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Magnetoelectric antiferromagnets as platforms for the manipulation of solitons
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We study the magnetic dynamics of magnetoelectric antiferromagnetic thin films, where an unconventional
boundary ferromagnetism coexists with the bulk Néel phase below the Néel temperature. The spin exchange
between the two order parameters yields an effective low-energy theory that is formally equivalent to that of a
ferrimagnet. Dynamics of domain walls and skyrmions are analyzed within the collective-variable approach, from
which we conclude that they behave as massive particles moving in a viscous medium subjected to a gyrotropic
force. We find that the film thickness can be used as a control parameter for the motion of these solitons. In
this regard, it is shown that an external magnetic field can drive the dynamics of domain walls, whose terminal
velocity is tunable with the sample thickness. Furthermore, the classification of the skyrmion dynamics is sensitive
to the spatial modulation of the sample thickness, which can be easily engineered with the present (thin-film)
deposition techniques. Current-driven spin transfer can trigger drifting orbits of skyrmions, which can be utilized
as racetracks for these magnetic textures.
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I. INTRODUCTION

The magnetoelectric effect refers to the induction of bulk
magnetization (electric polarization) by an electric (magnetic)
field [1–3]. It requires the breaking of time-reversal symmetry,
which implies the existence of a magnetic order in systems of
localized spins [4], and of inversion symmetry (at the level of
the magnetic point group) [2,5]. Magnetically ordered mag-
netoelectrics exhibit surface ferromagnetism, whose existence
can be argued on symmetry grounds [6]: Broken reflection
symmetry with respect to the surface allows for a Rashba
electric field normal to it, which in turn induces the ferromag-
netic spin density via the magnetoelectric coupling. In that
regard, magnetoelectric antiferromagnets (ME-AFMs) stand
out among these materials because of the following feature:
There is a subclass of ME-AFMs, including α-Cr2O3 and
Fe2TeO6, for which the magnetoelectric response is dominated
by the exchange-driven mechanism and, strikingly, the emer-
gent boundary magnetization is collinear with the (bulk) Néel
order [7–9]. The macroscopic signatures of this unconventional
surface ferromagnetism are well known experimentally [10],
and the ensuing ferrimagnetic state, which is described by
the staggered order parameter, offers promising perspectives
to manipulate the dynamics of topological solitons [11]. The
latter magnetic textures have been intensively studied in recent
years due to their topological robustness (meaning that the
spin texture cannot be deformed continuously into the trivial
uniform state) and to their potential use as building blocks for
information storage and logic devices [12,13]. Of particular
interest are domain walls [14] (DWs) and skyrmions [15] due
to their particlelike behavior and low current threshold for
skyrmion depinning [13].

In this paper we construct a low-energy theory for ME-
AFMs taking into account the aforementioned surface effects.
We focus on energy terms that favor topological solitons, with
special attention to DWs and skyrmions. We furthermore study

the magnetic dynamics of these two soliton classes, driven by
an external magnetic field (DWs) and by an electric charge
current (skyrmions), in ME-AFM thin films. In this regard, we
consider the case of a quasi-two-dimensional (quasi-2D) ME-
AFM film subjected to spin exchange and spin-orbit coupling
with a heavy metal adjacent to one of its surfaces. In this setup,
the proximate heavy metal plays two roles: First, it induces an
interfacial Dzyaloshinskii-Moriya interaction, which promotes
the stabilization of skyrmion textures. Second, it serves as a
medium for the charge current to flow and thereby interact
with the adjacent magnetic film, offering an additional knob
to drive the magnetic dynamics when the magnet itself is in-
sulating. The DW dynamics correspond, within the collective-
variable approach, to that of massive particles moving in a
viscous medium and subjected to a gyrotropic force depending
on their precessional degree of freedom. We find that the field-
driven terminal velocity of DWs shows a nonlinear behavior
as a function of the sample thickness. On the other hand,
the Thiele equation for skyrmions, which we derive using
collective variables, is analogous to the equation of motion
for a massive charged particle in a viscous medium subjected
to a gyrotropic force depending on its charge. We find that
these dynamics can be sustained by feasible electric currents
via the spin-transfer torque effect and that the class of skyrmion
trajectories realized, including drifting orbits [16,17], depends
on the details of the film thickness profile. Our framework,
albeit generic for ME-AFMs, will be built upon the example
of chromia, α-Cr2O3, for illustrative purposes.

II. EFFECTIVE THEORY

Chromia represents the archetypical (insulating) ME-AFM:
It is a pure (bulk) antiferromagnet, meaning that it exhibits
neither weak ferromagnetism [18,19] nor magnetic (texture)
superstructures [20] in the ground state below the Néel
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FIG. 1. Corundum-type crystal structure of eskolaite (mineral
form of α-Cr2O3). The inset depicts the corresponding unit cell. The
parameters of the rhombohedral crystal lattice are a = 4.95 Å and
c = 13.58 Å (referred to the hexagonal frame). Red (blue) spheres
represent Cr3+ (O2−) ions. Red (sublattice A) and blue (sublattice B)
arrows illustrate a spin arrangement of the Cr3+ ions corresponding
to the antiferromagnetic phase: s1 = −s2 = s3 = −s4.

temperature TN � 307 K. It has the (bulk) symmetry of the
rhombohedral space group R3̄c and crystallizes in a corundum-
type structure (see Fig. 1), with the unit cell containing four
(crystallographically equivalent) Cr3+ ions located along a
body diagonal of the rhombohedron. The low-energy magnetic
dynamics of bulk chromia corresponds to that of an ordinary
(bipartite) antiferromagnet: The two magnetic sublattices con-
sist of Cr3+ ions at sites {1,3} and {2,4} within each unit cell
(see inset of Fig. 1), and the system is magnetically described
by the staggered order parameter s1 − s2 + s3 − s4 and the
(residual) spin density s1 + s2 + s3 + s4 per unit cell [21].

We consider the geometry of a chromia film deposited on
top of a heavy metal, with the flat interface lying along the (111)
plane (see Fig. 2). Our choice of coordinate system takes the z

axis along the trigonal axis, i.e., the normal to the interface.
An equilibrium boundary magnetization emerges for this
geometry since chromia exhibits a magnetoelectric response
[6]. The heavy-metal substrate endows a Dzyaloshinskii-
Moriya interaction in the antiferromagnetic film due to the
breaking of the reflection symmetry with respect to the basal
plane [22], which favors spin (texture) superstructures and, in
particular, stabilizes skyrmion textures. Furthermore, it makes
the two film surfaces become magnetically inequivalent, and
as a result, a net boundary magnetization is present in the
heterostructure. It is worth remarking that this effect on the
ME-AFM is interfacial in nature, so that it will be enhanced
(relative to the bulk) in thin films.

We regard the heterostructure as a quasi-2D system along
the xy plane, which we take to be isotropic at the coarse-grained
level. This approach is well suited for film thicknesses less
than the DW width. An effective long-wavelength theory for
bulk chromia can be developed in terms of two continuum
coarse-grained fields [21], namely, the Néel order l and the
(volume) spin density sm. These fields satisfy the nonlin-
ear local constraints l2 = 1 and l · m = 0, s represents the
saturated (volume) spin density [23], and the presence of a
well-developed Néel order implies |m| � 1 on the scale of the

FIG. 2. Schematic of the heterostructure: A film made of chromia
(α-Cr2O3) is deposited on top of a flat heavy-metal substrate. The film
is grown along the [111] direction of its rhombohedral crystal lattice,
and its thickness varies over the interface, which is described by the
profile h(x,y). This figure illustrates the example of a periodically
modulated thickness along the x axis.

exchange coupling. In the absence of electromagnetic fields,
the Lagrangian density for bulk chromia in the continuum limit
becomes

Lbulk[t ; l,m] = sm · (l × ∂t l) − m2

2χ⊥
− Fstag[l] (1)

to the lowest order (quadratic) in both ∂t l and m [24]. The
first term is the kinetic Lagrangian, which originates in the
accumulation of geometric Berry phases from individual spins
and establishes the canonical conjugacy between the Néel order
and the spin density since the canonical momentum reads
�l = sm × l [25]. Furthermore, χ⊥ denotes the transverse
spin susceptibility, and Fstag[l] stands for the effective energy
for the Néel order, whose minimal model contains (bulk)
isotropic exchange, (bulk) uniaxial anisotropy, and (interfacial)
Dzyaloshinskii-Moriya contributions [26]:

Fstag[l] = A

2

∑
μ=1,2

(
∂xμ

l
)2 + 1

2
Kl2

z + D(l · ∇lz − lz∇ · l),

(2)
where A and K are the (exchange) stiffness and anisotropy
constants, respectively, and D denotes the strength of
the Dzyaloshinskii coupling. K < 0 describes the hard
(anisotropy) xy plane, and both A and χ−1 are proportional to
JS2, where J is the microscopic exchange energy. The model
is minimal in the sense that it contains all symmetry-allowed
exchange and relativistic energy terms up to second order
in the Néel order and its spatial derivatives. Note that bulk
Dzyaloshinskii-Moriya terms are forbidden by the centrosym-
metry of R3̄c, the space group of chromia [20]. Integration out
of the spin field m yields the following effective Lagrangian
density for the Néel order:

Lbulk,eff[t ; l] = 1
2 s2χ (∂t l)2 − Fstag[l], (3)

where the first term accounts for the inertia of the dynamics of
the Néel order.

The boundary spin density smb describes the spin-polarized
state at the chromia/heavy-metal interface, where s is the
uncompensated (surface) spin density [27]. It contributes to
the effective theory with a 2D Lagrangian density of the form

Lsurf[t,l,mb] = LWZ[mb,∂tmb] − Fsurf[l,mb], (4)

where the first term corresponds to the Wess-Zumino action of
the (2+1)-dimensional field theory of ferromagnetism [28],
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LWZ[mb,∂tmb] = −sa[mb] · ∂tmb. Here, a[x] is the vector
potential for the magnetic monopole [29], ∇x × a = x, and
Fsurf[l,mb] stands for the 2D free-energy density associated
with the boundary magnetization. It is worth recalling here
that chromia exhibits a spin-exchange-driven magnetoelectric
response at not too low temperatures [30,31]. Phenomeno-
logically, this means that an applied electric field induces a
shift in the intralattice exchange constants of the form JAA →
JAA + δJ and JBB → JBB − δJ , which, in turn, engenders an
enhancement or reduction of the sublattice spin polarizations
compared to those of the compensated (zero-field) case. As
a result, the magnetoelectric effect produces a net boundary
magnetization smb that is collinear with the staggered order
parameter regardless of their orientation. A minimal model for
the energy density for the magnetization at the interface reads

Fsurf[l,mb] = m2
b

2χb
‖

− ηmb · l, (5)

where χb
‖ is the longitudinal spin susceptibility at the interface

and η is the coupling constant for the exchange-driven mag-
netoelectric effect. We have disregarded higher-order terms
in the boundary magnetization and up to second-order terms
in ∇mb (exchange and relativistic) since the exchangelike
coupling ∝ mb · l dominates the energetics at the interface.
This term establishes the collinearity between both order
parameters, as can easily be seen from minimization of the
functional with respect to mb. Integration out of the boundary
magnetization yields, to the leading order in the staggered order
parameter, the following effective 2D Lagrangian density for
the heterostructure [32]:

Leff[t ; l] = −sa[l] · ∂t l + ρ

2
(∂t l)2 − F[l], (6)

where ρ = s2χh and F = hFstag + Fsurf are the effective in-
ertia and (total) free-energy densities, respectively, and h(x,y)
denotes the 2D thickness profile of the chromia film.

The effects of an external magnetic field can be incorporated
into our effective theory as follows: First, we consider here
the exchange approximation, in which the Lagrangian density
is assumed to be invariant under the global spin rotations.
By doing so we neglect relativistic interactions, which break
this symmetry, by treating them as a perturbation, in the
spirit of Ref. [33]. Second, the net spin density (i.e., the
conserved Noether charge associated with the symmetry of the
Lagrangian under global spin rotations) reads s = sl + ρ l ×
∂t l . In the presence of an external magnetic field H , the total
magnetization can be cast as M = g sl + gρ l × ∂t l + χ̂ 	 H ,
where g denotes the gyromagnetic ratio and χ̂ 	 is the magnetic
susceptibility tensor. Since M = ∂Leff/∂ H , the susceptibility
must take the form χ	

ij = ρg2(1 − li lj ), and therefore, the
effective Lagrangian density is extended to

Leff[t ; l] = −sa[l] · ∂t l + ρ

2
(∂t l − gl × H)2 − F[l], (7)

where F[l] now includes the Zeeman term −gsl · H [34].
To conclude this section, dissipation can be incorporated
phenomenologically into our heterostructure via the dissipative
Gilbert-Rayleigh function, R[l] = hsα(∂t l)2/2, which is half
of the dissipation power density. Here, α denotes the bulk
Gilbert-damping constant, which can be attributed to, for

example, magnon-phonon interactions, and we have omitted
the interface contribution to dissipation [35]. Henceforth, we
will treat chromia as a ferrimagnet and study the ensuing
dynamics of DWs and skyrmions, bearing in mind the film
thickness as a control parameter. Note that this approach differs
from previous studies based on the thermal and/or chemical
control of the saturated spin density [36].

III. DOMAIN WALL DYNAMICS

We consider in what follows magnetic solitons whose
dynamics are encoded in the time evolution of a discrete set
of soft modes (collective-variable description). Of particular
interest are DWs [14], which can be described by their center of
mass X and azimuthal angle 
 in the low-frequency (compared
to the exchange energy) regime. Let x denote the direction
of the DW propagation and h be uniform. Accounting for
the ansatz cos �(x) = tanh[(x − X)/δ] for the out-of-plane
component of the Néel order in the spherical-coordinate rep-
resentation, l = (sin � cos 
, sin � sin 
, cos �), the Euler-
Lagrange equations for the Lagrangian density (7) become [32]

2δs
̇ + 2ρẌ + 2sαhẊ = δFX, (8)

−2sẊ + 2δρ
̈ + 2δsαh
̇ = F
, (9)

where FX = −δXF and F
 = −δ
F are the thermodynamic
forces conjugate to X and 
, respectively, with F being the
total free energy. Here, the DW width is given by δ = √

A/|K|.
In the presence of a strong magnetic field, H = Hzêz, the

energetics of the ME-AFM are dominated by the Zeeman cou-
pling, so that the thermodynamic forces can be approximated
by FX � −2gsHz and F
 � 0. Equation (9) therefore dictates
that 
̇|st = s(Ẋ|st)/δsαh is the angular velocity of the DW in
the steady state. By substituting it into Eq. (8) we obtain the
following expression for the field-driven terminal velocity of
the DW:

V = 2h/h	

1 + (h/h	)2
Vmax, (10)

where h	 = s/sα and Vmax = gδHz/2 is the maximum veloc-
ity. Its reduction compared to Vmax is due to the ferromagnetic
nature of the surface, and h/h	 parametrizes the effective
damping αeff. Since the usual DW terminal velocity is ∝
αeff/(1 + α2

eff) [14], we obtain a maximum at the value h = h	

of the film thickness (see Fig. 3). In summary, the DW velocity
can be tuned by both the external magnetic field and the film
thickness, with the latter being responsible for the nonlinear
behavior.

IV. SKYRMION DYNAMICS

Skyrmions are the epitome of spatially localized solitons
in two dimensions [15], exhibit topological charge, and arise
in magnetic systems with spin-orbit coupling [37]. For the
free-energy model (2), skyrmions are stabilized with the
energy Fsky ∝ 4πA|Q| and the characteristic length scale
R	 = 2πD/|K| for the skyrmion radius [38]. These spin
textures can be described, using collective coordinates, by
their center of mass X = (X,Y ) in the low-frequency (com-
pared to the exchange energy) regime. Since details of their
geometry (shape) are encoded in hard modes of the texture,
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FIG. 3. Dependence of the field-driven terminal velocity of the
domain wall on the thickness of the ME-AFM film. Both quantities
have been normalized to the maximum velocity Vmax = gδHz/2 and
the length scale h	 = s/sα. The dashed line illustrates the maximum
of the terminal velocity reached at the value h = h	 of the film
thickness.

we can take skyrmions to be rigid in the spirit of our low-
frequency long-wavelength treatment. Taking into account
the ansatz l[t,r] = l0[r − X(t)] for the order parameter, the
Euler-Lagrange equations for the Lagrangian density (6) now
become

ρMh(X)Ẍ + 4πsQ Ẋ × êz + h(X)Ẋ = Fint + FJ , (11)

where the terms on the left-hand side represent (from left
to right) the inertial, Magnus, and friction forces acting on
the skyrmion, respectively. Here, ρM = s2χ

∫
R2 dxdy(∂x l0)2

is the inertia density (per thickness),  = αρM/χs denotes the
viscous coefficient, and Q = ∫

R2 dxdy l0 · (∂x l0 × ∂y l0)/4π

is the Pontryagin index (so-called topological charge) of the
skyrmion texture, which is a topological invariant and provides
a measure of the wrapping of the order parameter l0(r) around
the unit sphere.

Our Thiele equation [39] for the soft modes, Eq. (11), is
derived within the linear-response approach for the case of
thickness profiles h(x,y) smooth over length scales larger
than the typical size of the skyrmion. This requirement
translates into the adiabatic condition |∂x,y ln h|R	 � 1. Fi-
nally, Fint = −δXF is the conservative force, and FJ rep-
resents the force exerted on the skyrmion by a charge
current J flowing in the heavy-metal substrate. The lat-
ter stems from the spin-transfer torque exerted on the
spin texture by the applied charge current via the (ex-
change) proximity effect [40] and takes the form FJ,i :=∫

R2 dxdy{ζ1 l0 · [( J · ∇)l0 × ∂i l0] − ζ2∂i l0 · ( J · ∇)l0}, i =
x,y,z, where ζ1 and ζ2 are the phenomenological constants
for the reactive and dissipative components of the spin-transfer
torque, respectively [36]. For a spatially constant (therefore di-
vergenceless) charge current, J = Jxêx + Jyêy , we can recast
these identities as the linear system

(
FJ,x

FJ,y

)
=

(
− ρM

χs2 ζ2 −4πQζ1

4πQζ1 − ρM

χs2 ζ2

)(
Jx

Jy

)
. (12)
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FIG. 4. Driftinglike orbits of skyrmions with topological charge
Q = 1 subjected to the current-induced force F̃J = 0.8(4πêx + Kêy)
for the hyperbolic thickness profile h(x̃)/T = 1 + 0.7 tanh[10(x̃c −
x̃)], with x̃c = 0.45. These trajectories are calculated by numerical
integration of the dimensionless equations of motion (14) with the
following values of the parameters: K = 0.9π and 4πs/αsT = 4π .
In the calculations we have taken the initial velocity ˙̃x(0) = ˙̃y(0) = 0
and initial position along the x axis [ỹ(0) = 0]: x̃(0) = 0.1 (blue),
x̃(0) = 0.5 (yellow), and x̃(0) = 0.7 (green). The magenta dashed
line at x̃ = x̃c depicts the (attractive) racetrack for the skyrmion
dynamics.

Since its determinant is nonzero, the current-to-force conver-
sion is a bijective map, which means that we can generate
any (spatially constant) current-induced force profile. On the
other hand, spin-orbit torques do not exert an effective force
on the skyrmion texture for the rigid ansatz [41]. Henceforth,
we will assume the lowest-energy configuration for these
solitons (corresponding to the charge Q = ±1) and focus
on their current-driven dynamics by disregarding the internal
force.

We consider the simple scenario of one-dimensional thick-
ness profiles (along a direction defined as the x axis), h ≡ h(x).
As a specific illustrative example, we study the linear profile
h(x) = T − h0x/L, where L is the lateral size of the chromia
film (spanning the domain 0 � x � L) and the heights h0,T
satisfy the conditions h0 < T and h0R	/L � T . In the steady
state, solutions of Eq. (11) are given by

Ẋ = 1

16π2s2 + 2h2(X)

(
h(X)FJ,x − 4πsQFJ,y

4πsQFJ,x + h(X)FJ,y

)
. (13)

Let us now apply a current-induced force FJ ∝ 4πsQ êx +
h(Xc)êy , parametrized by a certain intermediate position 0 <

Xc < L, with a positive proportionality constant. The compo-
nents of the terminal velocity (13) read Vx ∝ 4πsQ[h(X) −
h(Xc)] and Vy > 0. Therefore, since Vx(X ≶ Xc)≷ 0, the line
x = Xc becomes an attractor for the dynamics of skyrmions
with a topological charge Q. The linear case illustrates the
following general statement: Given any one-dimensional thick-
ness profile monotonically decreasing along the (so-defined)
x axis, we can generate a self-focusing skyrmion racetrack
transversal to any x coordinate by tuning the current-induced
force.

We illustrate this statement by performing the numerical
calculation of skyrmion trajectories in the xy plane. Fig-
ure 4 depicts the generation, for a hyperbolically decreasing
thickness profile, of a self-focusing skyrmion racetrack sus-
tained by the appropriate current-induced force. The numerical
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trajectories are obtained by integrating the dimensionless form
of Eq. (11):

K h(X̃)

T

[
d2 X̃
dt̃2

+ d X̃
dt̃

]
+ 4πsQ

αsT
d X̃
dt̃

× êz = F̃J , (14)

where space and time are rescaled with respect to the lateral
sizeL and the relaxation time τ = χs/α, respectively, andK =∫

R2 dxdy (∂x l0)2 denotes a (dimensionless) geometric factor
determined by the skyrmion texture.

V. DISCUSSION

We have shown that ME-AFMs offer an attractive plat-
form to control fast antiferromagnetic dynamics of DWs,
driven by an external magnetic field, as in their ferrimagnetic
counterparts [42]. Similar dynamics could also be triggered
by an applied charge current, which exerts a force on the
DW via the spin-transfer effect. The latter contributes to the
equations of motion (8) and (9) two components, FJ,X and
FJ,
, of the total force, respectively [43]. Therefore, expression
(10) for the terminal velocity of the DW is still valid upon
redefinition of the maximum velocity, Vmax(h) = [δFJ,X −
(h	/h)FJ,
]/4s, which now becomes thickness dependent. For
moderate magnetic fields, Dzyaloshinskii-Moriya interactions
could become relevant and contribute to the DW dynamics with
F
 = πD sin 
, which translates into an extra contribution
to the maximum velocity given by the substitution FJ,
 →
FJ,
 + πD sin 
. Accounting for the values A ∼ 10−11 J/m,
K ∼ 2 × 104 J/m3, and α ∼ 10−3 for the case of chromia
[32,44], we estimate the DW width to be δ ∼ 20 nm and the
maximum velocity Vmax to lie in the vicinity of 20 m/s for an
applied magnetic field μ0Hz = 0.01 T. Furthermore, the opti-
mal film thickness is found to be h	 ∼ 300 nm, which means
that the terminal velocity can be increased monotonically with
the thickness up to the submicrometric scale, where the Walker
breakdown occurs. It is important to mention that the emergent
ferromagnetism studied in Ref. [32] is a bulk property of
chromia, which is controlled by an external electric field. As a
result, the corresponding field-driven terminal velocity of the
DW is insensitive to the sample thickness, unlike the present
case.

Regarding skyrmions, the theory presented in this paper is,
in a way, complementary to that of Ref. [36] for ferrimagnets
since both share the same Thiele equation for the dynamics
of skyrmions but have different control variables: In our case,
the thickness profile plays this role through the inertia and
the viscous coefficient, whereas in the ferrimagnetic case it is
given by the saturated spin density of the system. That being
said, our framework for the manipulation of skyrmion textures
can be more advantageous for several reasons: First, from an
engineering perspective, an accurate shaping of the sample

surface is more feasible than the thermal or chemical control
of the saturated spin density required in Ref. [36]. Second,
ferrimagnetic materials behave effectively as ferromagnets in
almost all circumstances, the only exception being when (a
region of) the system is driven into the (angular momentum)
compensation point, where they exhibit an antiferromagnetic
behavior. On the contrary, bulk ME-AFMs are intrinsically
antiferromagnetic, with the ferrimagnetic character emerging
in the so-called holographic fashion (it is encoded in the bound-
aries of the system) [45]; the ensuing dynamics are therefore
suitable to be exploited in the context of antiferromagnetic
spintronics. Furthermore, the exchange-driven collinearity be-
tween the boundary magnetization and the bulk Néel order
allows the imaging of (the dynamics of) antiferromagnetic
textures by means of magneto-optical techniques.

Our Thiele equation for skyrmions, Eq. (11), relies on the
assumption of smoothness of the thickness profile. In the case
of ultrathin films with a small number of layers, however,
variations in the film thickness will be discrete rather than
continuous. Bearing in mind our scenario of one-dimensional
thickness profiles, the n-layer variation can be modeled by
�h(x,y) = n�[x − x0(y)], where x0(y), a function of the
transverse coordinate y, describes the x point at which the
thickness varies abruptly. It is a fair assumption to consider
x0(y) (the so-called n-layer variation front) to be randomly
distributed, so that the one-dimensional n-layer variation be-
comes �h(x) = n〈�[x − x0(y)]〉front, where 〈· · · 〉front denotes
the average over realizations of the front. This procedure
will typically smooth the spatial dependence of the n-layer
variation, making the thickness profile h(x) satisfy the adi-
abatic condition since |∂xh| will be moderate close to the
points of “discontinuity.” In any case, we only need the condi-
tions h(x > x0) ≷ h(x0) and h(x < x0) ≶ h(x0) to be satisfied
around a point x0 for the skyrmion racetrack principle to work,
regardless of the smoothness of the thickness profile: From
Eq. (13) we conclude that self-focusing skyrmion trajectories
are a steady property of the system, i.e., independent of the
inertia term. On the contrary, the transient regime of the
skyrmion dynamics will depend sensitively on the nature of
the thickness profile.
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