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Indirect coupling of magnons by cavity photons
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The interaction between two magnetic spheres in microwave cavities is studied by Mie scattering theory beyond
the magnetostatic and rotating wave approximations. We demonstrate that two spatially separated dielectric and
magnetic spheres can be strongly coupled over a long distance by the electric field component of standing
microwave cavity modes. The interactions split acoustical (dark) and optical (bright) modes in a way that can be
mapped on a molecular orbital theory of the hydrogen molecule. Breaking the symmetry by assigning different
radii to the two spheres introduces “ionic” character to the magnonic bonds. These results illustrate the coherent
and controlled energy exchange between objects in microwave cavities.

DOI: 10.1103/PhysRevB.97.014419

I. INTRODUCTION

Light-matter systems in which the coherent coupling fre-
quencies exceed the dissipative loss rates are promising ele-
ments for solid-state quantum information circuits [1–3]. Spin
ensembles may couple strongly to electromagnetic modes of a
microwave resonator, resulting in hybridized states referred to
as magnon polaritons [4–7], with the benefit of long coherence
[8] and short manipulation [9] times. Here a “magnon” refers to
the collective excitation or spin wave of the polarized spin sys-
tem. Ferro/ferrimagnets can combine a high spontaneous spin
density with low damping, leading to large cooperativities and
narrow linewidths [10,11]. The strong, and even ultrastrong
coupling regime in which the coupling strengthg is comparable
to the mode frequencies [12] can therefore be accessed with
relative ease. Furthermore, due to the possibility of coupling
magnon modes to photons at optical frequencies [13,14],
magnetic systems are candidates for coherent conversion of
solid-state qubits into “flying ones” [15,16].

On the other hand, controlled creation and read-out of spin-
entangled states in quantum information processing with solid-
state systems remains a major challenge. Coherent coupling
of spins can be mediated by a variety of physical mecha-
nisms, such as the magnetic dipolar, exchange, or spin-orbit
interaction. The coupling of spins/pseudospins does not have
to be direct, but can be realized via an intermediary. This
can be localized electrons in a filled shell ion that generate
superexchange or the itinerant carriers of metals in the RKKY
interaction [17–19]. The nonlocal exchange coupling can have
either sign; it causes the staggered magnetization in magnetic
multilayers that display the giant magnetoresistance [20–22].
Quantum systems can also be coupled radiatively over large
distances, i.e., when the interaction is mediated by virtual
photons in a low-loss resonator or cavity [23,24].

Here we address the hybridization of two magnets by cavity
photons. Yttrium iron garnet (YIG), a ferrimagnetic insulator
that serves in magnetically tunable filters and resonators at
microwave frequencies, can provide high coupling strengths
and low damping. YIG’s spin density is 2 · 1022cm−3 [25],

while its Gilbert constant of the magnetization dynamics
typically ranges from 10−3 to 10−5 [26–28]. Strong coupling
between magnons and cavity photons are manifest in a series
of anticrossings in YIG films in coplanar resonators [29–31]
and YIG spheres in 3D microwave cavities [10,11,32].

Soykal et al. [33] reported a quantum theory of photon-
magnon coupling in YIG spheres, but this regime has not yet
been reached in experiments. Cao et al. modeled the classical
magnon-photon coupling for a thin YIG film in a planar
cavity and found strong coupling even for spin waves beyond
the Kittel mode in microwave transmission and inverse spin
Hall effect [6], which was confirmed by experiments [34,35].
Our study of the coherent coupling between a YIG sphere
and microwave cavity modes [7] revealed that YIG spheres
are efficient antennas for microwaves such that (ultra)strong-
coupling regimes can be achieved in stand-alone magnetic
spheres, as exploited recently [36]. The long-range strong
coupling of magnons in spatially separated YIG spheres as
mediated by a microwave cavity has been reported [15,37].
Electrical readout of two distant YIG | Pt bilayers cou-
pled by a microwave cavity mode has been demonstrated
recently [38].

Here we extend the classical model [7] to investigate the
long-range coupling of magnons in two spatially separated
YIG spheres mediated by a microwave cavity, producing a
delocalized magnon-polariton hybridized state. The conven-
tional magnetostatic approximation [39,40], in which the spins
interact by the magnetic dipolar field, disregarding exchange
as well as propagation effects, is valid in the Rayleigh regime
λ � a, where a is the radius of the sphere and λ the wavelength
of the incident radiation, but breaks down when λ < a, which
is the regime encountered in sub-mm YIG spheres and nanos-
tructured thin films. We therefore study here the properties
of the hybridized magnon-polaritons, including retardation
effects of microwaves, but disregard the exchange interaction,
which is valid for ferromagnets as long as the exchange
length lex = √

2A/(μ0M2
s ) � a, with A and Ms being the

exchange constant and saturation magnetization, respectively.
Our results help to picture photon-mediated coupling between
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two or more magnetic samples in terms of the concept of a
chemical bond.

This paper is organized as follows. In Sec. II, we introduce
the details of our model and derive the scattered intensity
and efficiency factors for a strongly coupled system of two
magnetic spheres in a spherical microwave cavity. In Sec. III,
we present and discuss our results that demonstrate the effects
both due to the dielectric as well as magnetic effects on the
scattering properties and compare our results with experiments.
In Sec. IV, we conclude and summarize our findings.

II. MODEL AND FORMALISM

Mie expressed a general scattering problem in terms of a
rapidly converging expansion into spherical multipole partial
waves [41,42]. Here we model the indirect coupling of the
collective excitations of two magnetic spheres mediated by
photons in a spherical cavity by a Mie-like expansion of
the coupled Landau-Lifshitz-Gilbert and Maxwell equations.
We consider a plane electromagnetic wave with arbitrary
polarization and wave vector shining on a cavity loaded by
two magnetic spheres with gyromagnetic permeability tensors←→μ 1 and ←→μ 2. A thin spherical shell of a material with
high dielectric constant εc/ε0 � 1, radius R, and thickness δ,
models a generic resonant cavity. We mimic realistic situations
by adjusting the parameters R and δ (see Fig. 1) to tune the
frequencies and broadenings of the cavity modes.

The dynamics of the magnetization vector M is described
by the LLG equation

∂tM = −γ M × Heff + α

Ms

M × ∂tM, (1)

with α and Ms being the damping parameter and saturated
magnetization, respectively. Effective field Heff = Hext + h

FIG. 1. A plane electromagnetic wave illuminates a large spher-
ical cavity from an arbitray direction. The latter is modeled by a
dielectric spherical shell of radius R, thickness δ, and permittivity εc.
Two magnetic spheres of radius a1 and a2 are located at antinodes of
the ac magnetic field of the (2,2) and (2,−2) confinement modes of
the cavity, i.e., at d1 and d2 on the x axis. A constant magnetic field
H0 saturates the equilibrium magnetizations. The scattered waves are
measured by a detector in the far field as a function of the scattering
angles, here (θ,ϕ) = (π/2,π ).

comprises the external and (collinear) easy axis anisotropy
fields Hext as well as a distributed ac field h(r,t). We linearize
the LLG equation by considering the magnetization and driving
field vectors

M(r,t) = M0 + m(r,t), (2)

H(r,t) = H0 + h(r,t). (3)

To leading order in the small modulations m and h:

∂tm = −γ
(
M0 × H(1)

eff + m × H(0)
eff

) + α

Ms

M0 × ∂tm, (4)

where H(0)
eff = Hext and H(1)

eff = h. In the frequency domain, for
Hext and M0‖ẑ,

iωm = z × (ωMh − ωHm + iωαm), (5)

with ωM = γMs and ωH = γH0. We express Eq. (4) as m =←→χ · h in terms of the magnetic permeability tensor

←→μ = μ0(
←→

I + ←→χ ) (6)

= μ0

⎛
⎜⎝

1 + χ −iκ 0

iκ 1 + χ 0

0 0 1

⎞
⎟⎠, (7)

where

χ = (ωH − iαω)ωM

(ωH − iαω)2 − ω2
, (8)

κ = ωωM

(ωH − iαω)2 − ω2
. (9)

The Maxwell equations inside a homogeneous sphere at
frequency ω read

∇ × E = iωb, ∇ × h = −iωεspE, (10)

∇ · E = 0, ∇ · b = 0. (11)

The magnetic induction b and the magnetic field h inside this
medium are related by

b = ←→μ · h, D = εspE, (12)

and b satisfies the wave equation

∇ × ∇ × (μ0
←→μ −1 · b) − k2

spb = 0, (13)

where k2
sp = ω2εspμ0 and εsp is the scalar permittivity of the

medium. Keeping Eq. (11) in mind, we expand h in terms of
vector spherical waves as

h =
∑
nm

η̄nm

[
dmnV(1)

nm(k,r) + cmnN(1)
nm(k,r)

]
, (14)

where k is as yet undetermined, n runs from 1 to ∞, and
m = −n, · · · ,n. The prefactors read η̄nm = ηnmk0/(ωμ0) with

ηnm = inE0

[
2n + 1

n(n + 1)

(n − m)!

(n + m)!

]1/2

, (15)

where E0 is the amplitude of the electric field of the incident
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wave. The vector spherical wave functions are defined as

V(j )
nm(k,r) = z(j )

n (kr)Xnm(r),

kN(j )
nm(k,r) = ∇ × V(j )

nm(k,r), (16)

where z
(j )
n are spherical Bessel functions of the j th kind, e.g.,

z(3)
n = h(1)

n is the spherical Bessel functions of the third kind
(Hankel function). Xnm = LYnm(r̂)/

√
n(n + 1), where Ynm(r̂)

are spherical (surface) harmonics and L = −ir × ∇r is the an-
gular momentum and ∇r the gradient operator. By invoking the
vector spherical wave-function expansion for b and ←→μ −1 · b
in the wave equation Eq. (13) leads to the dispersion relation
for k(ω). We focus on the following on the lowest frequency
resonances for a given angular momentum without radial nodes
in the sphere. For simplicity of notation, we therefore omit the
“main quantum number” when labeling the cavity modes.

The electric field distribution
is obtained by E = (i/ωc)∇ × h.
We expand the incident fields Einc, hinc and scattered fields Es ,
hs outside the sphere analogously. The scattered field reads
then

hs =
∑
nm

η̄nm

[
bmnN(3)

nm + amnV(3)
nm

]
, (17)

with k2
0 = ω2ε0μ0. The expansion coefficients anm and bnm

are determined by the boundary conditions. We consider the
situation that the magnetic sphere is illuminated by a plane
wave with arbitrary polarization and direction of incidence as
indicated in Fig. 1. This incident fields can be expanded as

hinc = −
∑
nm

η̄nm

[
qmnN(1)

nm + pmnV(1)
nm

]
, (18)

with coefficients

pmn = ηnm

inE0
[pθ τ̃mn(cos θk) − ipφπ̃mn(cos θk)]e−imφk , (19)

qmn = ηnm

inE0
[pθ π̃mn(cos θk) − ipφτ̃mn(cos θk)]e−imφk , (20)

where p̂ = (pθ θ̂ k + pφφ̂k) is the normalized complex polar-
ization vector, with unit vectors θ̂ k and φ̂k, |p̂| = 1 and θk(φk)
is the polar (azimuthal) angle of incidence. Two auxiliary
functions are defined by

π̃mn = tnm

m

sin θ
P m

n (cos θ ), τ̃mn = tnm

d

dθ
P m

n (cos θ ), (21)

with tnm = i−nηnm/E0. All fields of the scattering problem are
now expanded in terms of vector spherical wave functions. The
boundary conditions

[Einc + Es] × er = Ei × er, (22)

[hinc + hs] × er = hi × er, (23)

can be rewritten in terms of the transmission matrix T that
relates the scattered to the incoming fields(

anm

bnm

)
= T

(
pnm

qnm

)
. (24)

We are interested in more than one scattering object in the
cavity. To describe the collective excitations of nonoverlapping

magnetic spheres, we expand the total incident field striking
the surface of the ith sphere, the initial incident waves, and
the scattered field of the other spheres with index j 
= i, in the
coordinate systems centered at sphere i as

Ei
inc = Einc +

∑
j 
=i

Ej
s ; hi

inc = hinc +
∑
j 
=i

hj
s . (25)

The transformation of waves scattered by one sphere into
incident waves for the other one is formulated by the addition
theorem of vector spherical harmonics [43], i.e., the expansion
of the basis set in a translated reference system. By transform-
ing the wave scattered by one sphere to a coordinate system
centered at the other, and imposing appropriate boundary
conditions, we arrive at the scattering coefficients(

ai
nm

bi
nm

)
= T i

⎡
⎣(

pi
nm

qi
nm

)
+

∑
j 
=i

Rji

(
a

j
nm

b
j
nm

)⎤
⎦, (26)

where the superscript indicates the coordinate system centered
at sphere i and Rji is the translation matrix from sphere j

to i [43]. The second term on the right-hand side represents
the multiple scattering between the objects. The scattering
coefficients in the coordinate system of the cavity can be
obtained by the unitary transformation Ri0 defined by the
addition theorem (

a0
nm

b0
nm

)
= Ri0

(
ai

nm

bi
nm

)
. (27)

These expressions are sufficient to compute the scattering
matrix for the entire system.

To make contact with experiments, we consider the far-field
limit, in which the intensity of the two polarization components
Iθ and Iφ are

Iθ ∼ E2
0

k2
0r

2
|S1(θ,φ)|2, Iφ ∼ E2

0

k2
0r

2
|S2(θ,φ)|2 (28)

where θ (φ) is the polar (azimuthal) angle of the observer at
distance r and scattering intensity functions are

S1(θ,φ) =
∑
nm

[amnτ̃mn(cos θ ) + bmnπ̃mn(cos θ )]eimφ, (29)

S2(θ,φ) =
∑
nm

[amnπ̃mn(cos θ ) + bmnτ̃mn(cos θ )]eimφ. (30)

We define a dimensionless scattering efficiency factorQsca as
the total (i.e., angular integrated) scattering cross section of the
light intensity divided by the geometrical area πR2 as

Qsca = 4

k2
0R

2

∑
nm

(|anm|2 + |bnm|2). (31)

The efficiency factor Qext defined analogously for the total
extinction cross section,

Qext = 4

k2
0R

2

∑
nm

Re(p∗
nmanm + q∗

nmbnm), (32)

measures the total energy loss of the incident beam by absorp-
tion and scattering.

Qabs = Qext − Qsca (33)

reflects the loss of intensity due to Gilbert damping in the
sample.
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III. RESULTS

The observables defined above can be computed numer-
ically as a function of material and cavity parameters. We
focus here on a spherical cavity with fixed radius (R = 4 mm)
loaded with two dielectric spheres at a fixed distance d0 =
2.5 mm, but with adjustable diameter, as in Fig. 1. We focus
on the strong coupling regime in which the polaritonic mode
splitting is comparable or larger than the dissipation, i.e., we
have spectrally sharp cavity modes and not too large Gilbert
damping. Without using the macrospin approximation, we
focus our discussion to the nearly uniform (Kittel) mode that
displays the strongest coupling to the microwaves [6].

Forward-scattered intensities, i.e., θ = π/2,φ = π , and
scattering efficiency factors are convenient and observable
measures of the microwave-matter coupling. To compare our
results with recent experiments, we adopt parameters for YIG
with gyromagnetic ratio γ /(2π ) = 28 GHz/T, saturation mag-
netization μ0Ms = 175 mT [44], Gilbert damping constant
α = 3 × 10−4 [26–28], and relative permittivity εsp/ε0 = 15
[45]. The incident microwave radiation comes from the positive
x direction (θk = π/2 and φk = 0) and is linearly polarized
such that its electric/magnetic components are in the −z/y
directions (static magnetic field and magnetization H0 ‖ z).
We also investigate the dependence of the observables on the
scattering angle with respect to the outgoing radiation.
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0.0 0.5 1.0
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(c)

θ/π

-0.5 0.0 0.5
19
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23
(d)

ω
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π 
[G

H
z]

-0.5 0.0 0.5

2gdi
eff

(e)

δn δn
FIG. 2. (a) The scattering efficiency factor Eq. (33) for two

nonmagnetic dielectric spheres of radius a1 = a2 = 1 mm, cavity
radius R = 4 mm, and asymmetry δn = 1 plotted as a function of
frequency ω/2π and average refractive index nsp. (b), (c) The scat-
tering intensity |S1|2 as function of scattering angle θ and frequency
ω/2π plotted for the same spheres (nsp = 7, δn = 1) without and with
cavity, respectively, while (d) and (e) are the corresponding scattering
efficiencies. The anticrossing in (e) reveals the interaction with the
cavity field by the coupling strength 2gdi

eff , i.e., the frequency splitting
of the modes at δn = 0. The dashed lines are guides for the eye.

We start by studying the effects of asymmetry on the photon-
mediated coupling of two nonmagnetic spheres with refractive
indices n1 = nsp + δn and n2 = nsp − δn. In Fig. 2(a), the
scattering efficiency factor Eq. (33) is plotted as a function of
frequency ω/(2π ) and average refractive index nsp = √

εsp/ε0

of the spheres with a = 1 mm in a spherical cavity with radius
R = 4 mm and broken symmetry with δn = 1. The spheres are
placed at the local maxima of the electric field distribution of
the cavity, i.e., d1 = d0x and d2 = −d0x, respectively, where
d0 = 2.5 mm. This ensures a significant coupling strength and
nearly uniform distribution of the cavity field over the spheres.

When δn 
= 0, the individual resonances of the two spheres
are distinguishable in Fig. 2(a). Not only the lowest but also
higher plasmonic modes (∼n2

sp) anticross strongly with the
(constant) cavity resonances. The angular dependence of the
scattering without and with cavity is plotted in Figs. 2(b)
and 2(c), respectively. The eigenmodes of the two coupled-
dielectric spheres have a predominant s-wave character when
the wave length λ � a

√
εsp/ε0, i.e., no scattering-angle depen-

dence in the regime in which no resonant states are formed.
The radiative coupling between two dielectric spheres by

the cavity eigenmodes is revealed by tuning the resonances
with the asymmetry parameter δn ∈ [−0.5,0.5] for nsp = 7.
Figs. 2(d) and 2(e) are plots of the scattering efficiency factor
Qsca as a function of frequency ω/2π and asymmetry δn in
the absence and presence of the external cavity, respectively.
The photon-mediated coupling corresponds to the splitting
at the nominal crossing point (δn = 0) and found to be
gdi

eff/2π ∼ 0.6 GHz, which is much larger that the broadening
and therefore “strong.” Removing the cavity suppresses the
splitting, as seen in Fig. 2(d), proving that the direct dipolar
coupling between the spheres and the multiple scattering of
the microwaves between spheres in the absence of a cavity are
weak. In analogy with plasmonic molecules in metallic nanos-
tructures [46], which are bound by the optical near-fields, we
refer to this hybridized state as a plasmon-polariton molecule.

The magnetism of the spheres affects the microwave scat-
tering properties strongly, but the plasmonic effects causing
hybridization of the resonances of cavity and sphere remain
to be very relevant. Our results help to interpret recent ex-
perimental results on cavity-mediated coupling of two YIG
spheres [37] by taking into account the finite size of the spheres
and cavity-field distribution. Figure 3 shows the scattering
efficiency factor as a function of frequency ω/2π and uniform
magnetic field H0/Ms for our spherical cavity containing now
two YIG spheres with radii a1 = a2 = 0.5 mm. The frequency
of the microwaves with a wave vector along the x direction
is tuned to the fivefold degenerate cavity modes with n = 2
(d wave); ω2/2π ∼ 7.05 GHz, of which only the ω2,±2 states
are excited by symmetry. An asymmetry is now induced by
a detuning magnetic field with opposite signs on different
spheres δH = ±0.2 Ms . The two spheres occupy antinodes of
the p and d cavity resonances shown in the top panels of Figs. 3
and 4 with parameters chosen to be close to the experiment
[37]. Two distinct anticrossings are the signature of mixed
magnon-polariton modes with a magnon-photon coupling of
g

mag
eff /2π ∼ 150 MHz between the Kittel modes of both spheres

and the cavity mode. Small satellites indicate the coupling to a
higher (“Walker”) mode in both spheres. Figure 3 also shows a
cavity mode that is not affected by the magnets [15]. This mode
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FIG. 3. Scattering efficiency factor Qsca as function of magnetic
field H0/Ms and frequency ω/2π for two YIG spheres of radius
a1 = a2 = 0.5 mm and relative permittivity εsp/ε0 = 15 in a spherical
cavity of radius R = 4 mm on the two antinodes of the cavity
mode at ω2/2π ∼ 7.05 GHz is shown in bottom panel. The field
at each sphere is detuned by |δH |/Ms ∼ 0.2 with opposite signs.
g

mag
eff is the magnon-cavity coupling strength. The radial component

of microwave magnetic field hr for the cavity mode frequency ω2 in
the equator plane is shown in the top panel, the black circles indicate
two spheres.

is a linear combination of the active cavity modes ω2,±2 that
does not couple to the sphere. Although the spherical symmetry
of the empty cavity has been broken by the load, the axial
symmetry remains intact and is responsible for this effect.

Next we fix H0/Ms = 1 and study the effect of small
detunings δH/Ms in the dispersive regime. In Figs. 4(a) and
4(b), the Kittel mode lies above the p-wave cavity eigenmode
ω1/2π ∼ 6 GHz. Note that the scattering efficiencies in the
dispersive regime are much smaller than those in Fig. 3.
Figure 3(a) shows results for two YIG spheres of radii a =
0.5 mm without cavity, while for Fig. 3(b), the spherical cavity
has been added. The anticrossing in Fig. 4(b) illustrates that
the magnons of the two magnets interact over long distances
through the virtual exchange of cavity microwave photons. The
coupling strength is given by the frequency splitting of the
modes at δH = 0, giving a value of g

ind.mag
eff /2π ∼ 43 MHz.

This coupling requires an external resonator, cf. Fig. 4(a), and
can therefore not be explained by the direct magnetic dipolar
interactions or multiple scattering between the spheres, as
observed [37].

We observe that the upper mode has a relatively large
oscillator strength (“bright mode”), while the lower mode
intensity is suppressed at δH = 0 (“dark mode”). The order
and symmetry of these modes depends on the sign of the
magnon-cavity mode detuning as well as the phase relation
between the amplitude of the cavity mode on the spheres.
In principle, many modes contribute, but the ones closest in
frequency dominate. The higher frequency mode in Fig. 4(a)
is the “acoustic” (symmetric) mode that strongly interacts
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6.65
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-1
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1
hφ(1, -1)

FIG. 4. (a), (b) Scattering efficiency factor Qsca as function of
ω/2π and δH/Ms for the same two spheres as Fig. 3 without and
with cavity, respectively, but the detuning is much smaller than in
Fig. 3. H0/Ms = 1 is fixed such that the magnetostatic modes of
each sphere are detuned from ω1. The anticrossing in (b) illustrates
the coupling of the two YIG spheres; the nonlocal magnon-magnon
coupling strength g

ind.mag
eff is the frequency splitting of the modes at

δH = 0. The azimuthal component of microwave magnetic field hφ

for the cavity mode frequency ω1 in the equator plane is shown in top
panel, the black circles indicate two spheres.

with the low frequency mode ω1, which has the largest
oscillator strength for forward scattering. The lower “optical”
(antisymmetric) mode for δH = 0 interacts with (and is pushed
to lower frequencies) by mode ω2. The scattering power of the
ω2 mode (without load) is much weaker than that of ω1, which
renders the lower collective magnetic mode to be “dark.” We
note that the “darkness” is not absolute, since the remaining
intensity does not vanish for δH = 0 and depends on the details
of the system and scattering configuration.

Lambert et al. [37] find that a cavity mode ω2/2π ∼
7.15 GHz couples with the Kittel mode of a YIG sphere with
a = 0.5 mm by g2/2π (≡ g

mag
eff /2π ) ≈ 150 MHz, in excellent

agreement with our calculations. By a dispersive measurement
technique they also observe a splitting which they interpret
in terms of in-phase and out-of-phase precessions of the
individual magnetization dynamics. The observed splitting
of these two modes agrees well with the calculated ones,
i.e., 2J/2π = 87 MHz as compared to our 2g

ind.mag
eff /2π ∼

86 MHz. The order of “bright” and “dark” modes is opposite
to what we find in Fig. 4. This discrepancy is caused by the
relative low frequency ω1/2π ∼ 3.55 GHz in the experiments,
which is not reproduced by our spherical cavity in which
ω1/2π ∼ 6 GHz.

For two identical spheres, the scattering properties A, such
as Qsca, are parity (mirror) symmetric in parameter space,
i.e., A(ω,δH ) = A(ω,−δH ). The mode coupling at δH = 0
therefore must generate a direct gap and parabolic dependence
on small δH, as indicated in Fig. 4(b). Different radii break the
symmetry andA(ω,δH ) 
= A(ω,−δH ). Figure 5(b) illustrates
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FIG. 5. Scattering efficiency as function of frequency ω/2π and
normalized bias field δH/Ms for two YIG spheres (εsp/ε0 = 15) with
radius a1 = 0.5 mm and a2 = 1 mm (a) without cavity and (b) in a
spherical cavity of radius R = 4 mm. The white arrow in (b) illustrates
the “indirect gap” induced by the radiative coupling.

the strong magnon-magnon coupling of two different YIG
spheres with a1 = 1 mm and a2 = 0.5 mm (εsp/ε0 = 15) in
a cavity of radius R = 4 mm. The asymmetry generates now
an “indirect” gap.

The radiative coupling transforms the individual magnon
(Kittel) modes of the two-particle system into linear combi-
nations, analogous to the molecular orbital theory of diatomic
molecules, according to which, the interaction of two atoms
splits the levels into bonding (symmetric) and antibonding (an-
tisymmetric) orbitals. The magnetic spheres can be interpreted
as magnonic atoms that are bound into magnonic molecules.
Particle arrays will form magnonic crystals, although this
term is also used for magnetic structures with periodic vari-
ations of their magnetic properties [47,48] or distributions
of dipolar-coupled constituent materials [49]. The magnonic
dimer has bonding and antibonding combinations, where the
hybridization depends on the difference in their energies
ωi(Hi) and on their interaction. A homodimer A2 corresponds
to Fig. 6(a), while the mismatched spheres in Fig. 6(b) form a
heterodimer AB.

In a homodimer with inversion symmetry in which the
splitting between internal modes is large, bonding is dominated
by magnons with the same angular momentum n. We may
use chemical intuition, however, to maximize the coupling by
varying both the local field and the sphere radius. This may
reduces the splitting between the internal n = 1 and n = 2
modes (cf. Fig. 7) and facilitate an increased bonding via
sp-hybrid states.

Bonding and antibonding modes belong to different irre-
ducible representations. In a heterodimer, the lack of a mirror
plane reduces the spatial symmetry and introduces couplings
between all modes. Furthermore, energies of the different
shells shift with respect to each other. Figure 6 illustrates that
the lowest-energy (dipolar) magnon of the smaller particle can
couple efficiently to both the dipolar and higher multipolar
magnons of the larger particle. The heterodimer thereby dis-
plays a significantly more complex magnon mixing behavior
than the homodimer.

The bonding configuration corresponds to two dipole mo-
ments moving out of phase (optical mode, negative parity of
dipole moments, or antisymmetric magnetic fields), while the
antibonding configuration corresponds to the positive parity of
the dipoles (acoustic mode, symmetric fields). In contrast to the

FIG. 6. Energy-level diagram describing the magnon hybridiza-
tion in analogy with chemical bonds resulting from the interaction
between two spheres via microwave cavity modes. (a) Magnonic
homodimer consists of two similar magnetic spheres subjected to local
magnetic fields H1(2) = H0 ± δH , and (b) magnonic heterodimer con-
sists of two dissimilar magnetic spheres. In (a), magnon hybridization
only occurs between magnonic states of the same angular momen-
tum denoted by ni , while the reduced symmetry in a heterodimer
introduces coupling between all modes. In a homodimer, the bonding
level is dark since it has no dipole moment, while the antibonding
level is bright. In a heterodimer, all modes are visible. The arrows in
circles indicate the relative magnonic phase (not spin or equilibrium
magnetization).

positive parity (symmetric) magnons, the net magnetic moment
of the negative parity (antisymmetric field) magnon vanishes
for identical spheres, and does not interact with the p-wave
cavity mode in the present configuration. The former are then
bright, and the latter the dark states, as shown in Fig. 4. In the
heterodimer, all magnons mix and contribute to the bonding
and antibonding modes. As a consequence, all modes become
bright, see Fig. 5.

We can parametrize the observations by elementary molec-
ular orbital theory. The energy gap, Egap, between the bonding
and antibonding energy levels for a diatomic molecule is given
by the secular equation

E2
gap = (2g)2 + (EA − EB)2, (34)

where g is the coupling parameter between the two sites, while
EA and EB refer to their energies. There are two contributions
to the energy gap, the covalent(homopolar) bonding contribu-
tion Eh = 2g, and the ionic contribution, Ei = EA − EB , due
to the difference in “electronegativity” between the two atoms.
For any bond, we can then define the bond covalency, αc =
Eh/Egap, and polarity, αp = Ei/Egap, which parametrizes the
continuous transition from covalent to ionic bonding.

In a homodimer at δH = 0, we have a direct gap due to
covalent bonding Egap = 2g, see Fig. 4(b), and bonding and
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FIG. 7. Same as Figs. 3 and 4 but for relatively large YIG spheres
of radius a1 = a2 = 1.25 mm. The cavity modes are now strongly
mixed with those confined in the two YIG spheres. In (a), the modes
are shifted relative to each other by δH/Ms ∼ 0.7 and H0/Ms ∼ 6 in
panels (b) (no cavity) and (c).

antibonding wave functions are equally shared between the
two atoms. However, in a heterodimer, due to the detuning of
the atomic levels ω1(H0) 
= ω2(H0), the gap has an “ionic”
contribution, leading to an indirect gap as a function of
δH in Fig. 5(b). In a polar molecule, the amplitude of the
bonding state shifts towards the more magnon-negative site
referred to as the magnonic anion, with the antibonding state
shifting towards the less magnon-negative site, referred to
as the magnonic cation, a partially polarized molecule. The
covalent bonding strength can be independently modulated by
the average frequency spacing with the dominant cavity mode.

The scattering efficiency factor Qsca is plotted as a function
of frequency ω/2π , uniform field H0/Ms , and differential field
δH/Ms for two YIG spheres of radius a1 = a2 = 1.25 mm and
relative permittivity εsp/ε0 = 15, placed in a spherical cavity
of radius R = 4 mm in Figs. 7(a) and 7(c), and without cavity
in Fig. 7(b). Without cavity, the system can be interpreted
as two independent antennas operating in the ultrastrong
coupling regime. Many anticrossings in Fig. 7(a) emphasize
that the cavity modes are strongly and even ultrastrongly
mixed with the modes in the individual spheres when detuned

by a differential field δH/Ms ∼ 0.7. The large differences
between Figs. 7(b) and 7(c) provide more evidence for the
strong cavity-mode induced coupling between the spheres. In
Fig. 7(b), beside the main crossing modes in absence of the
cavity, we observe tails from crossings at higher frequencies
that are standing electromagnetic resonance modes confined
by the magnetic spheres. Strong coupling with the cavity mode
does not only turn the main crossings into anticrossings but also
causes the complex anticrossing pattern shown in Fig. 7(c) by
hybridizing with all higher modes.

IV. CONCLUSION

In conclusion, we studied the plasmonics and optomagnon-
ics of two dielectric and two magnetic spheres in microwave
cavities by Mie scattering theory, i.e., a systematic expansion of
the coupled Maxwell and LLG equations for magnetic systems.
We employ the linear and magnetostatic approximations, but
otherwise the treatment is numerically exact. The magnetiza-
tion dynamics of spatially separated spheres in cavities can be
efficiently coupled over large distances. The main reason is not
the magnetic but the electric-field coupling, since two dielectric
spheres with zero magnetization in a cavity display very similar
dynamic behavior. Both strong and ultrastrong coupling can
be realized not only for individual spheres but also for their
mutual interaction. Two (properly placed) identical spheres
form an inversion symmetric system, which is apparent by
an anticrossing that generates a “direct” gap when plotted as a
function of a symmetry breaking parameter, such as a staggered
magnetic field or a size difference. Spheres with different
sizes, however, break the symmetry at constant magnetic field
and lead to an “indirect gap” as a function of field detuning.
Magnon-polaritons within individual magnetic spheres may
also hybridize in cavities, forming a complex mixed state of
light and spin. Our study suggests a new direction for “spin cav-
itronics,” viz. a route toward coherent control of the dynamics
of various systems and materials (magnets, pieozoelectrics,
superconductors, charge density waves, etc.) in microwave
cavities via the nonmagnetic (plasmonic) interactions.
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