total energy density
of the macroscopic quasimonochromatic electromagnetic field
in regions of normal dispersion with negligible losses of a
magnetoelectric medium and for the average energy density of
the macroscopic quasimonochromatic electromagnetic field in
a chiral medium with losses as a function of the refractive index
and characteristic impedance of the medium. In comparison
with the solutions obtained here, solutions from Ref. [10]
cannot be used to study the pitch angle dependence and
optimization of the electromagnetic properties of chiral media.

The approach proposed here is generally valid for meta-
materials composed of an ensemble of identical particles
of any helical shape including degenerate limiting cases of
straight wires, split rings, and �-particles. To find most general
expressions, we study lossy chiral metamaterials composed
of an array of helices with variable shape (from the straight
wire to the split ring resonator) at the main half-wavelength
resonance: L ≈ λ/2, where L is the full length of helix wire.
Note that when the metamaterial is composed of any other kind
of identical particles which cannot be derived from helices, the
expressions should be obtained specifically for the particular
particle shape, but the approach to derivations which we
present here remains valid.

II. ALTERNATIVE APPROACHES

A. Lossless composites

The constitutive relations for isotropic chiral materials or
metamaterials have the form

�D = ε0εr
�E − j

√
ε0μ0κem

�H,

�B = μ0μr
�H + j

√
ε0μ0κme

�E, (1)

where κem = κme is the chirality parameter. For a chiral
metamaterial in the absence of absorption, but at the presence
of dispersion, the time-averaged energy density can be found
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FIG. 1. An exemplary array (isotropic or uniaxial) composed of
single-turn helices.

in terms of the material parameters1:

〈w〉 = 1

4
ε0

d

dω
(ωεr ) �E · �E∗ + 1

4
μ0

d

dω
(ωμr ) �H · �H ∗

− j
1

4
√

ε0μ0
d

dω
(ωκem)( �E∗ · �H − �E · �H ∗), (2)

and these expressions are valid for any shape or shapes of
composite constituents. For circularly polarized (CP) plane
waves, we have derived the following formula:

〈w〉 = ε0

4

d(ωεr )

dω
(| �E+|2 + | �E−|2)

+ ε0

4

εr

μr

d(ωμr )

dω
(| �E+|2 + | �E−|2)

+ ε0

2

√
εr

μr

d(ωκ)

dω
(| �E+|2 − | �E−|2), (3)

where κ = κem, and the right-hand (+) and left-hand
(−) polarized waves are defined as follows: �E± =
E0±(�x0 ∓ j �y0) exp (jωt). For the field amplitudes of plane
waves, the relation between the electric and magnetic field

vectors reads �H± = ±j

√
ε0εr

μ0μr

�E± [11, Chap. 2]. An interest-

ing fact is that these relations between electric and magnetic
field vectors do not contain the chirality parameter in explicit
form. As a result, we arrive at a physically important conclusion
that the Poynting vector for plane waves in a chiral medium
also does not depend on the chirality parameter. However,
expressions (2) and (3) lose validity if losses in the medium
are not negligible.

Let us consider the following important case illustrated in
Fig. 1 where the medium is composed of conductive helices. In
particular, we are interested in the so-called “optimal” helices.
Optimal helices, introduced and studied in Refs. [8–10,12–18],
interact only with waves of one of the two orthogonal circular
polarizations. The geometrical parameters of such helices
are known. For a single-turn helix, for example, the optimal
pitch angle of α = 13.65◦ is obtained at the condition of the
fundamental half-wave resonance. Note that for metamaterials
formed of optimal helices, the material parameters are related
as

εr ≈ μr ≈ 1 ± κ. (4)

This relation means that the metamaterial formed optimal
helices exhibits identically strong dielectric, magnetic, and
chiral properties. For the real and imaginary parts we have

ε′
r ≈ μ′

r ≈ 1 ± κ ′ and ε′′
r ≈ μ′′

r ≈ ±κ ′′
r , respectively. For κ ′ >

0 (i.e., for the right-handed helix) it turns out that the CP mode
with the amplitude E0− is not absorbed. For κ ′ < 0 (i.e., for
the left-handed helix) it leads to nonabsorption of the circular
mode with the amplitude E0+. The same conclusion holds for
the stored energy.

First we will consider the case when the excitation fre-
quency approaches the resonant frequency. Although the ab-
sorption of waves in this frequency range is negligible, the
frequency dispersion of the metamaterial parameters is already
manifested. In the absence of losses, that is, assuming that εr =
ε∗
r , μr = μ∗

r , κr = κ∗
r , relation (3) holds approximately true in

the frequency range under consideration. For the right-hand
helices (κ > 0) the time-averaged energy density reads

〈w〉 ≈ 1

2
ε0(| �E+|2 + | �E−|2) + ε0

d

dω
(ωκ)| �E+|2, (5)

where the first term on the right is the energy of the electro-
magnetic field in vacuum, and the second term is the energy of
the helix in the field of only one circular mode as the second
circular mode does not excite the helix. For the left-hand
helices (κ < 0) the time-averaged energy density takes the
following form:

〈w〉 ≈ 1

2
ε0(| �E+|2 + | �E−|2) − ε0

d

dω
(ωκ)| �E−

∣∣2
. (6)

Thus, the difference is in the sign of the second term on the right
of (6). Of course, in this case the helix is activated by circular
polarization of the opposite to the case (5) handedness.

B. Absorptive single-component media

To model absorptive single-component chiral media we
adopt a classical model of free electrons oscillating harmoni-
cally with the frequency of the wave of excitation. Since the
conduction electrons are bounded in a finite-length wire, these
harmonic oscillations can be resonant. The conductor forming
the metamaterial element has a finite length, so a standing
wave of electric current appears in it. The amplitude of this
wave increases significantly under the condition of resonance.
Usually in practice, the elements of the metamaterial are
made of a thin conducting wire or strip. Then the resonance
condition is determined mainly by the length of this conductor.
Resonances occur when an integer number of half-waves
of electric current is laid on the length of the conductor.
Therefore, the resonance frequencies for thin conductors can
be approximately determined by the formula

ω0n = πcn

L
,

where n is an integer specifying the mode number of the
oscillation, c is the speed of light in a vacuum, and L is
the length of the conductor. Deviations from exact inverse
proportionality are caused by two reasons: first, because the
resonator is open and the wire has a finite diameter and,
second, due to interactions of many identical inclusions in the
metamaterial. All parameters of single particles are effective
phenomenological parameters, which take into account the
influence of particle interactions. In particular, the difference
between the local fields acting on each particle and the averaged
macroscopic field leads to a shift of the resonance frequency
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and to compensation of radiation losses from individual helices
[19].

To describe the resonance harmonic oscillations of conduc-
tion electrons in a standing wave of electric current arising
in a metamaterial element, we must take into account not
only the harmonic external field. We must also introduce into
consideration a restoring force acting on the electrons in the
direction opposite to their displacement along the wire. It
is known from the theory of harmonic oscillations that the
magnitude of this restoring force should be proportional to
the displacement of the conduction electrons along the wire,
i.e., frest = −ks. Therefore, such a force is called quasielastic.
Here s is the electron displacement, k is the effective coefficient
which can be expressed at the resonant frequency as k = mω2

0.
Let us repeat that the physical reason for the appearance of
such a restoring force is the fact that the motion of conduction
electrons is limited in a wire of finite dimensions.

As shown by numerical simulations [18], under the condi-
tion of half-wave resonance, the resonant frequency depends
mainly on the length of the wire, if its thickness is small. In this
case, the shape of the wire, that is, the shape of the metamaterial
element, has little effect on the resonance frequency. For
example, in paper [18] the change in the number of turns for
optimal helices was investigated. In this case, the shape of the
helix, that is, its pitch angle, also changed. It is shown that the
relative change in the resonant frequency is about 3% for a
constant wire length in the straightened state.

The used model of electrons oscillating along spiral trajec-
tories is actually a classical model of natural chiral material;
see, for example, the classical book [20]. The oscillator model
of small and resonant wire (and other) metal scatterers is a
classical one, used before by many authors. This model has
been successfully validated by experiments; as an example of
experimental validation specifically for helices, we can refer to
paper [21]. In paper [21], the antenna model is used to calculate
the polarizabilities of the helix and the electromagnetic field
scattered by the helix. However, that paper did not calculate
the energy of the electromagnetic field in the structure formed
by the helices.

The basic approximation used in our paper is that only one
resonant frequency of electron oscillations is considered. At the
same time for metamaterials such an approximation is justified,
since they consist of resonant “meta-atoms.” It should be
recalled that natural chiral substances have usually molecular
absorption spectra, characterized by a certain absorption band.
Unlike molecules of natural substances, meta-atoms have
discrete absorption spectra, in which the resonant frequencies
differ significantly from each other. In the presence of several
resonant frequencies of a meta-atom, it is necessary to add
the field energy calculated for each resonance separately. The
method used by us makes it possible to trace directly how the
field energy in a metamaterial is composed of the potential
and kinetic energies of oscillating conduction electrons. In
known particular cases the results coincide with those obtained
using other approaches to calculating the field energy in the
medium, for example in the framework of the equivalent-circuit
model. Known special cases, considered earlier in papers
[3–7], concern media formed by straight wires and split rings,
that is, artificial structures possessing dielectric and magnetic
properties. In this paper, we consider a metamaterial consisting

of metal helices, that is, a more general case of an artificial
structure that simultaneously possesses dielectric, magnetic,
and chiral properties. We answer the question of how the energy
of the electromagnetic field changes if the medium is charac-
terized not only by the dielectric permittivity and magnetic
permeability, but also by the chirality parameter. Since in the
chiral metamaterial the eigenmodes of the electromagnetic
field have circular polarization, it can be assumed that the
electromagnetic energy will be different for the right and left
circularly polarized waves.

The energy of one representative electron is

We = 	e + Ke = ks2

2
+ mv2

2
,

where s is the electron displacement along the helix, v is the
electron velocity along the helix, m is the electron mass, and
k is the effective coefficient describing the quasielastic force
on the electron in the direction opposite to its displacement.
The final result from this model coincides with earlier results
[2,3], in particular, for a straight wire oscillator and split ring
resonator. As a particular case, first let us consider the electrons
oscillating along a straight wire.

The equation of motion of an electron in a one-component
medium having one resonance frequency is mẍ = −eEx −
κx − γ ẋ, where the electric field Ex = E0x exp(jωt) and
displacementx = x0 exp(jωt) are time harmonic. The solution
for the equation of motion takes the form of the following
complex function:

x = − e

m

Ex

ω2
0 − ω2 + jω�

, (7)

where � = γ /m. The electric field which excites one particular
inclusion, called the local field, is different from the averaged
macroscopic field Ex . This difference is taken into account
by the use of effective, macroscopic value of the resonance
frequency ω0, which depends not only on the parameters of a
single inclusion but also on the inclusion concentration. Also,
the loss factor � here measures only the dissipation loss in the
particles, since the radiation loss is compensated due to particle
interactions [19].

We introduce the potential and kinetic energies in the
following well-known way:

〈	〉t = 1

2
k〈x ′2〉t , 〈K〉t = 1

2
m〈υ ′2〉t . (8)

Here x ′ and υ ′ are the real parts of the electron’s displacement
and its speed, which in the general case are defined as complex
functions. The angle brackets stand for time averaging. Taking
into consideration the obtained solution for the equation of
motion, we can find the sum of the potential and kinetic
energies (8):

〈	〉t + 〈K〉t = 1

4

e2

m
E0xE

∗
0xψ(ω), (9)

which is a summation taken for only one oscillating charged
particle (e.g., electron) and where

ψ(ω) = ω2
0 + ω2(

ω2
0 − ω2

)2 + ω2�2
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is a parameter introduced for convenience. Therefore, to find
the volumetric energy density, we need to take into account the
concentration of conducting electrons N = NeVcNc, where Ne

is the concentration of electrons in metal, and Vc = LS is the
volume of one conducting element forming the metamaterial
(in this case it is a straight wire). Finally, Nc is the concentration
of the conductive inclusions. In addition, we add the energy of
the field itself and obtain

〈wel〉t = 1

4
ε0

(
1 + N

e2

mε0
ψ(ω)

)
ExE

∗
x . (10)

In this expression, the energy of the conduction electrons and
the energy of the field are averaged over the oscillation period.

We see that at this stage of the simulation a well-known
expression appears for the angular plasma frequency

ω2
p = Ne2

mε0
.

In particular, for a metamaterial composed of straight wires,
the relative permittivity takes the form

εr = 1 + ω2
p

ω2
0 − ω2 + jω�

. (11)

Using this relation for the angular plasma frequency the
volumetric energy density can be written as

〈wel〉t = 1

4
ε0

[
1 + ω2

pψ(ω)
]
ExE

∗
x . (12)

Formula (12) was obtained earlier [2–4] by different ap-
proaches.

For the energy of electric field absorbed per unit volume
and time, the following relation is known:

〈Qel〉t = −1

2
ωε0ε

′′
r |E|2,

where

ε
′′
r = −N

e2

mε0

ω�(
ω2

0 − ω2
)2 + ω2�2

< 0

is the imaginary part of the relative permittivity. We note that
the energy of the field decreases as the dissipative forces make
a negative work on electrons decelerating them. As is usually
done, we can consider the work of forces that slow electrons
dAdis, performed over a period of time dt in a physically small
volume dV . In this case the following relation is true:

dAdis

dtdV
= −γ (υ ′)2N = −Qel, (13)

where υ ′ = Re(
·
x) is the real part of the electron velocity,

the retarding force of a single electron is −γ υ ′, and the
corresponding power is −γ (υ ′)2. Going to a unit volume, the
power needs to be multiplied by the concentration of electrons
N . The formula (13) confirms that if the absorbed energy is
positive (Qel > 0) then the work of dissipative forces dAdis is
negative.

C. Lossy chiral media: Helix pitch angle dependence

For the helical model considering a more complicated way
of electrons’ movement, we take the following equation of

motion:

ms̈ = −ks − γ ṡ − eEs, (14)

where s = s0 exp(jωt) is the displacement of the charged
particle along the helical path, s0 is the displacement amplitude,
Es = Ex sin α is the component of field which is tangential to
the surface of the helix, the axis of the helix is directed along
the x axis, α is the helix pitch angle which is found through

sin α = ± 1√
1 + q2r2

.

Here the “+” sign corresponds to the right-hand helix while
the “−” sign corresponds to the left-hand helix, where |q| =
2π/h, h is the helix pitch, r is the helix radius, q > 0 for a
right-handed helix, and q < 0 for a left-handed helix. Equation
(14) is the standard equation for forced oscillations of a particle
in the presence of losses. The left-hand side of the equation
contains the product of mass by acceleration of the electron,
and on the right-hand side the sum of all the forces acting
on the electron is written. The first term on the right side of
the equation describes the returning force acting opposite to
the displacement of the electron. Without this force, resonant
oscillations of conduction electrons would be impossible. The
second term on the right-hand side of Eq. (14) describes the
retarding force, which leads to losses of the mechanical energy
of the oscillating electron. The third term on the right-hand
side of the equation describes the electric force acting on the
electron from the the electromagnetic wave. The acceleration
of the electron and all these forces are directed along the
tangent to the trajectory of the electron, that is, along the helical
conductor axis.

The fundamental resonance of a finite-length piece of
thin conducting wire takes place when the length of the
conductor is approximately equal to half the wavelength of
the electromagnetic field. If the wire curvature radius is very
large compared with the wire diameter (which is the considered
case) and the wire does not cross or touch itself, changes
in the conductor wire shape do not lead to any significant
shift in the resonance frequency. Whatever the shape of the
thin conductor, the electric current in it is directed along
the wire axis. Consequently, the coefficient in Eq. (14) for a
representative electron depends primarily on the total length
of the thin conductor, and not on the shape of the conductor.
The coefficient k has the form k = mω2

0 = m( πc
L

)2, where L is
the length of the conductor for any of the considered shapes.
For example, if the conductor has the form of a single-turn
helix, we can write L in an explicit form, L =

√
(2πr)2 + h2,

where r is the helix radius and h is the helix pitch. Passing to
a straight wire, we have r = 0 and h = L.

Let us take into consideration external magnetic field Bx =
B0x exp(jωt) oscillating along the helix axis and permeating
the loops of the helix. According to Faraday’s law of electro-
magnetic induction, we can write

−E2πr = πr2 ∂Bx

∂t
, (15)

where E is the component of vortex electrical field orthogonal
to the helix axis. The last relation results in

E = −1

2
rjωBx. (16)
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Now we can calculate the component of electric field
tangential to the helix:

Es = E cos α = −jω
r

2
Bx cos α,

where the cosine of helix pitch angle is

cos α = qr√
1 + q2r2

.

The electron’s displacement along the helix, stipulated by both
electric and magnetic fields, takes the following form:

s = − e

m

Ex sin α − j ωr
2 Bx cos α

ω2
0 − ω2 + jω�

. (17)

Generalizing the methods which we used above for meta-
materials composed of straight wires, we calculate the time-
averaged energy of oscillating electrons localized in a helix:

〈	〉t +〈K〉t = e2

4m
ψ(ω)

{
E0xE

∗
0x sin2 α+ω2r2

4
B0xB

∗
0x cos2 α

+ j
ωr

2
sin α cos α(E0xB

∗
0x − E∗

0xB0x)

}
.

(18)

For relation (18), we can consider two special limiting cases:

(a) Assuming α = π

2
(straight wires), we transit to formula

(9).
(b) Assuming α = 0 (split rings) and then multiplying by

the electrons’ concentration N and adding the energy of the
magnetic field itself (in vacuum), we get

〈wm〉t = 1

4
μ0|H |2 + (〈	〉t + 〈K〉t )N

= 1

4
μ0|H |2 + 1

4
N

e2

m
ψ(ω)

ω2r2

4
B0xB

∗
0x. (19)

For the metamaterial with artificial magnetic properties due
to currents in split-ring resonators, the relative permeability is
equal to

μr = 1 + A1ω
2

ω2
0 − ω2 + jω�

, (20)

where

A1 = 1

4
μ0

Ne2

m
r2.

Now, the time-averaged energy of magnetic field is

〈wm〉t = 1

4
μ0[1 + A1ω

2ψ(ω)]|H |2. (21)

Formula (21) was reported earlier in Refs. [3,4] for structures
with artificial magnetic properties. We recall that in this
formula, as above, the factor 1/4 appears after averaging the
energy density over time.

Next, let us return to the more complicated case, when
electrons oscillate in the helix so that the metamaterial exhibits
simultaneous dielectric, magnetic, and chiral properties. In this

case, we use the general relation for the energy of a single
electron (9) multiplied by the concentration of the conductive
electrons and add the energies of both electric and magnetic
fields:

〈w〉t = 1

4
ε0E0xE

∗
0x + 1

4
μ0H0xH

∗
0x + (〈	〉t + 〈K〉t )N.

(22)

We use the material equations (1), which are true for the
first-order spatial dispersion effects, i.e., for the cases where the
second-order spatial derivatives of the fields can be neglected in
considering particle response (usually it means that chirality is
weak). The material equations (1) contain the chirality param-
eter κ = κem only in the first power, therefore in the following
equations we should keep the chirality parameter also only
in the first power. The conservation of the chirality parameter
at higher powers is not expedient in the calculations, since
their accuracy is limited by the material equations originally
used. Taking this into account, we use the approximate relation
�B = μ0 �H in the transformation of formulas (18) and (22) and
get

〈w〉t =ε0

4
E0xE

∗
0x

(
1 + 1

Aε0
ψ(ω)

)
+ μ0

4
H0xH

∗
0x

×
(

1 + μ0M
2

A
ψ(ω)

)
+ 1

4

μ0M

A

× j
(
E0xH

∗
0x − E∗

0xH0x

)
ψ(ω). (23)

This equation contains in the third term on the right the
specific torsion of the spiral trajectory of the electron q in the
first power, which enters into the coefficient M . Consequently,
the chiral properties of the metamaterial are taken into account
in this expression in the first-order approximation, as it should
be done. The advantage of formula (23) is that it gives the
ultimate value for the volumetric energy density at ω = ω0,
i.e., at the resonance frequency where the absorption is strong.
Here we use the following shorthand notations:

A = m
r2q2 + 1

Ne2
,

M = r2qω

2
.

For metamaterials composed of helices, the relative permittiv-
ity, permeability, and chirality factors are

εr = 1 + 1

Aε0

ω2
0 − ω2 − jω�(

ω2
0 − ω2

)2 + ω2�2
,

μr = 1 + μ0
M2

A

ω2
0 − ω2 − jω�(

ω2
0 − ω2

)2 + ω2�2
,

κ = M

A

√
μ0

ε0

ω2
0 − ω2 − jω�(

ω2
0 − ω2

)2 + ω2�2
.
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For plane waves, 〈w〉t takes the form

〈w〉t =1

4
ε0(|E0+|2 + |E0−|2)

(
1 + 1

Aε0
ψ(ω)

)

+ 1

4
ε0

∣∣∣∣ εr

μr

∣∣∣∣(|E0+|2 + |E0−|2)

(
1 + μ0M

2

A
ψ(ω)

)

+ √
ε0μ0

M

4A

(√
ε∗
r

μ∗
r

+
√

εr

μr

)
(|E0+|2− |E0−|2)ψ(ω).

(24)

For the optimal helices at the resonance frequency, M
c

= ±1

or r2qω

c
= ±2, εr = μr , “+” corresponds to right-hand helices,

while “−” corresponds to left-hand ones.
For metamaterials based on only right-handed optimal

helices, the following relation holds:

〈w〉t ≈ 1

2
ε0(|E0+|2 + |E0−|2) + 1

A
|E0+|2ψ(ω). (25)

The first term in (25) is the energy of two CP modes in vacuum
combining the energies of electric and magnetic fields; the
second term is the energy of interaction of one mode with
the helices, as the orthogonal mode is not interacting. For
metamaterials based on only left-handed optimal helices, the
following relation is obtained:

〈w〉t ≈ 1

2
ε0(|E0+|2 + |E0−|2) + 1

A
|E0−|2ψ(ω). (26)

The relation (26) shows that, in this case, the metamaterial in-
teracts only with the orthogonal mode of circular polarization.

Calculating losses of energy of electromagnetic fields in a
metamaterial, we find that the energy absorbed per unit volume
and time is equal to 〈Q〉t = 〈γ (υ

′
)2N〉t [see the explanations

after formula (13)].
For helices the axes of which are oriented along the x axis,

the absorbed energy reads

〈Q〉t = − ω

2
{ε0ε

′′
r |E0x |2 + μ0μ

′′
r |H0x |2

+ j
√

ε0μ0(E0xH
∗
0x − E∗

0xH0x)κ ′′}. (27)

If the structure is isotropic, that is, the helices are oriented
along x and y axes in equal concentrations, we need to take
into account components of the fields E0y , H0y . In this case,
formula (27) can be easily generalized. For better clearness of
calculations, as before, we consider only helices oriented along
the x axis. If we subtract the energy of the field in vacuum, the
energy stored in the helices on the frequency ω0 reads

〈w〉t (ω0) − 1

4
ε0|E0x |2 − 1

4
μ0|H0x |2 = 〈wstor〉t (ω0), (28)

〈wstor〉(ω0) =1

2

1

�2

1

A

{|E0x |2 + μ2
0M

2|H0x |2

+ μ0Mj (E0xH
∗
0x − E∗

0xH0x)
}
, (29)

〈wstor〉t (ω0)

〈Q〉t (ω0)T
= ω0

2π�
, T = 2π

ω0
. (30)

These formulas show that when the damping factor � is
increasing, the stored energy (29) reduces more rapidly and
substantially rebating the absorbed energy for the period of

field variation. For small but nonzero � the stored energy con-
siderably increases the absorbed energy per time period T . For
plane waves, the absorbed energy can be presented as follows:

〈Q〉t = − ω

2
ε0

{(
ε′′
r + μ′′

r

∣∣∣∣ εr

μr

∣∣∣∣
)(|E0+|2 + |E0−|2)

+ κ ′′
(√

ε∗
r

μ∗
r

+
√

εr

μr

)(|E0+|2 − |E0−|2)
}

, (31)

where E0± are the amplitudes of CP waves, double prime
denotes the imaginary part, and the asterisk denotes the
complex conjugate.

Formulas (24) and (31) obtained for helically structured
metamaterials coincide with already known results for linearly
polarized waves in metamaterials formed by straight wires or
split ring resonators. This is confirmed by expressions (12)
and (21) obtained via various techniques [2–4]. However, such
metamaterials do not possess chiral properties, in contrast
to metamaterials consisting of helices. In the latter case, the
metamaterial exhibits selective properties that are substantially
different for the right-handed and left-handed CP waves.
Therefore, the energy of the field, stored and absorbed in the
chiral metamaterial, must be calculated specifically for CP
waves. In the framework of other known approaches, such an
energy calculation was not previously performed.

III. NUMERICAL EXAMPLES

For a quantitative analysis of obtained theoretical results,
we have plotted a typical dependence of stored and dissipated
energies 〈w〉±t and 〈Q〉±t as functions of the frequency and
the helix pitch angle. Here, signs ± stand for the right-handed
and left-handed CP waves, respectively. Note that we call a
CP wave “right-handed” when its electric field vector rotates
clockwise if the observer looks in the wave propagation
direction. The numerical results are presented in Fig. 2 for the
following parameter values: N = 2 × 1017 m−3, � = 0.03ω0.

From the analysis of Fig. 2, it is clear that there is a
special geometry of single-turn right-handed helices having
the pitch angle of about 13.7◦ at which the interaction with
the left-handed mode is minimal. We call this type of helice
“optimal.” However, there is one more extreme pitch angle
near 48◦ at which the interaction with the right-handed mode
has its maximum. It is also interesting to estimate the pitch
angle for the maximum energy difference between two modes.
The energy spread is maximal for 45◦. Note that Figs. 2(c) and
2(d) are in logarithmic scale. At this pitch angle, however,
the energy of the left-handed mode is substantially greater
than for the optimal helix. A similar trend is observed for
the absorbed energy in Fig. 2(d). It is interesting to compare
these results with the conclusions of paper [22], where the
notion of “objects of maximum chirality” was introduced. In
that paper, “maximum chirality” corresponds to the optimal
helices, introduced and studied in Refs. [12–18], that is, to
helices which interact only with waves of one of the two
orthogonal polarizations. However, the present results show
that extreme chirality can be possibly defined based on other
criteria: maximally strong interaction with one of the CP modes
or maximum difference of reactive energies of an object in the
field of right- or left-hand polarized waves. Clearly, the most
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FIG. 2. (a) Energy density for optimal helices (α = 13.65◦) in
the field of a right-handed CP wave (24) in relative units (r.u.) vs
frequency, (b) energy density for optimal helices (α = 13.65◦) in the
field of a left-handed CP wave (24) vs frequency, (c) energy density
for arbitrary (in general, nonoptimal) helices (24) vs helix pitch angle
for the right-handed (+) and left-handed (−) modes at the resonant
frequency (ω = 18.9 GHz), (d) absorbed energy for the same helices
(31) vs helix pitch angle for the right-handed (+) and left-handed (−)
modes at the resonant frequency (ω = 18.9 GHz).

appropriate criterion is defined by the thought application of
the studied chiral object.

IV. CONCLUSION

Electromagnetic energy density in a dispersive chiral struc-
ture which is made of helices has been analytically determined
taking into account strong dispersion and losses. The results
have been obtained using several approaches: the general
approach, the helical model, and the approach based on the
model of a single-component medium. The stored energy
density and the absorbed energy in metamaterials composed
of helices have been determined depending on the frequency
and the helix pitch angle. We have found the geometrical
parameters of the helix for maximal selectivity of interaction
of helices with right- and left-handed CP waves and discussed
criteria for definition of “maximally chiral” objects. The results
can be used in optimizing chiral shapes for specific applications
from microwave to optics. Although this study is focused on
chiral effects, the developed methods can be used to study
more general bi-anisotropic particles such as � or pseudochiral
particles [23].
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