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Noise in tunneling spin current across coupled quantum spin chains
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We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly
coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in
one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly
coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias
exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the
spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron
scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a
suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature
of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse
spin Hall effect used extensively in spintronics.
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I. INTRODUCTION

The quantification of spin-dependent charge current noise
[1–9] as well as pure spin current noise [10–12] in mesoscopic
conductors has garnered much attention over the past two
decades, demonstrating the importance of spin effects on
charge transport. In contrast, the study of pure spin current
noise in insulating spin systems (i.e., quantum magnets) has
received only limited attention [13–15]. This focal imbalance,
however, may soon resolve with the recent pioneering de-
velopments in spintronics, where experimentalists are now
capable of generating and detecting pure spin currents in
insulating magnets using purely electrical signals [16–19]. In
these experiments, two strongly spin-orbit coupled metals are
affixed to two opposite ends of a magnetic insulator [e.g.,
yttrium iron garnet (YIG)], charge current is passed through
one metal generating spin current in the magnet via the spin
Hall effect (SHE), and charge current is detected in the second
metal generated by the inverse SHE. These advancements open
doors to the fascinating possibility to quantify spin propagation
through quantum magnets via electrical measurements, and
render the theoretical investigation of pure spin current noise
in these systems timely.

A natural setup to study spin current and noise in quantum
magnets involves two quantum magnets weakly coupled via
the exchange interaction (see, e.g., Fig. 1). In the presence
of a bias, the exchange coupling allows spin-1 excitations to
stochastically tunnel from one system to the other, generating
a noisy spin current in the latter. In this context, the physics of
spin injection into a quantum magnet should depend on the spin
quantum number s of the localized spins. If a spin-1 excitation
is injected into an s = 1/2 quantum magnet, a second spin-1
excitation cannot be injected at the same site, generating a
partial blockade (or Pauli blockade) during spin injection
associated with the fermionic nature of the spin-1/2 operators
[20]. Pauli blockade should be absent in large-s quantum

magnets, where an approximate theoretical description of the
injection process in terms of tunneling bosonic quasiparticles
(i.e., magnons) is appropriate. This crossover from boson-like
to fermion-like spin injection physics as s approaches the
quantum limit should have an effect on the tunneling spin
current and noise and have direct experimental consequences
on spin transport.

In this work, we compare spin transport across weakly
coupled s = 1/2 quantum magnets to that across weakly
coupled large-s magnetic insulators and evaluate quantities that
differentiate between the two: the spin current, its dc noise
and the spin Fano factor defined as the noise-to-signal ratio
of the spin current. Specifically, for a quantum magnet we
consider the s = 1/2 antiferromagnetic quantum spin chain
(QSC) due to its amenability to rigorous theoretical analysis
[21] and relevance to real materials [22]. We consider spin
currents generated by an over-population of spin excitations in
one quantum magnet (i.e., subsystem) relative to the other
while simultaneously applying a temperature difference be-
tween the two subsystems. We find a strikingly different
behavior in the spin Fano factor between the QSC and the
large-s (magnon) cases. Unlike the magnon case, a vanishing
spin current and concomitant diverging spin Fano factor is
found only in the QSC scenario even in the presence of a
large temperature bias, provided no over-population of spin
excitations in one subsystem relative to other exists. We show
that this finding is in exact analogy with the results obtained in
the physics of local electron scattering between edge states of
two fractional quantum Hall liquids [23,24]. We also compare
the noise generated by nonequilibrium injection of spin into
one subsystem to that generated by injecting spins into both
subsystems, and we find that over-populating both subsystems
actually reduces the noise in the QSC scenario but increases
the noise in the magnon case. We attribute this suppression
in the noise to Pauli blockade physics associated with the
fermionic nature of spin-1/2 operators in the QSC scenario. We
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FIG. 1. Two semi-infinite quantum spin chains, one labeled the
source and the other the drain, are coupled at their finite ends. Strongly
spin-orbit coupled metals act as injector and drain for spin current.
The source chain is held at temperature T1 and the drain chain at T2.
The spin injection from the injector metal via the spin Hall effect
leads to a nonequilibrium accumulation of spin in the source chain.
Depicted positions are continuum variables.

finally discuss how the spin Fano factor may be experimentally
obtained via the inverse SHE used in spintronics.

This paper is organized as follows. Section II introduces
our model for the quantum spin chain, wherein we describe the
Luttinger model and further reveal a striking similarity between
our problem and a similar situation in fractional quantum Hall
physics. In Sec. III, we utilize a general nonequilibrium scheme
based on the Keldysh formalism to derive spin transport
properties in our system of interest, and contrast it to the same
calculation in a geometrically equivalent large-s magnonic
system. We discuss our results in Sec. IV, and present a possible
method for experimental verification in Sec. V. Finally, we
conclude in Sec. VI and propose potential avenues for future
exploration.

II. MODEL

Our system of interest is composed of two s = 1/2 an-
tiferromagnet spin chains exchange-coupled end-to-end, one
labeled the source chain (ν = 1) and the other the drain chain
(ν = 2), with each additionally coupled to a metal with strong
spin-orbit coupling (e.g., Pt, Ta, etc.) at the other ends (see
Fig. 1). To allow for possible spin transfer across the spin
chains, we consider elevating the temperature of one QSC
relative to the other (i.e., thermal bias) and/or injecting a z

polarized spin current (hereafter simply referred to as spin
current) into the source QSC (i.e., chemical bias). The spin
current injection can be facilitated, e.g., by SHE at the upstream
end of the chain, where the injector metal is coupled and driven
by a charge current. Due to spin-orbit coupling in the metal,
a charge current flowing in the y direction can give rise to a
spin current flowing in the x direction with spin polarized in
the z direction and produce a (z-polarized) spin accumulation
at the interface (as shown in Fig. 1). [25,26] Interfacial
exchange interaction then allows spin angular momentum to be
transferred from the metal’s electron spins to the spin moments
in the QSC, effectively leading to an injection of spin current
into the QSC [16–19,27–29]. The injected spin current tunnels
across the QSCs and is eventually ejected into the drain metal,
where the spin current converts into a transverse charge current
via the inverse SHE and can therefore be detected electrically.
Our focus will be on the spin current flowing at x = x1 in

the drain chain and its dc noise (see Fig. 1), which should be
electrically detectable using the drain metal.

A. Luttinger model for the spin chains

We consider two identical s = 1/2 semi-infinite xxz an-
tiferromagnet chains that are weakly exchange-coupled at
their finite ends, i.e., at site j = 0 (or x = 0), as shown in
Fig. 1. The total Hamiltonian for the QSCs can then be written
as Ĥ = ∑

ν=1,2 Ĥν + Ĥb + Ĥc ≡ Ĥ0 + Ĥb + Ĥc, where the
Hamiltonians of the two QSCs read

Ĥν = J
∑

j

{
Ŝx

ν,j Ŝ
x
ν,j+1 + Ŝ

y

ν,j Ŝ
y

ν,j+1 + �Ŝz
ν,j Ŝ

z
ν,j+1

}
, (1)

with J,� > 0, and the coupling Hamiltonian reads

Ĥc = J⊥
c

{
Ŝx

1,0Ŝ
x
2,0 + Ŝ

y

1,0Ŝ
y

2,0

} + J z
c Ŝz

1,0Ŝ
z
2,0, (2)

where we assume |J⊥
c |, |J z

c | � J and we are allowing for an
xxz anisotropy in the exchange coupling. The bias Hamiltonian
Ĥb will be specified later.

We assume � < 1 such that the QSCs are in the xy

phase with unaxial symmetry and possess a gapless excitation
spectrum [21]. In this regime and in the long-wavelength limit,
Eq. (1) is well-described by a Luttinger liquid Hamiltonian
[30–32],

Ĥ0 = h̄u

4πK

∫ 0

−∞
dx{[∂x

ˆ̃ϕ1,R(x)]2 + [∂x
ˆ̃ϕ1,L(x)]2}

+ h̄u

4πK

∫ ∞

0
dx{[∂x

ˆ̃ϕ2,R(x)]2 + [∂x
ˆ̃ϕ2,L(x)]2}, (3)

where u is the speed of the chiral boson fields, K

is the so-called Luttinger parameter, and the chiral bo-
son fields obey [ ˆ̃ϕν,R(x), ˆ̃ϕν ′,R(x ′)] = −[ ˆ̃ϕν,L(x), ˆ̃ϕν ′,L(x ′)] =
iπKδνν ′ sgn(x − x ′) [30]. Arriving at Eq. (3) requires that
we drop RG-irrelevant operators (e.g., band-curvature and
backscattering terms) and that we constrain our inquiry to
the Gaussian regime. In order to remain within the Gaussian
regime we find u and K perturbatively by taking � � 1.
The result is that u = vF /K and K � 1 − 2�/π for the low
energy sector. However, a Bethe ansatz approach shows that
the Gaussian model in fact holds for the entire critical domain
|�| < 1 provided we identify u = πvF

√
1 − �2/2 cos−1(�)

and K = [2 − (2/π ) cos−1(�)]−1 [33]. Therefore, given this
exact solution, we assume throughout that � � 1 and so take
u � πvF /2 and K � 1/2, i.e., close to the Heisenberg limit
with � � 1.

Spin injection at the upstream end of the source QSC should
generate a spin accumulation in the QSC, which, in the long-
time (steady-state) limit, can be modeled as a (uniform) spin
chemical potential μ that extends over its entire length, causing
the spins to precess about the z axis and driving current across
the coupling. The Hamiltonian describing the chemical bias
may then be written as

Ĥb = μ

2π

∫ 0

−∞
dx ∂x( ˆ̃ϕ1,R + ˆ̃ϕ1,L). (4)
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B. Exact mapping to the problem of stochastic electron
tunneling between two fractional quantum Hall edge channels

In order to treat the semi-infinite chains we must account for the
finite boundary. We begin this process by first introducing new
scaled chiral fields ϕ̂ν,R/L = ˆ̃ϕν,R/L/

√
K in Eq. (3), allowing

us to map this system onto an effectively non-interacting
(i.e., K = 1 or free fermion) Luttinger liquid governed by the
Hamiltonian

Ĥ0 = h̄u

4π

∫ 0

−∞
dx{[∂xϕ̂1,R(x)]2 + [∂xϕ̂1,L(x)]2}

+ h̄u

4π

∫ ∞

0
dx{[∂xϕ̂2,R(x)]2 + [∂xϕ̂2,L(x)]2}, (5)

where now the scaled chiral fields obey [ϕ̂ν,R(x),ϕ̂ν ′,R(x ′)] =
−[ϕ̂ν,L(x),ϕ̂ν ′,L(x ′)] = iπδνν ′ sgn(x − x ′). Then the semi-
infinite boundary conditions at x = 0 requires that ϕ̂ν,R(0) =
−ϕ̂ν,L(0), which further enforces that the string operator
cos (· · · ) → 1 at the end [34]. We can extend the x = 0 result
to include all space and time by noting that right-movers are
a function of x − ut only and left-movers are a function of
x + ut only. Thus, we have

ϕ̂ν,R(−x,t) = −ϕ̂ν,L(x,t). (6)

We now impose Eq. (6) explicitly on Eq. (5) and reinstate the
unscaled fields ˆ̃ϕν,R(x) such that

Ĥ0 = h̄u

4πK

∑
ν=1,2

∫ ∞

−∞
dx [∂x

ˆ̃ϕν,R(x)]2. (7)

We note that the remaining right chiral fields now reside
on an infinite domain and obeys the commutation relation
[ ˆ̃ϕν,R(x), ˆ̃ϕν ′,R(x ′)] = iπKδνν ′ sgn(x − x ′); they can be ex-
panded in terms of canonical boson operators as

ˆ̃ϕν,R(x) = −i

√
2πK

L

∑
k>0

e−ηk/2

√
k

{
b̂ν,ke

ikx − b̂
†
ν,ke

−ikx
}
, (8)

where η is a UV cutoff and L is the chain length (eventually
taken to infinity). The boson operator b̂ν,k diagonalizes Eq. (5)
as Ĥν = ∑

k>0 εkb̂
†
ν,kb̂ν,k with εk = h̄uk.

Explicitly implementing Eq. (6) on the spin chemical bias
term Eq. (4), we obtain

Ĥb = μ

2π

[∫ 0

−∞
dx ∂x

ˆ̃ϕ1,R(x) +
∫ ∞

0
dx ∂x

ˆ̃ϕ1,R(x)

]
. (9)

Finally, applying Eq. (6) on the bosonized spin operators we
find

Ŝ−
ν,0 =

√
a(γν,R + γν,L)√

2πη
e

i
K

ˆ̃ϕν,R (0) = (Ŝ+
ν,0)†, (10)

where a is the lattice constant for the spin chain, γν are Majo-
rana fields that obey the anti-commutation relation {γμ,γν} =
2δμν . Using Eq. (10), the coupling Hamiltonian Eq. (2) can

fractional quantum 
Hall liquid at filling  

fraction K

fractional quantum 
Hall liquid at filling  

fraction K
μ
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ξ

FIG. 2. The problem of tunneling spin-1 excitations between two
semi-infinite QSCs exactly maps to the problem of stochastic electron
tunneling between the edge states of two Laughlin fractional quantum
Hall liquids at filling fraction K . The role of the spin chemical bias in
the QSC problem is played by the electrical voltage μ = eV applied
to the edge channel on the left in the quantum Hall case.

now be re-expressed as

Ĥc = ξ⊥e
i
K

[ ˆ̃ϕ1,R (0)− ˆ̃ϕ2,R (0)] + H.c., (11)

where ξ⊥ ≡ (J⊥
c a/4πη)(γ1,R + γ1,L)(γ2,R + γ2,L). Equation

(11) should in principle contain the z component of the
exchange coupling that gives rise to a term proportional
to J z

c [∂x
ˆ̃ϕ1,R(0)][∂x

ˆ̃ϕ2,R(0)]. However, a leading-order RG
analysis gives that the scaling dimension for the coupling ξ⊥ is
1 − 1/K while that for J z

c is −1. Since we assume K > 1/2,
the latter term is less RG-relevant than the terms appearing
in Eq. (11) so in the long-wavelength low-energy limit, the
inter-chain coupling should be dominated by the transverse
components of the exchange coupling presented in Eq. (11).

We note that Eqs. (7), (9), and (11) exactly correspond
to a theoretical model describing two-terminal charge trans-
port between the edge channels of two “Laughlin” fractional
quantum Hall liquids at filling fraction K (see Fig. 2) [24].
In the fractional quantum Hall scenario, Eq. (11) describes a
stochastic tunneling of (charge −e) electrons (with amplitude
ξ⊥) between the two edge states, and the role of the spin
chemical bias μ is played by the (electrical) voltage bias
μ = eV applied between the two edge channels. Equation (7)
resembles the edge state Hamiltonian for the Laughlin frac-
tional quantum Hall liquids, but we note that for the actual
Laughlin states, K is directly determined by the topological
property of the bulk quantum Hall state and is constrained to
inverse odd integers [24].

III. SPIN CURRENT AND DC NOISE

We now focus on the spin current flowing in the drain chain
and its dc noise at the spatial point x = x1 just to the left of
the drain metal (see Fig. 1). These transport quantities may be
measured electrically in the drain metal. The spin current can
be obtained by evaluating the Keldysh expectation value of
the operator for spin current [after implementing the boundary
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condition (6)]

Î (x1,t) = lim
x→x1

h̄u

2π

∑
ρ=±

ρ∂x
ˆ̃ϕ2,R(ρx,t) ≡

∑
ρ=±

Îρ(x1,t). (12)

In the infinite past, we assume the source (drain) QSC to be
in a thermal state with respect to Ĥ1 + Ĥb (Ĥ2) at temperature
T1 (T2) and that the two chains are isolated. The coupling be-
tween the QSCs Ĥc is then introduced adiabatically and treated
perturbatively within the Keldysh diagrammatic approach [35].
The current expectation value on the Keldysh contour reads

I (x1,t) = 1

2

∑
ρ=±

∑
σ=±

〈Îρ(x1,t
σ )〉 ≡ 1

2

∑
ρ=±

∑
σ=±

Iρσ , (13)

where σ = ± labels the time on the forward (+) and return
(−) contour. The dc noise is given by the time-averaged
autocorrelation function of current at different times

S(x1) =
∑

ρ1, ρ2=±

∫
dt〈Îρ1 (x1,t

−)Îρ2 (x1,0
+)〉. (14)

A. Spin current

We begin by computing the spin current flowing at x = x1,
which can be reconstructed from its components according to
Eq. (13),

Iρσ = 〈
TKÎρ(x1,t

σ )e− i
h̄

∫
cK

dtĤc(t)〉
0, (15)

where cK indicates a time integral on the Keldysh contour
and TK is the Keldysh time ordering operator. By expanding
to order ξ 2

⊥ [i.e., (J⊥
c )2], using Eq. (12) and noting that it is

possible to write all quantities in terms of exponentiated boson
operators via the relation ∂xϕ̂(x,t) = limγ→0(iγ )−1∂xe

iγ ϕ̂(x,t),
we express Eq. (15) as

Iρσ = iuρ

4πh̄
lim
x→x1

lim
γ→0

1

γ

∫
cK

dt1

∫
cK

dt2

× ∂x〈TKeiγ ˆ̃ϕ2,R (ρx,tσ )Ĥc(t1)Ĥc(t2)〉0. (16)

Expanding the coupling Hamiltonians using Eq. (11), we
obtain

Iρσ = iuρξ 2
⊥

2πh̄
lim
x→x1

lim
γ→0

1

γ

∫∫
cK

dt1dt2 e−iμ(t1−t2)/h̄∂x

〈
TKeiγ ˆ̃ϕ2,R (ρx,tσ )− i

K
[ ˆ̃ϕ2,R (0,t1)− ˆ̃ϕ2,R (0,t2)]

〉
0

〈
TKe

i
K

[ ˆ̃ϕ1,R (0,t1)− ˆ̃ϕ1,R (0,t2)]
〉
0, (17)

and note here that we have used the fact that the spin bias appears as a phase attached to the correlator for ˆ̃ϕ1,R .
We now introduce the (equilibrium) time-ordered and anti-time-ordered correlation functions

D++
ν (t1,t2) ≡ 〈

T e
i
K

[ ˆ̃ϕν,R (0,t1)− ˆ̃ϕν,R (0,t2)]
〉
0

∣∣
μ=0

= θ (t1 − t2)D−+
ν (t1,t2) + θ (t2 − t1)D+−

ν (t1,t2),

D−−
ν (t1,t2) ≡ 〈

T̄ e
i
K

[ ˆ̃ϕν,R (0,t1)− ˆ̃ϕν,R (0,t2)]
〉
0

∣∣
μ=0

= θ (t2 − t1)D−+
ν (t1,t2) + θ (t1 − t2)D+−

ν (t1,t2), (18)

where T (T̄ ) is the time (anti-time) ordering operator, θ is the Heaviside function and

D∓±
ν (t1,t2) =

{
πkBTν

uh̄
η

sin πkBTν

uh̄
[±iu(t1 − t2) + η]

}1/K

. (19)

We can then write Eq. (17) as

Iρσ = iuρξ 2
⊥

2πh̄
lim
x→x1

lim
γ→0

1

γ

∑
σ1,σ2=±

σ1σ2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2∂xe

γ

K
〈TK

ˆ̃ϕ2,R (ρx,tσ ) ˆ̃ϕ2,R (0,t
σ1
1 )〉0

× e− γ

K
〈TK

ˆ̃ϕ2,R (ρx,tσ ) ˆ̃ϕ2,R (0,t
σ2
2 )〉0D

σ1σ2
1 (t1,t2)Dσ1σ2

2 (t1,t2)e−iμ(t1−t2)/h̄, (20)

and the Keldysh contours determine the directionality of the Dν functions. Performing the γ → 0 limit, we have

Iρσ = lim
x→x1

iuξ 2
⊥

2πh̄K

∑
σ1,σ2=±

σ1σ2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2∂x

[
f σσ1

ρx (t,t1) − f σσ2
ρx (t,t2)

]
D

σ1σ2
1 (t1,t2)Dσ1σ2

2 (t1,t2)e−iμ(t1−t2)/h̄, (21)

where f σ1σ2
ρx (t1,t2) = 〈TK

ˆ̃ϕ2,R(ρx,t
σ1
1 ) ˆ̃ϕ2,R(0,t

σ2
2 )〉0. It is useful at this point to introduce the coordinates τ0 = 1

2 (t1 + t2) and
τ = t1 − t2, and shift the resultant integrals in order to cancel out the terms in Eq. (21) with σ1 = σ2. We additionally see that the
remaining two terms (with σ1 = −σ2) can be made identical up to their phase factors by interchanging the variables t1 ↔ t2 for
one of the terms and noting that D+−

ν (−τ ) = D−+
ν (τ ). We find that Eq. (21) then reduces to

Iρσ = − lim
x→x1

uξ 2
⊥

πh̄K

∫ ∞

−∞
dτ sin

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ )

∫ ∞

−∞
dτ0 ∂x

[
f σ−

ρx (0,τ0) − f σ+
ρx (0,τ0)

]
, (22)
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where the two integrals have been decoupled by the coordinate
transformation. Last, we complete the τ0 integral by noting

∂x[f +−
ρx (0,τ0) − f ++

ρx (0,τ0)]

= ∂x[f −−
ρx (0,τ0) − f −+

ρx (0,τ0)]

= −2πiK

u
θ (−τ0)δ(ρx/u + τ0), (23)

which allows us to produce the final result for this calculation,

Iρσ = 2iξ 2
⊥

h̄
θ (ρx1)

∫ ∞

−∞
dτ sin

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ ). (24)

From Eq. (13), we then write the final result for the bulk spin
current at an arbitrary point x1 > 0 in the drain chain as

I (x1,t) = 2iξ 2
⊥

h̄

∫ ∞

−∞
dτ sin

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ ). (25)

The Heaviside function appearing in the expression for Iρσ is a
manifestation of causality: we expect no contribution from the
ρ = − portion in our case, as there is no coupling interaction,
i.e., current tunneling into the drain chain, until the point
x = 0.

B. Dc noise

The dc noise calculation proceeds similarly. We start from
the general expression for the noise at x = x1,

S(x1) =
∑

ρ1, ρ2=±

∫
dt 〈TKÎρ1 (x1,t

−)Îρ2 (x1,0
+)e− i

h̄

∫
cK

dtHc(t)〉0

≡
∑

ρ1, ρ2=±
Sρ1ρ2 , (26)

and we expand this expression up to second order in ξ⊥. At
zeroth order, using Eqs. (8) and (12), we obtain

S(0)
ρ1ρ2

= ∫
dt 〈TKÎρ1 (x1,t

−)Îρ2 (x1,0+)〉0 = h̄KkBT2
2π

. (27)

So the equilibrium (Johnson-Nyquist) contribution to the
dc spin current noise at x = x1 is given by S(0)(x1) =
2h̄KkBT2/π .

The first nontrivial correction to this equilibrium result
comes at second order in ξ⊥. Representing the current operators
in exponentiated form as in the spin current calculation, the
nonequilibrium correction reads S(2)(x1) = ∑

ρ1,ρ2=± S(2)
ρ1ρ2

,
where

S(2)
ρ1ρ2

= lim
x,y→x1

lim
γ1,γ2→0

u2ξ 2
⊥ρ1ρ2

4π2γ1γ2

∑
σ1,σ2=±

σ1σ2

∫ ∞

−∞
dt

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 ∂x∂y

× 〈
TKeiγ1 ˆ̃ϕ2,R (ρ1x,t−)+iγ2 ˆ̃ϕ2,R (ρ2y,0+)− i

K
[ ˆ̃ϕ2,R (0,t

σ1
1 )− ˆ̃ϕ2,R (0,t

σ2
2 )]

〉
0

〈
TKe

i
K

[ ˆ̃ϕ1,R (0,t
σ1
1 )− ˆ̃ϕ1,R (0,t

σ2
2 )]

〉
0. (28)

We employ Eq. (18) and f σ1σ2
ρx (t1,t2) as defined above and perform the γ1,γ2 → 0 limits to obtain

S(2)
ρ1ρ2

= lim
x,y→x1

u2ξ 2
⊥ρ1ρ2

4π2K2

∫ ∞

−∞
dt

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑
σ1,σ2=±

σ1σ2 e−iμ(t1−t2)/h̄ D
σ1σ2
1 (t1,t2)Dσ1σ2

2 (t1,t2)

× ∂x∂y

[
f −σ1

ρ1x
(t,t1) − f −σ2

ρ1x
(t,t2)

][
f +σ1

ρ2y
(0,t1) − f +σ2

ρ2y
(0,t2)

]
. (29)

Expanding the Keldysh contours and noting again that the contributions from σ1 = σ2 vanish, we have

S(2)
ρ1ρ2

= lim
x,y→x1

−u2ξ 2
⊥ρ1ρ2

2π2K2

∫ ∞

−∞
dt

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 cos

[
μ(t1 − t2)

h̄

]
D−+

1 (t1,t2)D−+
2 (t1,t2)

× ∂x∂y

[
f −−

ρ1x
(t,t1) − f −+

ρ1x
(t,t2)

][
f +−

ρ2y
(0,t1) − f ++

ρ2y
(0,t2)

]
. (30)

Once again, we can transform to the coordinates τ0 and τ and find

S(2)
ρ1ρ2

= lim
x,y→x1

− u2ξ 2
⊥

2π2K2

∫
dτ cos

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ )

∫
dt

[
f −−

ρ1x
(t,0) − f −+

ρ1x
(t,0)

] ∫
dτ0

[
f +−

ρ2y
(0,τ0) − f ++

ρ2y
(0,τ0)

]
, (31)

where we note that the three integrals have decoupled as in the
spin current case. Equation (23) allows us to proceed, and we
obtain

S(2)
ρ1ρ2

= 2ξ 2
⊥θ (ρ1x1)θ (ρ2x1)

∫
dτ cos

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ ).

(32)
Once more, as for the spin current, the Heaviside functions
are manifestations of causality: we expect no nonequilibrium
noise in the system until points after the tunneling site at x = 0.
Therefore, our final results for the spin current and dc noise at
x = x1 are

I (μ,T1,T2) = i(J⊥
c )2a2

2h̄π2η2

∫
dτ sin

(μτ

h̄

)
D−+

1 (τ )D−+
2 (τ ) (33)

and

S(μ,T1,T2) = 2h̄KkBT2

π
+ (J⊥

c )2a2

2π2η2

∫
dτ cos

(μτ

h̄

)
×D−+

1 (τ )D−+
2 (τ ), (34)

respectively.
While we have presented a Keldysh calculation for the spin

current and noise at x = x1, Eqs. (33) and (34) could have been
obtained instead by computing the tunneling spin current and
its noise at the coupling site x = 0. We have verified that this
latter calculation results in a current that is identical to Eq. (33)
and a noise that is identical to the second term in Eq. (34). This
outcome is physically sensible. As apparent from Eq. (7), the
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metal

spin accumulation

Im, Sm

FIG. 3. Depiction of proposed magnonic system. Two coupled
magnon baths are held at temperatures T1 and T2 and chemical
potentials μ1 and μ2, respectively.

QSCs are modeled as an essentially free boson gas. Therefore,
nonequilibrium disturbances produced at the upstream end
should remain unmodified as they propagate downstream to
x = x1. In particular, tunneling spin current at the coupling
site x = 0 should be identical to the current downstream.
Moreover, any additional noise generated at the left end of
the drain QSC should propagate downstream undisturbed. We
will be using this fact in the proceeding magnon transport
comparison calculation.

C. Spin transport between two magnon baths

Equations (33) and (34) can now be contrasted to the case of
spin transport across two coupled magnon baths (see Fig. 3).
In similar spirit to the QSC calculation, our interest here is
the spin current Im flowing at the spatial point just left of the
drain metal (indicated by the black arrow) and its dc noise Sm,
as these are the physical quantities that may be electrically
detected by the metal. We consider both raising the magnon
chemical potential in the source bath above zero and/or the
spin Seebeck effect [25], in which spin current is generated by
a temperature difference between the two baths. SHEs can be
utilized to transfer spin angular momentum from the injector
metal into the source magnon bath and raise the magnon
chemical potential in the latter [17,18,36,37]; the injection
process is analogous to the spin injection process discussed
in the context of the QSC setup (see Sec. II).

In the absence of the bath coupling, we assume that magnon
bath ν is thermalized to a distribution function nν(�) =
{exp[βν(h̄� − μν)] − 1}−1, where ν = 1,2 labels the two
magnon baths, βν = (kBTν)−1 is the inverse temperature, and
μν is the magnon chemical potential; we set μ1 = μ and
μ2 = 0 throughout unless otherwise stated.

We work with two identical spin-s Heisenberg ferromag-
netic insulators (with Nx × Ny × Nz cubic lattice structures)
in a uniform magnetic field along the z axis,

Ĥm
ν = −J

2

∑
j ,δ

Ŝν, j · Ŝν, j+δ + H
∑

j

Ŝz
ν, j , (35)

where J is the exchange coupling, H is the Zeeman energy due
to an external magnetic field along the z axis, j labels sites of
the lattice, and δ labels all nearest neighbor sites (this model has
been applied to, e.g., YIG with s ≈ 14 and lattice constant a ≈
12 Å [38]). Assuming s � 1, Eq. (35) maps to an essentially
noninteracting boson model via Ŝ−

ν, j ≈ √
2sb̂ν, j and Ŝz

ν, j =
b̂
†
ν, j b̂ν, j − s [39]. The system is comprised of two semi-infinite

systems coupled along the x = 0 plane, thus we consider the
boundary and so diagonalize Eq. (35) via the Fourier transform,

b̂ν, j =
√

2

NxNyNz

∑
k

eikyjya+ikzjza cos(kxjxa)b̂ν,k, (36)

which is appropriate for a zero-flux boundary condi-
tion at the interface; the momenta are kx = πnx/Nxa

and ky,z = 2πny,z/Ny,za, with ni = 1, . . . ,Ni . We then ar-
rive at Ĥm

ν = ∑
k εkb̂

†
ν,kb̂ν,k with magnon dispersion εk =

−2J s[cos(kxa) + cos(kya) + cos(kza) − 3] + H . Finally, we
use a general interfacial exchange coupling,

Ĥm
c = s

∑
k, p

Jck pb
†
k,1b p,2 + H.c. (37)

We note that for s � 1 as assumed here, Eq. (35) maps to
an essentially free boson model. Therefore, as discussed at the
end of Sec. III B, tunneling spin current across the two magnon
baths and its noise (denoted by I ′

m and S ′
m, respectively, in

Fig. 3) enter the drain bath at x = 0 and should propagate
undisturbed down to the drain metal, where they can be
detected. We therefore expect here that Im = I ′

m and Sm =
S(0)

m + S ′
m, where S(0)

m is the equilibrium (Johnson-Nyquist)
spin current noise present in the drain magnon bath even in
the absence of Jc. Here, we present calculations for I ′

m and S ′
m.

The operator for spin current tunneling across the two baths
can be defined as the total spin leaving bath 1,

Î ′
m(t) = −h̄∂t

∑
j

Ŝz
1, j . (38)

Computing the nonequilibrium expectation value of Î ′
m to

lowest non-trivial order in Jc, we may collapse the Keldysh
contour and represent the result more compactly as

I ′
m = − i

h̄

∫
dtθ (−t)

〈[
Î ′
m(0),Ĥm

c (t)
]〉

0, (39)

where 〈〉0 depicts an equilibrium average with respect to the
above-mentioned thermal states. Again, to lowest nontrivial
order in Jc, the dc noise is given by the time-averaged
autocorrelation function of current at different times, i.e.,

S ′
m =

∫
dt〈Î ′

m(t)Î ′
m(0)〉0. (40)

Denoting the “greater” and “lesser” Green functions for
the magnons via G>

k,ν(t) = −i〈bk,ν(t)b†k,ν(0)〉0 and G<
k,ν(t) =

−i〈b†k,ν(0)bk,ν(t)〉0, we then obtain

I ′
m = −J 2

c s2

2πh̄

∫
d�

∑
k, p

{G<
k,1(�)G>

p,2(�)

−G>
k,1(�)G<

p,2(�)}, (41)

S ′
m = −J 2

c s2

2π

∫
d�

∑
k, p

{G<
k,1(�)G>

p,2(�)

+ G>
k,1(�)G<

p,2(�)}, (42)

where we have taken Jc ≡ Jck p. The Fourier transformed
Green functions are G<

k,ν(�) = −2πinν(�)δ(� − εk/h̄) and
G>

k,ν(�) = −2πi[1 + nν(�)]δ(� − εk/h̄), where nν is the
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FIG. 4. Spin Fano factor in the QSC and magnon cases plotted as
a function of the chemical bias μ ≡ μ1. Here, τ = (T1 − T0)/T0, and
we set μ2 = 0 and T2 ≡ T0 in both systems.

Bose distribution defined above and εk ≈ J s(ka)2 + H is the
magnon dispersion.

Then the spin current and its noise downstream near the
drain metal should read

Im(μ,T1,T2) = 1

h̄

∫
H/h̄

d� g(�)[n1(�) − n2(�)], (43)

Sm(μ,T1,T2) = S(0)
m +

∫
H/h̄

d� g(�)[n1(�) + n2(�)

+ 2n1(�)n2(�)], (44)

where g(�) = (Jch̄NxNyNz)2(h̄� − H )/8π3J 3s encodes the
magnon tunneling density of states. The exact expression for
the equilibrium noise component S(0)

m will not be essential in
the remainder of the discussion.

IV. DISCUSSION

A. Spin Fano factor

We begin by fixing the temperature of subsystem ν = 2
to kBT2/J = 0.004 in the QSC case (e.g., T2 ∼ 10 K for
Sr2CuO3 with J ≈ 2000 K [22]) and kBT2/J s = 0.08 in the
magnon case (e.g., T2 ∼ 4 K for YIG [38]). We define the
dimensionless thermal bias τ ≡ (T1 − T2)/T2 in both cases
and the nonequilibrium noise Sneq(μ,T1,T2) ≡ S(μ,T1,T2) −
Seq [Sm,neq(μ,T1,T2) ≡ Sm(μ,T1,T2) − Sm,eq for the magnon
case], where Seq ≡ S(μ = τ = 0) [Sm,eq ≡ Sm(μ = τ = 0)]
is the background (thermal) noise in the absence of any
bias. Figure 4 then depicts the spin Fano factor, defined as
F ≡ Sneq/h̄I and Fm ≡ Sm,neq/h̄Im as a function of the chem-
ical bias μ for various temperature biases τ .

From Eq. (43), we see that a finite magnon current Im can
be generated with either a finite μ or a finite τ , and we find
Fm = 1 for any μ and/or τ . The spin Fano factor defined here
corresponds only to the nonequilibrium contribution to the spin
current noise. Therefore, Fm = 1 reflects the (uncorrelated)
Poissonian tunneling of magnons, each carrying a spin quan-
tum of h̄, generated by the nonequilibrium biases [40].

The QSC spin Fano factor behaves markedly different.
As μ increases, i.e., enters the regime μ � kBT2, the QSC
spin Fano factor approaches 1, the same value as the magnon
spin Fano factor. This shows that for large biases (i.e.,
in the shot limit), spin current across the two QSCs is
mediated by a Poissonian tunneling of spin-1 excitations,
consistent with the interchain exchange coupling Eq. (2)
which transfers spin-1 excitations across the QSCs. How-
ever, the QSC spin Fano factor vanishes to 0 as μ → 0
for τ = 0 and diverges for any τ > 0 as μ → 0. The van-
ishing of F can be understood by noticing from Eqs. (33)
and (34) that I ∝ μ and Sneq ∝ μ2 for τ = 0 as μ → 0.
Physical speaking, this points to the fact that at τ = 0 excess
spin noise cannot depend on which chain is biased, unlike spin
current which must. Ultimately the spin Fano factor vanishes
like F ∝ μ in the absence of temperature bias.

The divergence of F for τ > 0 can be seen formally in
Eq. (33), where the effects of thermal and chemical biases
completely factorize and μ appears only inside the sine
prefactor. The spin current I decreases to zero as μ → 0 for
any τ while the excess noise Sneq remains finite for all μ and
τ > 0 [see Eq. (34)], so F diverges as μ → 0 for all τ > 0.
Within the Gaussian-Luttinger model description for the QSCs
used here, a thermal bias alone does not generate a net spin
current across the chains, and a nonzero chemical bias μ > 0
is required for a net spin flow between the chains. Interpreted
physically, what we find is the exposure of the underlying
fermionic statistics of quasiparticle exchange across the weak
link. The exchange coupling, Eq. (2), represents hopping
of Jordan-Wigner fermions. When μ = 0, as the fermionic
spectrum is linearized and the density of states is thus constant
at the fermi points, thermal bias on one edge leads to no
net current across the weak link whereas excess noise still
arises. This physical interpretation is represented in Fig. 4 as
divergence of the Fano factor for τ > 0 as μ → 0.

In Sec. II B, we noted an exact analogy between the current
problem and the problem of stochastic tunneling of electrons
between two single fractional quantum Hall edge channels. In
the latter problem, the factorization of the thermal and chemical
(i.e., voltage) biases in the tunneling charge current has been
obtained and is well known [24,41,42].

B. Manifestation of Pauli blockade in noise

The xxz quantum antiferromagnetic chains described by
Eq. (1) can be mapped to a lattice model of interacting fermions
via the Jordan-Wigner transformation [20],

Ŝz
j = ĉ

†
j ĉj − 1

2
, Ŝ−

j = ĉj cos

⎛
⎝π

∑
l<j

ĉ
†
l ĉl

⎞
⎠ = (Ŝ+

j )†, (45)

with Ŝ±
j = Ŝx

j ± iŜ
y

j . This mapping to the fermion model
reveals a certain resemblance between the spin-1/2 operators
and fermions where the absence (presence) of a fermion on
site j corresponds to a state with Sz

j = −1/2 (Sz
j = 1/2). In

particular, once a spin-1 excitation is injected into the drain
chain at j = 0 from the source chain, a second spin-1 excitation
cannot be injected into the same site; this leads to a partial
blockade of spin transport across the chains, analogous to
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FIG. 5. Excess dc spin current noise as a function of μ2/μ1 for
the QSC case (solid line) and the magnon case (dashed line) with
T1 = T2 = T0. See the main text for the definitions of α(μ1,μ2)
and αm(μ1,μ2). The suppression obtained in the QSC case is a
manifestation of Pauli blockade physics.

transport blockade due to Pauli’s exclusion principle observed
in electron transport [43].

A direct consequence of this Pauli blockade physics in
QSCs can be obtained in the dc noise, the physical origin of
which exactly resembles the Pauli blockade picture developed
for charge fluctuation suppression between two edge states
of a fractional quantum Hall liquid coupled at a quantum
point contact [44]. To elaborate on this point, let us now
consider a case when both QSCs are chemically biased such
that spin currents impinge the junction from both ends in
Fig. 1. If we denote the spin chemical potentials for the
two QSCs as μ1 and μ2, the nonequilibrium dc noise is
modified to

Sneq(μ1,μ2,T1,T2)

= (J⊥
c )2a2

2π2η2

∫
dt

{
cos

[
(μ1 − μ2)t

h̄

]
− 1

}
D−+

1 (t)D−+
2 (t).

(46)

We now fix the temperatures of both QSCs to the same value,
i.e., T1 = T2 ≡ T0, and define

α(μ1,μ2) ≡ Sneq(μ1,μ2,T0,T0)

Sneq(μ1,0,T0,T0)
(47)

as the ratio of the nonequilibrium noises when both QSCs are
chemically biased to that when only one of the QSCs is biased.
Figure 5 is then produced by sweeping μ2 from 0 to μ1 while
keepingμ1 fixed. In the QSC system (denoted by the solid line),
the nonequilibrium noise exhibits suppression as μ2 → μ1

and it vanishes at μ2 = μ1. This noise reduction can be
attributed to Pauli blockade, which suppresses the phase space
for the scattering of (fermionic) spin-1 excitations at the QSC
junction.

A starkly contrasting behavior is predicted for the magnon
setup. Here, we consider a possibility of both magnon baths

Adetector  
metal

μ1

μ2

source chain 1

sou
rce

 ch
ain

 2

drain chain
Ic, Sc

T0

T1

T2

I, S
x = x1

FIG. 6. Depiction of the proposed configuration for extracting the
spin Fano factor in the QSC case. Two source chains are individually
coupled to a third drain chain at one point. The chains are held at
temperatures T1, T2, and T0, respectively, and chemical biases μ1, μ2

in the source chains only.

having finite chemical potentials μ1 and μ2, and we define the
ratio

αm(μ1,μ2) ≡ Sm,neq(μ1,μ2,T0,T0)

Sm,neq(μ1,0,T0,T0)
, (48)

which again is the ratio of the nonequilibrium noises when
both magnon baths are chemically biased to that when only
one bath is biased. In the magnon case, introducing μ2 results
in more noise, i.e., αm > 1 for μ2 > 0 exhibiting no signature
of Pauli blockade, which is a feature unique to fermionic
excitations.

V. EXPERIMENTAL EXTRACTION OF SPIN
FANO FACTOR

A. QSC scenario

The QSC spin Fano factor may be experimentally detected
using a Y-junction setup shown in Fig. 6. In this setup, the drain
QSC is weakly exchange coupled to two source QSCs at its
left end and to a metal with strong spin-orbit coupling at its
right; the source chains 1 and 2 are chemically biased by spin
chemical potentials μ1 and μ2, respectively. We assume that
the two source QSCs are identical and that they are exchange
coupled with equal strength to the drain chain; departures
from this symmetric condition should not affect the following
discussion at the qualitative level. The temperatures of source
chain 1, source chain 2, and the drain chain are denoted by T1,
T2, and T0, respectively.

To lowest order in the source-drain coupling, the spin
current I at x = x1, reads

I = I (μ1,T1,T0) + I (μ2,T2,T0), (49)
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and its dc noise is given by

S(μ1,μ2,T1,T2)

= 2h̄KkBT0

π
+ (J⊥

c )2a2

2π2η2

∫
dt cos

(
μ1t

h̄

)
D−+

1 (t)D−+
0 (t)

+ (J⊥
c )2a2

2π2η2

∫
dt cos

(
μ2t

h̄

)
D−+

2 (t)D−+
0 (t)

≡ S(0) + S(2)(μ1,T1,T0) + S(2)(μ2,T2,T0). (50)

Spin current fluctuations in the drain QSC at x = x1 should
generate pure spin current fluctuations inside the adjacent
metal due to the coupling between the two systems. The
latter pure spin current noise should convert into noise in the
transverse charge current via the inverse SHE and should be
detectable using an ammeter as illustrated in Fig. 6.

An electrical noise measurement is first made when the
two source chains are unbiased, i.e., μ1 = μ2 = 0 and T1 =
T2 = T0. We denote the electrical noise measured in this
configuration with Sc,eq.

The charge noise is then measured in a second configuration
in which the source chains are asymmetrically biased, i.e.,
μ1 = −μ2, such that I remains zero. We denote the noise
measured in this configuration with Sc and the excess nonequi-
librium noise as Sc,neq ≡ Sc − Sc,eq. The excess noise in the
second configuration should arise solely from the nonequilib-
rium spin current noise generated at the coupling site. Using the
notation of Sec. IV A, this nonequilibrium spin current noise is
given by Sneq(μ1,T ,T0) + Sneq(−μ1,T ,T0) = 2Sneq(μ1,T ,T0),
where we have assumed T ≡ T1 = T2 due to the above sym-
metry condition. It is therefore reasonable to assume that the
excess electrical noise is proportional to the excess spin current
noise, i.e., Sc,neq = �SSneq(μ1,T ,T0), where �S is some spin-
to-charge noise conversion constant. The temperature of the
source chains T may be elevated above that of the drain chain
T0 because the generation of finite μ1 and μ2 requires charge
currents in the injector metals and may cause Joule heating.

Last, we turn μ2 off while keeping μ1 at the same value as
in the second configuration. There is now a net spin current
I (μ1,T ,T0) flowing into the drain QSC that will convert into
a net charge current via the inverse SHE inside the detector
metal. It is reasonable to assume here that this generated
charge current is proportional to the generated spin current
|Ic| = �I |I (μ1,T ,T0)|, where �I is some spin-to-charge
current conversion constant.

Finally, the electrical Fano factor can be computed from the
experimental readings, and we find that

Fc = Sc,neq

|Ic| = �S

�I

Sneq(μ1,T ,T0)

|I (μ1,T ,T0)| = h̄�S

�I

F (μ1,T ,T0). (51)

From Fig. 4, we know that for any T and T0, the spin Fano
factor F approaches 1 as μ1 increases. In the large chemical
bias regime where F approaches 1, the ratio of the unknown
prefactors can be experimentally extracted via

�S

�I

= Fc

h̄
, (52)

thus allowing one to obtain the spin Fano factor F for all μ1

values.
If the temperatures of the source QSCs and the drain

QSC are uniform, i.e., T = T0, Fc should display a vanishing

V2V1

A

drain bathinjector

drain metal

T0

Ic, Sc

source bath 1 source bath 2 injector

μ1, T1 μ2, T2

spin current spin current

interface 2interface 1

Im, Sm

FIG. 7. Depiction of the proposed configuration for extracting the
spin Fano factor in the magnon case. Two source baths are individually
coupled to a third drain bath. The baths are held at temperatures T1,
T2, and T0, respectively, and chemical biases μ1, μ2 in the source
baths alone.

behavior as μ1 → 0. However, if Joule heating results in
T > T0, a thermal bias exists in addition to the chemical bias
and we expect F to exhibit a diverging behavior shown in
Fig. 4. Therefore, the spin Fano factor can be used to distinguish
between the presence and absence of Joule heating in the source
QSC due to charge currents in the injector metals.

B. Magnon scenario

The spin Fano factor for the magnon scenario can be
extracted in a setup similar to Fig. 6. We consider the
drain magnon bath coupled to two source magnon baths in a
T-shaped setup as shown in Fig. 7. The injection of spin angular
momentum into the source magnon baths are facilitated by
charge currents and SHE in the respective injector metals. An
important consequence of this injection process is to generate
finite chemical potentials μ1 and μ2 for the source magnon
baths. We assume the symmetry condition (as in the QSC
setup), in which the two source magnon baths are identical and
they couple to the drain magnon bath with an equal strength.
The temperatures of magnon bath 1, magnon bath 2, and the
drain magnon bath are denoted by T1, T2, and T0, respectively.

Electrical noise is first measured when the two source
magnon baths are unbiased, i.e., μ1 = μ2 = 0 and T1 = T2 =
T0. We denote the electrical noise measured in this configura-
tion with Sc,eq.

In the second configuration, the source baths are oppositely
biased, i.e., μ1 > 0 and μ2 < 0, such that no net magnon spin
current is detected at the detector metal, i.e., Im(μ1,T1,T0) =
−Im(μ2,T2,T0) such that Im = 0. We again denote the elec-
trical noise measured in this second configuration with Sc and
the excess noise as Sc,neq ≡ Sc − Sc,eq. As in the QSC scenario,
the excess noise Sc,neq should arise solely from the excess spin
current noises that are generated at interfaces 1 and 2 and
have propagated to the detector metal. This excess noise in the
spin current is given by Sm,neq(μ1,T1,T0) + Sm,neq(μ2,T2,T0).
It is then reasonable to assume that the excess electrical
noise measured by the detector metal is proportional to this
excess spin current noise, i.e., Sc,neq ∝ Sm,neq(μ1,T1,T0) +
Sm,neq(μ2,T2,T0). The temperature of the source baths may
once again be elevated above that of the drain bath T0 because
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FIG. 8. Depiction of spin to charge current conversion between
a QSC and normal metal contact. We extract an approximation for
the size of the conversion effect between the two materials from this
geometry. Here, l is the thickness of the interface and d is the width
of the metal contact.

charge currents in the injector metals may cause Joule heating
in the magnon baths.

Once μ2 is turned off while keeping μ1 at the same value as
above, a net spin current Im(μ1,T1,T0) flows into the drain bath.
It is reasonable to assume that the charge current generated at
the detector metal obeys Ic ∝ Im(μ1,T1,T0).

Taking the ratio Fc = Sc,neq/|Ic|, we find that

Fc ∝ Sm,neq(μ1,T1,T0) + Sm,neq(μ2,T2,T0)

|Im(μ1,T1,T0)|
= Sm,neq(μ1,T1,T0)

|Im(μ1,T1,T0)| + Sm,neq(μ2,T2,T0)

|Im(μ2,T2,T0)| ∝ Fm, (53)

where Fm is shown in Fig. 4. Here, unlike the QSC case, re-
gardless of the temperatures and relative biases of the magnon
baths, Fc should remain constant. Therefore, the contrasting
behavior between the QSC and magnon spin Fano factors, as
plotted in Fig. 4, should be electrically measurable via inverse
SHE signals.

C. Estimate of noise signal strength

We derive an estimate for the magnitude of the noise effect
measurable via conversion in a strongly spin-orbit coupled
metal spin drain (e.g., Pt). Figure 8 shows the geometry of
the contact, which is standard in recent two terminal spin
chain experiments, for instance in Ref. [22] (using spin chain
material Sr2CuO3). If we consider N QSCs attached laterally
per unit area, we may write the total spin current density
impinging on the normal metal as NI (t), where I (t) is the
spin current due to a single QSC. For a normal metal of
thickness d and spin diffusion length λ, we may write the spin
current density profile across the normal metal as js(x,t) =
NI (t) sinh ( d−x

λ
)/ sinh ( d

λ
) [45], assuming that the spin current

I (t) [see Eq. (33)] arriving at the interface fully penetrates
into the metal and a boundary condition of vanishing spin
current at the outer edge of the sink material. Modeling spin
to charge conversion via the SHE, characterized by the spin
Hall angle �, we derive the charge current density in the
normal metal as jc(x,t) = � 2e

h̄
js(x,t). We then find the total

charge current flowing in the metal by integrating over the

cross-section,

Ic(t) = �
2e

h̄
NlλI (t) tanh

(
d

2λ

)
, (54)

where l is the height of the interface area (see Fig. 8),
and we characterize the associated dc charge noise Sc =∫

dt 〈Ic(t)Ic(0)〉 as

Sc =
[
�

2e

h̄
Nlλ tanh

(
d

2λ

)]2

S. (55)

We determine N from the documented values for the lattice
spacings of Sr2CuO3 [46], use � = 0.1 and take λ = 2nm,
d = 7nm, and l = 1mm. Using the known properties of Pt, we
estimate the magnitude of the fluctuations as Sc ∼ 10−16V 2s

in the given configuration. This calculation assumes a temper-
ature of T = 20 K, again following Ref. [22], which results
in background Johnson-Nyquist noise of SJN ∼ 10−14V 2s in
the contact. Voltage noise measurements of order 10−20V 2s

have been reported in, e.g., Ref. [12]. We thus believe the Fano
factor results of Sec. IV A should be measurable with existing
equipment and techniques.

VI. CONCLUSION

We have considered two spin systems: two semi-infinite
QSCs that generate noise across a weak coupling, and two
semi-infinite magnon baths that also generate noise across
a weak coupling. In either case, we have derived the bulk
spin current and bulk spin current noise at a point close to a
measurement metal contact with strong spin-orbit coupling.
Our analysis shows that it should be possible to differentiate
the systems using a quantity known as the spin Fano factor,
where Pauli blocking and concomitant current suppression in
the QSC case result in dramatically different behavior than
for the same quantity in the magnon scenario. Additionally,
we show that Pauli blocking has signatures directly accessible
in the noise. These results exhibit the fermionic nature of the
spin-1/2 operator in the QSC.

We then propose an experimental method by which to
extricate the spin Fano factor and therefore experimentally
compare the two systems. In so doing we assumed proportional
relationships between the excess spin current noise and the
excess charge noise, and the spin current and charge current
in the metallic contacts, i.e., both Sc,neq = �SSneq(μ1,T ,T0)
and |Ic| = �I |I (μ1,T ,T0)|. However, it would be desirable
to develop a microscopic model for the conversion between
these quantities thereby elucidating the regime of validity of
the assumption and providing microscopic determinations of
�S and �I . Additionally, we have not extended this work to
careful examination of higher order effects, e.g., backscattering
and band-curvature effects, in the QSC case, and recent
investigations have predicted super-Poissonian behavior in
the noise of magnonic systems from dipole interactions [13].
These provide intriguing avenues to develop in future work.
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