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Magnetic structure of paramagnetic MnO
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Using a combination of single-crystal neutron scattering and reverse Monte Carlo refinements, we study
the magnetic structure of paramagnetic MnO at a temperature (160 K) substantially below the Curie-Weiss
temperature |θ | ∼ 550 K. The microscopic picture we develop reveals a locally ordered domain structure
that persists over distances many times larger than the correlation length implied by direct analysis of the
spin-correlation function. Moreover, the directional dependence of paramagnetic spin correlations in paramagnetic
MnO differs in some important respects from that of its incipient ordered antiferromagnetic state. Our results
demonstrate that atomistic refinement to large three-dimensional neutron-scattering datasets is a practical
approach, and have implications for the understanding of paramagnetic states in weakly frustrated systems,
including high-temperature superconductors.
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I. INTRODUCTION

In frustrated magnets, long-range magnetic order emerges
at a temperature Tc substantially lower than the effective
energy scale of magnetic interactions (i.e., the Curie-Weiss
temperature |θ |) [1]. A distinction is usually drawn between
“weak” and “strong” frustration, associated with values of
the frustration parameter f = |θ |/Tc respectively smaller or
larger than 10 [2]. While the field has traditionally focused on
the exotic states accessible in strongly frustrated systems [3],
weak frustration nevertheless plays a key role in the magnetic
behavior of a number of canonical antiferromagnets, including
MnO [4]. Of particular interest is the cooperative paramagnet
(PM) regime Tc < T < |θ | where magnetic interactions are
still energetically relevant, yet incapable of driving long-range
magnetic order. The “fluctuating spin-stripe” phases of cuprate
superconductors are an ever-topical example of precisely such
a state [5].

Given the importance of these canonical systems, it is
perhaps surprising how little is known from an experimental
viewpoint about the spin structures of cooperative PM states
in weakly frustrated magnets. The assumption is usually made
that local magnetic order resembles that in the incipient ordered
state [6], but is confined to small domains whose size is
determined by the characteristic rate of decay of the spin-
correlation function [5,7]. This assumption is also implicit
in conventional analysis of magnetic diffuse scattering via
Lorentzian fits [8,9]. In principle, the validity of this picture
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can be tested experimentally: magnetic diffuse scattering is
sensitive to the three-dimensional spin correlations present
in magnets—whether ordered or disordered [10,11]. When
coupled with real-space refinement tools such as the reverse
Monte Carlo (RMC) approach, this scattering can be used
to generate experiment-driven atomic-scale models of the
corresponding spin structure [12–17].

In this study, we apply this combination of diffuse scattering
and RMC analysis to determine the magnetic structure of
MnO within its cooperative PM regime. Our analysis includes
an implementation of the RMC approach that allows direct
fitting to single-crystal magnetic diffuse scattering. We find
evidence of an extensive domain structure that is locally similar
to the ordered antiferromagnetic (AFM) state but that also
supports spin correlations forbidden by AFM order. Moreover,
the domain sizes are substantially larger than suggested by
direct analysis of the spin-correlation function.

Our paper is arranged as follows. We begin with a short
introduction to the magnetic behavior of MnO. We then
describe in turn the methods used in our study, including the
new RMC implementation for single-crystal diffuse scattering,
and the results of our magnetic structure investigation of
paramagnetic MnO. We conclude with a brief discussion of
the implications of our results for other weakly frustrated
cooperative paramagnets.

Above its magnetic ordering temperature TN = 118 K,
MnO has the rocksalt structure, in which magnetic Mn2+

ions (S = 5/2, L = 0) occupy a face-centred-cubic lattice.
The presence of weak frustration in MnO is indicated by a
modest value of the frustration parameter |θ |/TN ≈ 5 [18],
which occurs because the frustrated antiferromagnetic (AFM)
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FIG. 1. (a) Nearest-neighbor AFM interactions (J1) are frustrated
on the face-centered-cubic lattice. (b) Next-nearest-neighbor AFM
interactions (J2) are not frustrated and drive checkerboard ordering
of the simple cubic sublattices.

coupling between nearest neighbors is smaller than the unfrus-
trated next-nearest-neighbor coupling (Fig. 1) [19]. Below TN,
long-range AFM order develops with magnetic propagation
vector k = [ 1

2
1
2

1
2 ]

∗
[20]. In the ordered AFM structure, spins

are aligned parallel within (111) planes, and the spin direction
is reversed in adjacent (111) planes [21]. The nearest-neighbor
interactions within (111) planes are therefore frustrated, and a
rhombohedral lattice distortion occurs in order to alleviate this
frustration [22,23].

Previous neutron-scattering studies have shown that struc-
tured magnetic diffuse scattering is present above TN

(Refs. [6,10,24]) and short-range spin correlations persist to
T � 1100 K [13,25]. Yet, all previous measurements have
been restricted to either individual reciprocal-space planes
or the powder average, limiting the information content of
the scattering pattern [26]. Advanced neutron-scattering in-
struments now allow measurement of essentially complete
three-dimensional (3D) diffuse-scattering patterns [27,28], but
a key problem remains: analysis of these very large datasets is
usually computationally prohibitive [26]. Here, we develop an
approach to allow rapid refinement of an atomic-scale model
to magnetic diffuse-scattering datasets containing >106 data
points. We demonstrate the success of this approach by fitting
to the complete 3D magnetic diffuse-scattering pattern for
MnO, allowing us to determine the relationship between PM
and AFM structures.

II. METHODS

Single-crystal neutron-scattering data were collected at
T = 160 K (�1.4TN and 0.3|θ |) using the SXD diffractometer
at the ISIS neutron source [27]. The sample was an approxi-
mately cylindrical crystal of average diameter 7 mm, length
24 mm, and mass 4.4 g. The data were corrected for instru-
mental background scattering by subtracting the scattering
intensity from an empty sample holder and were normalized
using the incoherent scattering from a vanadium standard.
The crystal structure (space group Fm3̄m) was refined to the
nuclear Bragg intensities using the JANA software package
[29], using the lattice parameter a = 4.4344(7) Å obtained
from SXD at T = 160 K. The data were binned in intervals
of 0.04 reciprocal-lattice units, the m3̄m diffraction symmetry
appropriate for MnO was applied, and nuclear Bragg peaks
were removed by excising regions where the intensity exceeded
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FIG. 2. (a) Experimental magnetic diffuse-scattering data for
paramagnetic MnO at T = 160 K. Nuclear Bragg peaks have been
removed from the data. (b) RMC fit to the experimental data shown
in (a). In (a) and (b), sections of the (101)∗, (11̄1)∗, and (001)∗

reciprocal-space planes are shown. The (001)∗ plane is shifted by−0.5
reciprocal-lattice units along the [001]∗ direction in order to highlight
the strongest diffuse scattering features; i.e., it is the (h,k,− 1

2 )∗ plane.

a threshold value, plus a small surrounding volume. A 3D
representation of the experimental data is shown in Fig. 2(a).

We employ reverse Monte Carlo (RMC) refinement
[15,30,31] to fit spin configurations to our neutron-scattering
data. In RMC refinement, a supercell of the crystallographic
unit cell is generated, classical spin vectors Si are assigned
to each magnetic atom, and the orientations of these spins
are refined to match experimental data. The approximation of
spin orientations in terms of classical vectors is least severe
in the case of large S, as for Mn2+ (S = 5/2). We use a
cubic supercell of side length R = 12a (N = 6912 spins) with
periodic boundary conditions. Refinements are initialized with
random spin orientations and are iterated to minimize the cost
function

χ2 =
∑

Q

[sIcalc(Q) + B − Iexpt(Q)]2, (1)

where I (Q) denotes the magnetic diffuse-scattering intensity
at reciprocal-space position Q, subscripts “calc” and “expt”
denote calculated and experimental data points, s is a refined
intensity scale factor, and B is a refined flat-in-Q term which
corrects for the significant incoherent scattering from Mn
[32]. Results from four separate refinements were averaged
to increase the statistical accuracy. The magnetic diffuse-
scattering intensity is calculated as

I (Q) = C[gf (Q)]2T 2

N

∑
G

|F(G)|2W (Q − G), (2)

where C = (γnr0/2)2 is a constant, f (Q) is the Mn2+ mag-
netic form factor [33], T 2 = exp(−UisoQ

2) where Uiso =
0.005 09(9) Å2 is the isotropic atomic displacement factor for
Mn, and G is a reciprocal-lattice vector of the RMC supercell.
The magnetic structure factor

F(G) =
N∑

i=1

S⊥
i exp (iG · ri), (3)
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where S⊥
i = Si − [(Si · G)G]/G2 is the projection of the spin

located at ri perpendicular to G. We use Lanczos resampling
[34] to interpolate values of |F(G)|2 at the experimentally
measured Q points by applying the weight function [34]

W (Q) =
∏
α

sinc(QαR/2)sinc(QαR/2m), (4)

where α ∈ {x,y,z} denotes Cartesian components, m is an
integer determining the interpolation accuracy, and W (Q) ≡
0 outside the range −m < QαR/2π < m. We take m = 4,
which allows the spin correlations to be calculated with ±1%
accuracy for 0 � rα � 12 Å. Importantly, the computational
cost of updating I (Q) after a single spin rotation scales
approximately linearly with the number of Q points, and avoids
redundant calculations necessary in current approaches where
the supercell is divided into multiple “subboxes” [35,36].
Our approach nevertheless preserves an important feature of
the subbox approach, which is gradually to de-emphasize
correlations at longer distances (here, r > 12 Å) that would
add to the noise in the calculated scattering pattern [35,36]. Our
approach therefore allows rapid refinement of atomic-scale
models to very large datasets; e.g., each of our refinements to
≈1.5×106 Q points took ≈27 h of CPU time on a single core
of an Intel Xeon processor. We expect our RMC refinement
program to be applicable to 3D magnetic diffuse-scattering
data from a wide range of systems [37].

III. RESULTS

The experimental neutron-scattering data shown in Fig. 2(a)
show highly structured magnetic diffuse scattering, indicating
a magnetic state with significant correlations. Diffuse peaks are
observed at G ± [ 1

2
1
2

1
2 ]

∗
and symmetry-related positions, and

are elongated along specific 〈111〉∗ directions [Fig. 2(a)]. This
selective elongation suggests that a description of the diffuse
scattering in terms of a product of Lorentzian line shapes is not
appropriate, because such a description would require that ev-
ery diffuse peak has the point symmetry of the lattice [8,9]. An
early study [6] reported that the diffuse [ 1

2
1
2

1
2 ]

∗
peak was split

into a central peak and two satellites in the paramagnetic phase,
a result that was not reproduced by a recent single-crystal
study [24]; our data also show no evidence for such a splitting.
The RMC fit to neutron-scattering data is shown in Fig. 2(b).
Excellent agreement is achieved with the experimental data,
with the weighted-profile R factor Rwp ≈ 8.3%. Essentially
identical fits were obtained for refinements initialized from
different random starting configurations, demonstrating the
reproducibility of the results (the value of Rwp was between
8.27% and 8.30% for the four such refinements we performed).
This result shows that an atomistic configuration has been
refined to a full 3D I (Q) data set.

The spin Hamiltonian of MnO has previously been charac-
terized using inelastic neutron-scattering measurements in the
ordered AFM phase [19] and diffuse-scattering measurements
of the (110)∗ plane in the PM phase [24]. A Heisenberg
model with AFM nearest- and next-nearest-neighbor exchange
constants has been employed to describe the PM phase [24],

H = −J1

∑
〈i,j〉

Si · Sj − J2

∑
〈〈i,j〉〉

Si · Sj , (5)

where Si are classical vectors of magnitude
√

S(S + 1), and
angle brackets 〈〉 and 〈〈〉〉 indicate that the sum is taken over
nearest-neighbor and next-nearest neighbor pairs, respectively,
with each pair counted twice. A good description of the
magnetic diffuse-scattering data at T ≈ 160 K is provided by
Eq. (5) with J1 = −3.3 K and J2 = −4.6 K, respectively [24].
As a check on our RMC refinement, we simulated this J1-J2

model at 160 K using direct Monte Carlo simulations. These
simulations were initialized at a high temperature (1360 K)
and cooled in 200-K steps to the simulation temperature of
160 K. At each temperature, the number of proposed moves
per spin was chosen to be at least 10t0, where t0 is the
number of proposed moves per spin needed to decorrelate the
system (t0 ≈ 70 at 160 K). Results were averaged over 16
independent configurations to improve statistics. From these
simulations, we first calculate the radial correlation function
of the normalized spins at 160 K,

〈S(0) · S(r)〉 = 1

NS(S + 1)

N∑
i=1

Zi (r)∑
j=1

Si · Sj

Zi(r)
, (6)

where Zi(r) is the number of spins that coordinate a central
spin i at distance r . Figure 3(a) compares the 〈S(0) · S(r)〉
obtained from RMC refinement with the results for the J1-J2

model. The trend in the correlations is identical between the
two calculations; quantitatively, the difference in magnitude
of the next-nearest-neighbor correlation value is 7%. The
spin-correlation length ξ = 2.258(3) Å � a/2 was obtained
by fitting exp(−r/ξ ) to |〈S(0) · S(r)〉| over the set of distances
for which |〈S(0) · S(r)〉| is larger than at all longer distances.
We will come to show that local magnetic order persists over
a length scale substantially larger than ξ . The maximum value
of 〈S(0) · S(r)〉 obtained from RMC refinement was 0.1512(4)
at the next-nearest-neighbor distance, which is much smaller
than the maximum value of S2/S(S + 1) ≈ 0.71 expected in an
ordered state. Motivated by the evidence from γ -ray diffraction
for a nonspherical distortion of the d-electron density in
the PM phase [38], we also calculated the distribution of
spin orientations from our RMC refinements but observed no
statistically significant anisotropy in the spin orientations. This
result is consistent with the observation that the magnetic dipo-
lar interaction is mainly responsible for magnetic anisotropy
in MnO [39,40], but its strength DS2 ≈ 8 K (Ref. [19]) is
much smaller than the thermal energy at 160 K. The results
from RMC refinement therefore agree closely with the J1-J2

Heisenberg model of PM MnO, validating the methodology of
3D RMC refinement.

Access to 3D spin configurations allows us to probe
magnetic structure in more depth than given by radial spin-
correlation functions alone. Our particular interest is in under-
standing the relationship between the PM and AFM states in
MnO. The 〈S(0) · S(r)〉 function shown in Fig. 3(a) already
hints that the PM correlations do not simply resemble the
AFM correlations multiplied by a decreasing function of
distance. As expected from the relative magnitudes of J1 and
J2, the strongest correlation is between next-nearest neighbors,
for which AFM interactions are not frustrated. However,
significant AFM correlation is present at the nearest-neighbor
distance in the PM phase, whereas this radially averaged
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FIG. 3. (a) Radial spin-correlation function 〈S(0) · S(r)〉 for MnO
at T = 160 K. Black bars show results for the J1-J2 model described
in the text and red diamonds show results from RMC refinement to
single-crystal magnetic diffuse-scattering data. The dashed grey line
shows the fit of an exponential envelope to the RMC |〈S(0) · S(r)〉|,
which yields spin-correlation length ξ = 2.258(1) Å. Grey squares
show the |〈S(0) · S(r)〉|values included in the fit. Error bars are smaller
than the symbol size in the plot. (b) 3D spin-correlation function
g(r) (defined in the text) obtained from RMC refinement. The figure
shows the (xy0) plane (i.e., a cubic face). The crystallographic unit
cell is shown as a black box. (c) Schematic representation of g(r) for
MnO in the PM phase. Red areas indicate FM correlations and grey
areas AFM correlations. (d) Schematic representation of g(r) for a
single domain of the ordered low-temperature AFM structure of MnO.
(e) Schematic representation of g(r) obtained for the AFM structure
with the point symmetry of the Mn site in the PM state applied.

correlation is exactly zero for the ordered AFM state. This
result implies that the absence of long-range order allows
frustrated nearest-neighbor interactions to be partially satisfied
in the PM phase. In order to assess the influence of the
frustrated geometry on the spin correlations, we consider the
3D correlation function of normalized spins, 〈S(0) · S(r)〉. This
function reveals the dependence of spin correlations on the
lattice geometry, which is expected to be important in frustrated
systems [41]. In order to emphasize the directional dependence
of the longer-range correlations, we calculate the quantity

g(r) = 〈S(0) · S(r)〉√|〈S(0) · S(r)〉| . (7)

Figure 3(b) shows that a distinctive pattern—hidden in the
radial correlation function—emerges in g(r). The g(r) can
be described as a set of nested octahedral shells, with the
sign of the spin correlations alternating between FM and
AFM for successive shells as distance is increased [Fig. 3(c)].
As anticipated, this pattern extends over length scales much
greater than ξ . Hence, taking each Mn atom in turn as the
origin, Mn neighbors at coordinates r/a = [x,y,z] are (on
average) ferromagnetically correlated if x + y + z is even, and
antiferromagnetically correlated if x + y + z is odd. The sign

of g(r) is consistent with the facts that J1 and J2 interactions
are both AFM and the smallest number of exchange pathways
which connects two Mn2+ ions is given by x + y + z.

To what extent are these local correlations related to the spin
structure of the low-temperature AFM phase? The description
of the PM spin-correlation function of MnO as a set of nested
octahedral shells [Fig. 3(c)] is compared in Figs. 3(d) and 3(e)
with, respectively, the spin-correlation function for a single
domain of the AFM structure and the same correlation function
with the point symmetry of the Mn site in PM MnO (m3̄m)
applied. In a single domain of the AFM structure [Fig. 3(d)],
spins are ferromagnetically aligned within (111) planes and the
direction of spin alignment reverses between adjacent planes
[21]; hence, the PM correlations resemble the AFM structure
viewed along the [111] direction. However, an average over
the spin-correlation functions for symmetry-equivalent AFM
domain orientations [Fig. 3(e)] cannot fully describe the PM
correlations, because g(r) vanishes for nearest-neighbor spins
in this case. The RMC results [Fig. 3(b)] are intermediate
between Figs. 3(c) and 3(e): the signs of the spin correlations
are described by Fig. 3(c) but the magnitudes of the spin
correlations are largest at the positions shown in Fig. 3(e).
Consequently, an interpretation of the PM phase in terms
of local AFM order explains the strongest spin correlations
but is nevertheless an oversimplification because the nature
of the nearest-neighbor correlations is different in PM and
AFM states. These results are entirely consistent with the
early theoretical studies of Refs. [42,43] based on the random-
phase Green’s-function approximation, and recent magnetic
pair-distribution function (mPDF) analysis of powder neutron-
scattering data [44].

We proceed to explore the length scale over which this
modified AFM-like local order persists. In the conventional
interpretation, local AFM order is characterized by one of the
four symmetry-equivalent k ∈ 〈 1

2
1
2

1
2 〉∗ [6,45]. It is assumed

that different k are selected within separate regions of the
crystal, so that the overall cubic symmetry of the PM phase is
preserved. To look for such domain structure in the RMC spin
configurations, we calculate a local version of the magnetic
scattering factor that functions as a locally averaged order
parameter [46],

Sk(r) =
∣∣∣∣∣
∑

i

w(|r − ri |) Si exp

(
i
2π

a
k · ri

)∣∣∣∣∣
2

, (8)

where k ∈ 〈 1
2

1
2

1
2 〉∗, ri is the position of spin Si within the

configuration, and the continuous variable r denotes posi-
tion within the configuration. The local averaging function
w(|r − ri |) is chosen to be a decaying function of |r − ri |,
so that the Sk(r) is sensitive to local correlations [46]; we take

w(|r − ri |) = exp

(
−|r − ri |

2ξ

)
. (9)

The physical motivation for this choice is to reflect the approx-
imately exponential decay of |〈S(0) · S(r)〉| with correlation
length ξ [Fig. 3(a)]; the factor of 2 in the denominator of Eq. (9)
occurs because the scattering intensity is proportional to the
square of the magnetic structure factor. We assign each site as
a member of domain with propagation vector k if Sk exceeds
a threshold value, which is chosen to maximize the number of
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FIG. 4. Magnetic domain structure of MnO at T = 160 K ob-
tained as described in the text. In (a), different domains with local
periodicity k ∈ 〈 1

2
1
2

1
2 〉∗ are shown in different colors. The colored

regions show the threshold where Sk(r) = 80.6 [the range of Sk(r)
is between approximately 0 and 200]. In (b), the four images show
different k ∈ 〈 1

2
1
2

1
2 〉∗. The value of Sk(r) in each image is shown

using a blue-to-red color map. Colored points indicate the range
where Sk(r) � 80.6, using the same colors as (a). The images in (a)
and (b) are shown in the same orientation. (c) Domain-occupancy
correlation function described in the text (black circles) and fit to
the pair-correlation function for a sphere to extract the average
domain radius (red line). Error bars indicate 1 standard deviation.
(d) Spin-correlation function for spin pairs within domains (blue
circles) and for “matrix” spin pairs that do not belong to any domain
(red diamonds). Error bars are smaller than the symbol size in the
plot.

sites that are members of a single domain while minimizing
the number that are members of more than one domain. We
use the threshold value that minimizes the function

χ2
domain =

N∑
i=1

∣∣∣∣∣∣
[∑

k

di,k

]2

− 1

∣∣∣∣∣∣, (10)

where di,k = 1 if site i is occupied by a domain with propaga-
tion vector k for a given threshold value of Sk, and is otherwise
zero.

Figure 4(a) shows the regions of a representative RMC
configuration in which Sk(r) exceeds the threshold value of
80.6(6) for domain occupancy. These regions contain several
continuous and largely nonoverlapping volumes within which
a single k dominates, suggesting that a domainlike structure
exists in PM MnO. While the location of such regions within
the supercell differs between refinements, as required by
the lack of overall symmetry breaking in the PM phase, the

volume occupied by domains was consistently ∼35% of
the supercell volume. Similar behavior (not shown) is also
observed for the J1-J2 model. To estimate the length scale over
which this structure exists, we define a correlation function of
domain occupancies,

〈d(0)d(r)〉 = 1

〈|dk(0)|2〉
N∑

i=1

Zi (r)∑
j=1

dk,idk,j

Zi(r)
. (11)

The domain correlation function—averaged over all domains
and refinements—is shown in Fig. 4(c). This result shows that
domains persist over several unit cells—a much longer range
than the value of ξ determined by direct analysis of the spin-
correlation function. To obtain a quantitative estimate of the
domain correlation length, we fit the domain-correlation func-
tion using the pair-correlation function for a sphere [47,48],

ρs(r) =
{

ρav + (1 − ρav)
[

1
16

(
r
r0

)3 − 3r
4r0

+ 1
]
, r � 2r0,

ρav, r > 2r0,

(12)

where r0 = 8.1(1) Å is the average domain radius, and ρav =
0.082(2) is the limiting value of the domain correlation func-
tion at large r . The curvature of 〈d(0)d(r)〉 is reasonably well
approximated by ρs(r); the shoulder near r = 3a in the ex-
perimental function likely reflects systematic deviations from
sphericity. Refinements with a smaller supercell of side length
R = 10a yielded a comparable domain radius r0 = 7.9(1) Å,
suggesting that finite-size effects are not significant for these
supercell dimensions. Our estimate implies a smaller domain
size than the value of ∼50 Å reported in Ref. [6]; we note, how-
ever, that this value was obtained based on satellite reflections
that were not observed in a subsequent experimental study [24].
We also emphasize that these values are dependent on the cri-
teria for assigning spins to domains, as defined in Eqs. (9) and
(10). As an independent check on whether spins that belong to a
domain are distinguishable from those that do not, we calculate
the radial spin-correlation function for (i) pairs of spins that
belong to at least one domain of any k (“domain spins”), and (ii)
pairs of spins that do not belong to any domain (“matrix spins”).
The calculations were performed using Eq. (7), replacing the
normalization by N with the total number of domain spins
(∼0.35N ) or the total number of matrix spins (∼0.65N ),
respectively. Results are shown in Fig. 4(d) and indicate that
domain-spin correlations are of larger magnitude and range
than matrix-spin correlations. Moreover, the domain-spin cor-
relations are much larger at the next-nearest-neighbor distance
than the matrix-spin correlations. These results indicate a PM
structure that is inhomogeneous on the nanoscale, showing
weak and frustrated spin correlations between domains and
incipient antiferromagnetic ordering within domains.

IV. CONCLUDING REMARKS

Our study has provided experimental insight into the nature
of the cooperative PM phase of MnO. We find a modified AFM-
like local order that persists over continuous regions, each
associated with one of four symmetry-equivalent modulation
vectors k ∈ 〈 1

2
1
2

1
2 〉∗ and each spanning several unit cells.

The presence of local 〈 1
2

1
2

1
2 〉∗ periodicity provides a natural
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explanation for the experimental observation of dispersive
(spin-wave-like) excitations in this phase [49]. The clearest
difference between local spin correlations in the PM and
AFM states is the relief of nearest-neighbor frustration in
the former. This effect is analogous to the situation observed
in some metallic glasses, where structural units can possess
local icosahedral symmetry inconsistent with the long-range
structural periodicity of crystalline arrangements [50,51]. Our
results are also reminiscent of the proposed coexistence of
two different local magnetic structures in the chalcogenide
superconductor FeTe, one of which is incompatible with the
long-range magnetic order observed in that material [52].
Our observation of nontrivial PM correlations in a weakly
frustrated system has implications for the interpretation of spin
disorder in other high-temperature superconductors, which
have traditionally been assumed to resemble ordered states
over short length scales [7].

A second key result of our study is the development of
an approach for refining spin configurations against the full
3D neutron-scattering pattern measurable using instruments
such as SXD at the ISIS neutron source, containing >106 data
points. This provides a practical model-independent alternative
to traditional methods for interpreting diffuse-scattering data
[53,54].
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