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The Hida model, defined on a honeycomb lattice, is a spin-1/2 Heisenberg model of aniferromagnetic hexagons
(with nearest-neighbor interaction, JA > 0) coupled via ferromagnetic bonds (with exchange interaction, JF < 0).
It applies to the spin-gapped organic materials, m-MPYNN · X (for X = I, BF4, ClO4), and for |JF | � JA, it
reduces to the spin-1 kagome Heisenberg antiferromagnet (KHA). Motivated by the recent finding of the trimerized
singlet (TS) ground state for spin-1 KHA, we investigate the evolution of the ground state of the Hida model
from weak to strong JF /JA using mean-field triplon analysis and Schwinger boson mean-field theory. Our triplon
analysis of the Hida model shows that its uniform hexagonal singlet (HS) ground state (for weak JF /JA) gives way
to the dimerized hexagonal singlet (D-HS) ground state for |JF |/JA � 1.26 (which for strong JF /JA approaches
the TS state). From the Schwinger boson calculations, we find that the evolution from the uniform HS phase
for spin-1/2 Hida model to the TS phase for spin-1 KHA happens through two quantum phase transitions:
(1) the spontaneous dimerization transition at JF /JA ∼ −0.28 from the uniform HS to D-HS phase and (2) the
moment formation transition at JF /JA ∼ −1.46, across which the pair of spin-1/2’s on every FM bond begins
to appear as a bound moment that tends to spin-1 for large negative JF ’s. The TS ground state of spin-1 KHA
is thus adiabatically connected to the D-HS ground state of the Hida model. Our calculations imply that the
m-MPYNN · X salts realize the D-HS phase at low temperatures, which can be ascertained through neutron
diffraction.
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I. INTRODUCTION

The frustrated quantum spins at low temperatures are known
to favor quantum-disordered phases such as the spin-liquid,
valence-bond-solid, nematic, or dimer and plaquette ordered
nonmagnetic states [1–5]. The kagome antiferromagnet is one
such example of a highly frustrated spin system of great current
interest. Spin-1/2 kagome antiferromagnetic materials, such
as Cu3Zn(OH)6Cl2 [6,7] and BaCu3V2O8(OH)2 [8], show
absence of magnetic ordering down to very low temperatures,
and are believed to realize some kind of a quantum spin-liquid
state. However, the true nature of the ground state of the
spin-1/2 kagome Heisenberg antiferromagnet (KHA) is a topic
of ongoing theoretical debate [9–15].

The spin-1 kagome antiferromagnetic case, realized, for
instance, in m-MPYNN · X [16–21], NaV6O11 [22], and
KV3Ge2O9 [23,24], has also been a subject of recent investiga-
tions. Of these materials, perhaps the most studied is the family
of organic salts m-MPYNN · X (m-N-methylpyridinium α-
nitronyl nitroxide) with X = I, BF4, ClO4, etc. These organic
materials consist of strongly ferromagnetic spin-1/2 pairs
coupled antiferromagnetically, which at low temperatures be-
have as spin-1 moments forming an antiferromagnetic kagome
lattice. The susceptibility measurements down to 35 mK on
these organic spin-1 kagome compounds show a clear spin-
gapped behavior and no magnetic ordering.

Recent theoretical studies on spin-1 KHA clearly find a
spin-gapped nonmagnetic ground state, but with somewhat
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differing details [25–31]. The two serious candidates for this
ground state are the hexagonal singlet solid (HSS) state and
the trimerized singlet (TS) state. Of these two, the TS state is
favored by most studies (based on tensor network algorithms,
DMRG, triplon analysis, etc.) as the ground state of the spin-1
KHA [28–31]. Notably, the TS ground state spontaneously
breaks the lattice symmetry by having more singlet weight
on either all up triangles or all down triangles of the kagome
lattice. It is therefore twofold degenerate. The spin-1 KHA,
thus, presents us with an interesting case of spontaneous
trimerization in a frustrated quantum antiferromagnet, beyond
the spontaneous dimerization that we are so familiar with.

The HSS state proposed by Hida [25] breaks no lattice or
spin symmetry. Its construction was inspired by the structure
of m-MPYNN · BF4, which is basically a spin-1/2 Heisenberg
problem on a honeycomb lattice made of antiferromagnetic
hexagons coupled ferromagnetically, as shown in Fig. 1. Here,
the intrahexagon antiferromagnetic (AFM) interaction (JA >

0) is shown as red bonds, while the interhexagon ferromagnetic
(FM) interaction (JF < 0) is shown as blue bonds. This is how
it was modeled by Hida [25]. Hence we call it the Hida model,
which applies to the m-MPYNN · X family. The HSS state can
be constructed by first forming the direct product of the lowest
energy singlet on every AFM (red) hexagon (as if they were
independent of each other), and then symmetrizing the pair of
spins on every FM (blue) bond. This is akin to the valence-bond
solid state constructed by Affleck, Kennedy, Lieb, and Tasaki
for spin-1 chain [32]. While the first step here tries to satisfy
the AFM interaction locally on every hexagon, the second step
forms a spin-1 out of two spin-1/2’s on FM bonds. But as stated
above, the HSS state turns out not to be the best choice for the
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FIG. 1. The Hida model with ferromagnetic Heisenberg ex-
change, JF , shown as blue links, and the antiferromagnetic exchange
interaction, JA, shown in red color. The a1 = 2x̂ and a2 = −x̂ + √

3ŷ

are two primitive vectors of the lattice. Moreover, we define a3 =
a1 + a2.

ground state of spin-1 KHA, which is the large |JF |/JA limit
of the Hida model.

Without the symmetrization, however, the direct product
of the hexagonal singlets is the exact ground state of the
Hida model for JF = 0. Let us call this as the hexagonal
singlet (HS) state, to distinguish it from the (symmetrized) HSS
state. The question that interests us is how the HS state (with
uniform singlet amplitude) evolves to become the symmetry-
breaking TS ground state with increasing |JF |/JA, or, restating
it differently, how the HS state surprisingly does not become
the HSS state in the large JF limit? In this paper, we address
this question by doing triplon analysis and Schwinger boson
mean-field theory of the Hida model. The key findings from our
Schwinger boson mean-field calculations are as follows: the
uniform HS state first undergoes a spontaneous dimerization
transition at |JF |/JA = 0.28, while the moments still behave as
spin-1/2. That is, a small interhexagonal FM coupling induces
dimerization of the singlet amplitude on the bonds of the AFM
hexagons, as shown in Fig. 2(b). We call it the dimerized-HS
(D-HS) state, which survives for all larger values of |JF |/JA.
Then, around |JF |/JA = 1.46, a second transition occurs, un-
der which the spin-1/2 moments on FM bonds begin to behave
as bound pairs whose total moment per FM bond rapidly
grows to spin-1. Thus the D-HS state with fully formed spin-1
moments for |JF |/JA � 1.46 in the Hida model is the TS state
of spin-1 KHA. It is in qualitative agreement with the triplon
analysis, which also finds a transition from the uniform to a
dimerized HS state that smoothly approaches the TS state for
large |JF |/JA. Furthermore, we discuss how to experimentally
differentiate the HS from the D-HS state, and suggest that the
low-temperature phase of m-MPYNN · BF4 salt would be the
D-HS (and not the HSS as originally suggested by Hida).

This paper is organized as follows. In Sec. II, we describe
the Hida model of quantum spin-1/2’s. We study the evolution
of its ground state with increasing |JF |/JA using triplon
mean-field theory (TMFT) in Sec. III and Schwinger boson
mean-field theory (SBMFT) in Sec. IV. Both of these
calculations produce mutually agreeable physics. We then
conclude in Sec. V.

FIG. 2. Three possible ground states of the Hida model. (a) The
hexagonal singlet (HS) state with a uniform singlet amplitude per
bond on every antiferromagnetic (red) hexagon. (b) The D-HS state
with dimerized AFM bonds (shown as thick and thin red bonds).
(c) Trimerized singlet (TS) state.

II. HIDA MODEL

The object of our study in this paper, the Hida model, is a
quantum spin-1/2 Heisenberg model on a honeycomb looking
lattice that has the symmetries of a kagome lattice due to a
particular choice of the exchange interactions (motivated by
the organic salt, m-MPYNN · BF4). As shown in Fig. 1, it can
be best described as a model of antiferromagnetic hexagons,
coupled ferromagnetically. Here, the hexagons with nearest-
neighbor AFM interaction, JA > 0, are shown in red color, and
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TABLE I. The exchange interactions for m-MPYNN+ · X+ ·
1
3 (acetone) from Refs. [16,17].

X I BF4 (BF4)0.72I0.28 ClO4

JA 1.6 K 3.11 K 1.20 K 0.19 K
JF − 10.2 K − 23.26 K − 11.3 K − 10.5 K
JF /JA − 6.375 − 7.479 − 9.416 − 55.263

the thick blue bonds depict the interhexagonal FM interaction,
JF < 0. The dotted green lines, joining the centers of the FM
bonds, are drawn to indicate the underlying kagome lattice.
The unit cell of the Hida model has six spins, as labeled in the
figure. The Hamiltonian of the Hida model is given below:

Ĥ = JF

∑
〈i,j〉

�Si · �Sj + JA

∑
〈i,j〉

�Si · �Sj . (1)

Every �Si here is a spin-1/2 operator. Some experimental values
of JF and JA, estimated from the susceptibility measurements
on the m-MPYNN · X family of compounds [16,17], are
presented in Table I. In the limit |JF |/JA → ∞, the Hida
model exactly becomes the spin-1 KHA model, HKHA =
J̃A

∑
〈i,j〉 Si · Sj , with the nearest-neighbor interaction J̃A =

JA/4 [25].
The Hida model for JF = 0 is a model of independent

hexagons with a trivial ground state in which every AFM
hexagon is in its lowest energy singlet state. How this uniform
HS (hexagonal singlet) ground state changes with JF , and
eventually becomes the TS ground state for large enough JF ,
is the question that we address in the next two sections. By
doing triplon mean-field theory (TMFT), we first compare the
energies of the candidate states to see their relative tendencies
as a function of |JF |/JA. Next, we do a Schwinger boson
mean-field theory (SBMFT) of the Hida model, which gives
us a clear understanding of the transition from the HS to the
TS phase in the ground state.

III. TRIPLON MEAN-FIELD THEORY

The triplon mean-field theory is a low-energy bosonic
theory of the triplet fluctuations for a given nonmagnetic
quantum state. In our previous work, we did such a theory
of the TS state for spin-1 KHA [31]. This approach provides a
simple means to study the renormalization and the stability of
a reference state against its low-energy quantum fluctuations.
For the Hida model, we identify three singlet states plausible
to be the ground state for different ranges of |JF |/JA. These
are shown in Fig. 2.

The state depicted in Fig. 2(a) is the HS state, in which all the
AFM (red) hexagons form the singlet (with uniform amplitude
per bond). It preserves all the symmetries of the underlying
lattice, and is expected to be the ground state for small |JF |/JA.
For JF = 0, it is anyway the exact ground state. The state
shown in Fig. 2(c) is the TS state (analogous to the spin-1

KHA), in which all up-oriented, , (or all down-oriented,

) hexagons with alternate red and blue bonds form the

singlet. This state breaks the lattice symmetry exactly in the
same way as the trimerized singlet state of the spin-1 KHA,
and is expected to be the ground state when |JF | � JA. Upon
a careful observation, we realize that this TS state can also be
viewed as the HS state with dimerized singlet amplitudes (with
alternate strong and weak red bonds in every antiferromagnetic
hexagon). It presents us with an interesting third state shown
in Fig. 2(b), which we call the dimerized-HS or D-HS state. In
this state, we do not bother about forming the lowest-energy
singlet on a hexagon as a whole. Instead, we only form the
dimer singlets on the alternate AFM bonds, as in Fig. 2(b).
Using TMFT, we compute the energies of these three states
as a function of |JF |/JA, and see how they compete to be the
ground state.

For doing TMFT, we first derive the representation of the
spin-1/2 operators in terms of the lowest energy singlet and
triplet eigenstates of the individual elementary blocks on which
the candidate state forms the singlet. For the HS state, the

elementary blocks are the AFM hexagons, ; for the TS
state, these blocks are, say, the up-oriented hexagons with

alternate AFM-FM bonds, ; and for the D-HS state, only

the three AFM bonds on up-oriented AFM-FM hexagons, ,
are individually treated as the elementary blocks. We find
the eigenstates and eigenvalues of the corresponding block
Heisenberg Hamiltonians separately for the three cases. Of
these, we keep only the lowest lying singlet and the triplets
immediately above it, and ignore the rest of the higher energy
states, as we are interested in the minimal low-energy descrip-
tion of the system with respect to the three candidate states.
Then, in this reduced basis, {|bk〉}, we write the basic spin-1/2
operators on the hexagons as Sj,α =∑k,l M

k,l
j,α|bl〉〈bk|, where

Mk,l
j,α = 〈bk|Sj,α|bl〉, j = 1 to 6 is the spin label (as in Fig. 1),

α = x,y,z are the three components of the spin operators.
For further simplification, we approximate the singlet state

on every elementary block by a mean singlet amplitude s̄.
We treat the triplet states by associating to them the bosonic
triplon operators, and keep in the representation of the spin-
1/2 operators only those triplon terms that couple to s̄. This
latter approximation amounts to neglecting the triplon-triplon
interaction in the full Hamiltonian. We then rewrite the full
Hamiltonian Ĥ of Eq. (1) in this triplon representation of
the spin-1/2 operators. The constraint on the total number of
bosons is satisfied via a mean Lagrange multiplier λ. These
steps lead to a Hamiltonian which is bilinear in the triplon
operators, and describes the effective low-energy triplon dy-
namics of the Hida model. Below, we formulate the TMFT
separately for the HS, D-HS, and TS states.

A. Hexagonal singlet (HS) state

Using the convention given in Fig. 1, we write the spin-1/2
block Hamiltonian of a single AFM hexagon as

H = JA{ �S3(r) · [�S2(r) + �S6(r + a1)]

+ �S1(r + a1) · [�S6(r + a1) + �S4(r + a3)]

+ �S5(r + a3) · [�S4(r + a3) + �S2(r)]}. (2)
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We use the sixfold rotational symmetry associated with an
isolated AFM hexagon to write its eigenstates. The sixfold rota-
tion operator, R, rotates the hexagon by 60◦, and its eigenvalues
are λR = ±1, ±ω, ±ω2. Its lowest energy eigenstate is a unique
spin singlet with energy Es = − JA

2 (2 + √
13) and λR = 1. The

next higher energy eigenstate is a triplet of m = −1,0,1 (total
Sz) with energy Et = − JA

2 (2 + √
5) and λR = −1. To keep

it minimal, we neglect the higher energy eigenstates of ,
which reduces the local Hilbert space to one singlet |s〉 and a
triplet, {|tm〉}.

Similar to the bond-operator formalism [33–35], we write
the spin-1/2 operators on an AFM hexagon in the reduced
basis in terms of the hexagonal singlet and triplet operators,
respectively, ŝ† and t̂

†
m, acting in a bosonic Fock space. The

projection of the infinite dimensional Fock space onto the
4-dimensional reduced Hilbert space spanned by |s〉 and |tm〉
is done by the constraint ŝ†ŝ +∑m t̂

†
mt̂m = 1 on the number of

these bosons. In the reduced space, the local hexagonal block
Hamiltonian can now be written as

H ≈ Esŝ
†ŝ + Et

∑
m

t̂†mt̂m. (3)

The spin-1/2 operators on an AFM hexagon can approximately
be represented as

Si,α ≈ Ci s̄Q̂α, (4)

where for i ′ = 1, 2, and 3,

C2i ′−1 = −
√

2〈t0|Sz
1|s〉 = 2〈t1|S+

1 |s〉 = 2〈t1̄|S−
1 |s〉

= 7
√

5 + 7
√

13 + 2
√

65 + 26

6
√

6(65 + 18
√

13)
=−C2i ′=−C. (5)

Moreover, the “coordinate” operator

Q̂α = 1√
2

(t̂†α + t̂α) (6)

for t̂
†
x = 1√

2
(t̂†1̄ − t̂

†
1), t̂

†
y = − i√

2
(t̂†1̄ + t̂

†
1), and t̂

†
z = −t̂

†
0 . The

“momentum” operator conjugate to Q̂α is defined as P̂α =
i√
2
(t̂†α − t̂α). Here, we have treated the singlet operator, ŝ, as

mean-field, s̄. Through s̄, which measures the mean singlet
amplitude per AFM hexagon, we describe in mean-field ap-
proximation the HS phase of the Hida model. For a general
discussion on triplon mean-field theory, please take a look at
Refs. [31,33–35].

By using Eqs. (3) and (4), we turn the Hida model of Eq. (1)
into an effective theory of triplons with respect to the HS state.
The effective triplon Hamiltonian has the following form in
momentum space:

Ĥ HS
t = e0Nuc + 1

2

∑
k

∑
α=x,y,z

[λP̂ †
α (k)P̂α(k)

+ (λ − 2JFC2s̄2χk)Q̂†
α(k)Q̂α(k)]. (7)

Here, Nuc is the total number of hexagonal unit cells in
the lattice, e0 = (Es − Et )s̄2 + λs̄2 − 5

2λ + Et , and λ is the
Lagrange multiplier that is introduced to satisfy the local
constraint, ŝ†ŝ +∑α t̂†αt̂α = 1, on average. The operator Q̂α(k)

is the Fourier transform of Q̂α(r), where r denotes the po-
sition vector of the hexagonal unit cell of the lattice, and
k is the lattice-momentum vector in the first Brillouin zone
of the corresponding reciprocal lattice. Likewise, P̂α(r) =

1√
Nuc

∑
k eik·rP̂α(k). Since Q̂α(r) and P̂α(r) are Hermitian,

therefore, Q̂†
α(k) = Q̂α(−k) and P̂ †

α (k) = P̂α(−k). Moreover,
[Q̂α(k),P̂α′ (k′)] = iδαα′δk+k′=0, while the Q̂α(k)’s commute
amongst themselves and the same for P̂α(k)’s. In Eq. (7),

χk = cos k · a1 + cos k · a2 + cos k · a3, (8)

where a1, a2, and a3 are as defined in Fig. 1.
The Hamiltonian in Eq. (7) is essentially a problem of three

coupled harmonic oscillators. In the diagonal form, the Ĥ HS
t

can be written as follows:

Ĥ HS
t = e0Nuc +

∑
k

∑
α=x,y,z

ωα,k

[
γ̂ †

α (k)γ̂α(k) + 1

2

]
. (9)

Here, γ̂α(k) =
√

ωα,k

2λ
Q̂α(k) + i

√
λ

2ωα,k
P̂α(k) are the renormal-

ized triplon operators, and

ωα,k =
√

λ(λ − s̄2ξα,k) (10)

are the triplon energy dispersions with ξα,k = 2JFC2χk. The
ground-state energy per unit cell is

eHS
g = e0 + 1

2Nuc

∑
k

∑
α=x,y,z

ωα,k. (11)

It is a function of two unknown mean-field parameters, λ and
s̄2. We determine them by minimizing eg . The ∂λeg = 0 and
∂s̄2eg = 0 give us the following mean-field equations, whose
self-consistent solution gives the physical values of λ and s̄2:

s̄2 = 5

2
− 1

4Nuc

∑
k

∑
α=x,y,z

2λ − s̄2ξα,k

ωα,k
, (12a)

λ = (Et − Es) + λ

4Nuc

∑
k

∑
α=x,y,z

λξα,k

ωα,k
. (12b)

This formalism would present us with two physical so-
lutions, viz. the gapped or the gapless triplons. When the
minimum of the lowest of these dispersions in the Brillouin
zone is strictly greater than zero, it means there is an energy
gap that protects the HS ground state against triplon excitations.
We surely expect this to happen when JF is near about zero.

B. Dimerized hexagonal singlet (D-HS) state

To describe the D-HS state of the Hida model, we start
with the Heisenberg model for only the AFM bonds of an
up-oriented hexagon with alternate AFM-FM bonds:

H = JA

∑
i=1,2,3

�S2i · �S2i+1

(with �S7 = �S1). (13)

Using the well-known bond-operator representation [33–35],
we write the spin-1/2 operators on these three AFM bonds in
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terms of the singlet and triplet bosonic operators:

S2i,α ≈ s̄

2
(t̂i,α + t̂

†
i,α),

S2i+1,α ≈ − s̄

2
(t̂i,α + t̂

†
i,α). (14)

Here, the s̄ is the mean singlet amplitude on these AFM bonds.
The block Hamiltonian of Eq. (13) now reads as

H = −3

4
JA

III∑
i=I

ŝ
†
i ŝi + 1

4
JA

∑
α=x,y,z

III∑
i=I

t̂
†
i,α t̂i,α. (15)

The roman numerals indicate the three AFM bonds [see
Fig. 2(b)]. The three constraints to be satisfied on these AFM
bonds are

ŝ
†
i ŝi +

∑
α

t̂
†
i,α t̂i,α = 1 ∀i = I, II, and III. (16)

With the “coordinate” operators defined as

Q̂i,α = 1√
2

(t̂†i,α + t̂i,α), (17)

the conjugate “momentum” operators as

P̂i,α = i√
2

(t̂†i,α − t̂i,α), (18)

and their commutation properties as [Q̂j,β,P̂i,α] = iδjiδβα and
P̂ 2

i,α + Q̂2
i,α = 2t̂

†
i,α t̂i,α + 1, the bond-operator representation

of the spins on an up-oriented AFM-FM hexagon can be written
as follows:

S2,α = 1√
2
s̄Q̂II,α = −S3,α, (19a)

S4,α = 1√
2
s̄Q̂III,α = −S5,α, (19b)

S6,α = 1√
2
s̄Q̂I,α = −S1,α. (19c)

In this representation, the Hida model with reference to the
D-HS state reads as

Ĥ D-HS
t = 1

2

∑
k

∑
α

[λP̂†
α(k)P̂α(k) + Q̂†

α(k)VQ
k Q̂α(k)]

+ e0 Nuc, (20)

where e0 = −3JAs̄2 + 3
4JA + 3λs̄2 − 15

2 λ, Q̂†
α(k) = [Q̂†

I,α(k)

Q̂
†
II,α(k) Q̂

†
III,α(k)] and P̂†

α(k) = [P̂ †
I,α(k) P̂

†
II,α(k)

P̂
†
III,α(k)]. The Lagrange multiplier, λ, is introduced to

satisfy the constraints in Eq. (16) on average. The Fourier
transform of the operators is given as follows:

Q̂i,α(r) = 1√
Nuc

∑
k

eik·rQ̂i,α(k), (21)

P̂i,α(r) = 1√
Nuc

∑
k

eik·rP̂i,α(k). (22)

In Eq. (20),

VQ
k = λ I3×3 − s̄2JF

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦
− s̄2JA

⎡⎣ 0 eik·a2 eik·a3

e−ik·a2 0 eik·a1

e−ik·a3 e−ik·a1 0

⎤⎦ (23)

is a Hermitian matrix. Here, I3×3 denotes the three-dimensional
identity matrix.

The Ĥ D-HS
t is a problem of three coupled oscillators for

each α separately. Its ground-state energy per unit cell is found
to be

eD-HS
g = e0 + 1

2Nuc

∑
k

∑
α

III∑
i=I

Ei(k), (24)

with Ei(k) =
√

λ(λ − 2s̄2ξi(k)). Here,

ξi(k) =
{

3

√
χk +

√
χ2

k + (ζk/3)3

+ 3

√
χk −

√
χ2

k + (ζk/3)3

}
i

(25)

with

χk = �[(JA + JF eik.a1 )(JA + JF eik·a2 )(JA + JF e−ik·a3 )]

and

ζk =2JF JA(cos k · a1+ cos k · a2+ cos k · a3)+3
(
J 2

F + J 2
A

)
.

Here, ξi(k)’s are the three roots of the cubic equation: x3 −
ζkx − 2χk = 0. See footnote1 on its solution of the allowed
ξi(k)’s as given in Eq. (25). By minimizing eD-HS

g , we get the
following two equations, which can be solved self-consistently
for λ and s̄2:

s̄2 = 5

2
− 1

6Nuc

∑
k

∑
α

III∑
i=I

λ − s̄2ξi(k)

Ei(k)
, (26a)

λ = JA + λ

6Nuc

∑
k

∑
α

III∑
i=I

ξi(k)

Ei(k)
. (26b)

C. Trimerized singlet (TS) state

In the TS state, we choose as reference the up-oriented
hexagons (with alternate AFM-FM bonds) where the singlets
are formed. The block Hamiltonian for each such up hexagon
can be written (with �S7 = �S1) as

H = JF

∑
i=1,2,3

�S2i−1 · �S2i + JA

∑
i=1,2,3

�S2i · �S2i+1. (27)

1Cardano’s formula: the roots of the cubic equation x3 +
px + q = 0 (for p,q ∈ C) are given by x = α + β with, α =

3

√
− q

2 +
√

q2

4 + ( p

3 )3 and β = 3

√
− q

2 −
√

q2

4 + ( p

3 )3. The only three

valid combinations of α and β are those for which αβ = −p/3 holds
true.
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Unlike the AFM hexagon, this only has threefold rotational
symmetry (as for a triangular unit cell in kagome lattice). Using
this threefold rotation symmetry, we write the eigenstates of
the up AFM-FM hexagon in the basis of the rotation operator,
which is defined in a way that it rotates the hexagon by an angle
of 120◦. The corresponding rotational eigenvalues are 1, ω, ω2,
where ω3 = 1. The chirality quantum number ν = 0,1, − 1
correspond to the rotational eigenvalues 1, ω, ω2, respectively.

The lowest energy state is a singlet with ν = 0. The next
higher energy level is sixfold degenerate, and it consists of
two triplets, represented as |t̂m,ν〉, given by m = 1,0,1̄ and
ν = 1,1̄. We neglect all the other higher energy states in a
low-energy theory. However, there are three more triplets (with
ν = 0), which at JF → ∞ become degenerate with the six
chiral triplets discusses here. However, for any finite value of
JF , the gap between the two remains finite, hence not included
in the present calculation. For these lowest energy singlet and
triplet block eigenstates, we employ the same strategy as in
the previous two subsections, and define a singlet creation
operator ŝ† and six triplet operators t

†
m,ν in the Fock space with

a constraint ŝ†ŝ +∑m,ν t
†
m,νtm,ν = 1. In terms of these singlet

and triplet operators, the block Hamiltonian of up hexagon
reads as

H ≈ Esŝ
†ŝ + Et

∑
m

∑
ν=±1

t̂†m,ν t̂m,ν, (28)

where Es and Et are, respectively, the lowest singlet and triplet
eigenenergies of the block Hamiltonian.

With the block operators defined, we can now write the
spin-1/2 operators on up hexagons as follows:

Sα
j = −

√
2s̄
(�[Cα

j

]
Q̂α1 + �[Cα

j

]
Q̂α1̄

)
for α = x and y;

(29a)

Sz
j = 2s̄

(�[Cz
j

]
Q̂z1 − �[Cz

j

]
Q̂z1̄

)
. (29b)

Here, �[C] and �[C] are the real and imaginary parts of C.
The Cα

j and Cz
j , which depend on |JF |/JA, are

Cα
j = 〈s|S+

j |t11〉 = 〈s|S+
j |t1̄1̄〉 and (30a)

Cz
j = 〈s|Sz

j |t01〉 = 〈s|Sz
j |t01̄〉. (30b)

Moreover, Qαν = 1√
2
(t̂†αν + t̂αν), Pαν = i√

2
(t̂†αν − t̂αν), t̂xν =

1√
2
(t̂1̄ν − t̂1ν), t̂yν = i√

2
(t̂1̄ν + t̂1ν), and t̂zν = t̂0ν

2. This repre-
sentation is very similar to the one derived recently in Ref. [31].
For JF → −∞, it exactly becomes what is given in Ref. [31].
Moreover, the singlet operator on up-oriented hexagons is
approximated by a mean field s̄, which describes the mean-field
TS state.

Now, in the full Hida model, we write all up hexagons as in
Eq. (28), and the AFM bonds in the down hexagons using the
spin representation of Eq. (29). This turns the Hida model into
the following triplon model:

Ĥ TS
t = e0Nuc + 1

2

∑
k

∑
α=x,y,z

[λ P̂†
α(k)P̂α(k)

+ Q̂†
α(k)Vα,k Q̂α(k)]. (31)

Here, Nuc is the total number of hexagonal unit cells in
the lattice, e0 = (Es − Et )s̄2 + λs̄2 + Et − 4λ, and λ is the
Lagrange multiplier that is introduced to satisfy the local
constraint, s̄2 +∑αν t̂†αν t̂αν = 1, on average. Moreover,

Q̂α(k) =
[
Q̂α1(k)
Q̂α1̄(k)

]
and P̂α(k) =

[
P̂α1(k)
P̂α1̄(k)

]
, (32)

where Q̂α1(k) and Q̂α1̄(k) are the Fourier components
of Q̂αν(r). That is, Q̂αν(r) = 1√

Nuc

∑
k eik·rQ̂αν(k) for ν =

1,1̄. Here, r denotes the position vector of the hexago-
nal units of the lattice, and k lies in the Brillouin zone
of the corresponding reciprocal lattice. Likewise, P̂αν(r) =

1√
Nuc

∑
k eik·rP̂αν(k). Since Q̂αν(r) and P̂αν(r) are Hermi-

tian, therefore, Q̂†
αν(k) = Q̂αν(−k) and P̂ †

αν(k) = P̂αν(−k).
Moreover, [Q̂αν(k),P̂α′ν ′ (k′)] = iδαα′δνν ′δk+k′=0, while the
Q̂αν(k)’s commute amongst themselves and the same for
P̂αν(k)’s.

The Ĥ TS
t is a problem of two oscillators for each α described

by Q̂α1(k) and Q̂α1̄(k), and coupled via

Vα,k =
[
λ − 2s̄2εα1,k s̄2ηα,k

s̄2η∗
α,k λ − 2s̄2εα1̄,k

]
. (33)

The Vα,k is a Hermitian matrix, with η∗
α,k as the complex

conjugate of ηα,k. The εαν,k and ηα,k are given below.

εα1,k = 2JA

(�[Cα
3

]�[Cα
6

]
cos k · a2 + �[Cα

1

]�[Cα
4

]
cos k · a1 + �[Cα

2

]�[Cα
5

]
cos k · a3

)
, (34a)

εα1̄,k = 2JA

(�[Cα
3

]�[Cα
6

]
cos k · a2 + �[Cα

1

]�[Cα
4

]
cos k · a1 + �[Cα

2

]�[Cα
5

]
cos k · a3

)
, (34b)

ηα,k = JA

(�[Cα
6

]�[Cα
3

]
eik·a1 + �[Cα

6

]�[Cα
3

]
e−ik·a1 + �[Cα

4

]�[Cα
1

]
eik·a2 + �[Cα

4

]�[Cα
1

]
e−ik·a2

+�[Cα
5

]�[Cα
2

]
eik·a3 + �[Cα

5

]�[Cα
2

]
e−ik·a3

)
. (34c)

As in Ref. [31], the Ĥ TS
t can be diagonalized by a unitary

rotation of Q̂α1(k) and Q̂α1̄(k) to the new operators, Q̂α+(k)

2The t̂mν operators used to define tαν are obtained via a simple
rotation performed on the old t̂mν operators. This transformation goes
as 1√

2
(t̂m1̄ + t̂m1) → t̂m1 and 1√

2
(t̂m1̄ − t̂m1) → t̂m1̄.

and Q̂α−(k): [
Q̂α+(k)
Q̂α−(k)

]
= U†

α,k

[
Q̂α1(k)
Q̂α1̄(k)

]
. (35)

The unitary matrix Uα,k is given as

Uα,k =
[

cos θα,k

2 −e−iφα,k sin θα,k

2

eiφα,k sin θα,k

2 cos θα,k

2

]
, (36)
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where θα,k = tan−1 {|ηα,k|/(εα1̄,k − εα1,k)}, and ηα,k =
|ηα,k|e−iφα,k with |ηα,−k| = |ηα,k| and φα,−k = −φα,k.

The Ĥ TS
t in the diagonal form can be written as

Ĥ TS
t = e0Nuc +

∑
k

∑
α=x,y,z

∑
μ=±

Eαμ,k

[
t̂†αμ(k)t̂αμ(k) + 1

2

]
,

(37)

where t̂αμ(k) =
√

Eαμ,k

2λ
Q̂αμ(k) + i

√
λ

2Eαμ,k
P̂αμ(k) are

the renormalized triplon operators, and Eαμ,k =√
λ(λ − 2s̄2ξαμ,k) are the triplon energy dispersions with

ξαμ,k = [(εα1̄,k + εα1,k) − μ
√

(εα1̄,k − εα1,k)2 + |ηα,k|2]/2.
The label, μ = ±, for new operators defined in Eq. (35), is
analogous to, but different from, the old ν. The ground-state
energy per unit cell from Eq. (37) is given by

eTS
g = e0 + 1

2Nuc

∑
k

∑
α=x,y,z

∑
μ=±

Eαμ,k. (38)

Again, by minimizing eTS
g with respect to λ and s̄2, we get the

following mean-field equations:

s̄2 = 4 − 1

2Nuc

∑
k

∑
α=x,y,z

∑
μ=±

λ − s̄2ξαμ,k

Eαμ,k
, (39a)

λ = (Et − Es) + λ

2Nuc

∑
k

∑
α=x,y,z

∑
μ=±

ξαμ,k

Eαμ,k
. (39b)

Having thus formulated the TMFT’s for the Hida model
with respect to the physically motivated HS, D-HS, and TS
states, we next discuss the results of these calculations, in
particular, the competition between the three candidate states
to be the ground state.

D. Results from triplon mean-field calculations

We self-consistently solve Eqs. (12), (26), and (39) for the
three cases as a function of the negative JF , with JA = 1 in
the calculations. This allows us to compute the energies, eHS

g ,
eD-HS
g , and eTS

g , of the three states. A comparison of these
energies would give us some understanding of the possible
phase transitions with change in JF in the ground state of the
Hida model.

The competition between one symmetry preserving (HS)
and two symmetry breaking (D-HS and TS) phases is shown in
Fig. 3. For small JF , the HS state is expectedly the ground state
of the system. However, as |JF |/JA increases, interestingly the
symmetry-breaking (D-HS and TS) phases become lower in
energy. In particular, it is the D-HS state, which first becomes
lower in energy than the HS state at JF ≈ −1.26. While the
TS state also crosses the HS state at JF ≈ −2.15, but it never
crosses the D-HS state. In fact, for large negative JF , the TS
asymptotically approaches the D-HS state. That is, the TS and
D-HS represent the same physical state for large negative JF .
Thus, according to the triplon mean-field theory, the D-HS
is the ground state of the Hida model for |JF |/JA > 1.26.
For large negative JF , the D-HS is same as the TS state. It
is consistent with the fact that for spin-1 KHA, which is the
large negative JF limit of the Hida model, the TS is the ground
state.

m
−M
PY
N
N
.I

m
−M
PY
N
N
. (B
F 4

) 0
.7
2.I
0.
28

m
−M
PY
N
N
.B
F 4

eg,HS
eg,TS
eg,D−HS

−10 −8 −6 −4 −2 0

−8

−6

−4

−2

JF /JA

FIG. 3. The triplon mean-field energies of the HS (hexagonal
singlet), D-HS (dimerized HS), and TS (trimerized singlet) states of
the Hida model.

To see the implications of our finding for real materials, we
also indicate the positions of different m-MPYNN · X salts
(which motivated the Hida model in the first place) on JF /JA

axis in Fig. 3. Our triplon analysis clearly suggests that these
organic salts at low temperatures would realize the symmetry-
breaking D-HS phase, as opposed to the uniform HS phase
proposed by Hida in his original paper. Notably, consistent
with the known behavior of this family of materials, the D-
HS ground state also has a finite spin-gap for the entire range
of JF .

Since the HS, D-HS, and TS states are all spin-gapped and
nonmagnetic, usual thermodynamics measurements can not
distinguish between them. But neutron diffraction may tell us
more precisely as to which of these is the low-temperature
phase of the m-MPYNN · X salts. To this end, we calculate
the static structure factor S(q) of these three states for different
values of JF . It is defined as S(q) = 1

N

∑
i,j 〈�Si · �Sj 〉e−iq.rij ,

where N is the total number of lattice sites, and �Si and �Sj are
two spins on the lattice sites separated by a distance rij . The
i,j sum here runs over all the lattice sites.

In Fig. 4, we present the intensity contour plots of S(q) for
such values of JF where either HS or D-HS forms the ground
state of the Hida model within TMFT (see Fig. 3). In all of
these plots, the intensity maxima always occur at the corners
of the fourth Brillouin zone (BZ4) with |q| = 4π/3, while the
intensity is minimum at the zone center. But there are some
notable features that can visibly distinguish between HS and
D-HS. An important distinction between the two states comes
from the curvature of the intensity contours around minima
(zone center). For S(q) in the HS state, the contours enclosing
the zone center become negatively curved (concave) as one
moves away from the center, while they are always positively
curved (convex) in the D-HS state. This distinction is further
linked to the shape of intensity contours around the points
of maxima (the corners of BZ4), which are curved triangles
pointing away from the points of minima in the D-HS state,
and pointing towards the points of minima in the HS state.
These curved triangular contours form a kagomelike pattern in
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FIG. 4. The static structure factor S(q) in the HS and D-HS ground states of the Hida model. The color-code bar on the bottom-left applies
to the plots (a) and (b), and that on the bottom-right applies to (c) and (d). The extended Brillouin zone (up to fourth Brillouin zone) is shown
in solid-black lines.

the S(q) of D-HS state but not in the HS state, while the points
of maxima in both form a honeycomb lattice.

To make the distinguishing feature more precise, in Fig. 5,
we plot the S(q) in the HS and D-HS phases along certain high-
symmetry directions in the first and the extended (upto fourth)
Brillouin zones. A qualitative difference in S(q) between the
two phases shows up along the M1M

′
1 line in the first Brillouin

zone and M2M
′
2 line in the extended Brillouin zone. In the HS

phase, the variation of S(q) along M1M
′
1 is very small (mostly

flat except near the two ends), while its variation along M2M
′
2

is significant. Interestingly, it is exactly opposite in the D-HS
phase, where the S(q) along M2M

′
2 stays pretty flat, while

it varies significantly along the M1M
′
1 line. To quantify this

JF = −0.1 (HS)

JF = −5.0 (D-HS)

Γ M1 M1 K1 Γ M2 M2 K2 Γ

FIG. 5. The static structure factor, S(q), plotted along the high-
symmetry lines of the first and the extended Brillouin zone in the HS
and D-HS ground states of the Hida model. The high-symmetry lines
are shown in blue over the Brillouin zones above the actual plots.

relative variation, we define a quantity

fv = max[S(q)M1M
′
1
] − min[S(q)M1M

′
1
]

max[S(q)M2M
′
2
] − min[S(q)M2M

′
2
]

as the ratio of the difference between the maximum and
minumum values of S(q) along M1M

′
1 and M2M

′
2 directions.

We, for instance, get fv ∼ 0.0789 in the HS phase for JF =
−0.1, and fv ∼ 8471.62 for JF = −5.0 in the D-HS phase.
Clearly, for experiments, it suggests that if fv < 1, then the
material is in the HS phase, and if fv > 1, then it is in the
D-HS phase. We propose this relative variation of S(q) along
M1M

′
1 and M2M

′
2 directions as a characteristic feature that can

unambiguously differentiate between the HS and D-HS states
in a neutron diffraction experiment.

Since the TS state for large negative JF approaches the
D-HS state, in Fig. 6, we also compare the S(q) in the D-HS
state with that in the TS state at JF /JA = −10, and also
with the S(q) in the TS ground state of the spin-1 kagome
Heisenberg AFM model (studied in our earlier paper [31]).
Well, they all look pretty much the same! This clearly implies
that the TS ground state that we and others have found for
the spin-1 KHA is essentially the D-HS ground state of the
Hida model in the limit of large negative JF . Or in other
words, the TS ground state of the spin-1 KHA is adiabatically
connected to the D-HS ground state of the spin-1/2 Hida
model.

Clearly, the TMFT of the Hida model has given us an
important understanding of the ground state. But, as is the case
with triplon analysis, it (like the spin-wave analysis) is based
on an a priori knowledge or insights about the possible ground
state. That is why we first motivated the three states (HS, D-HS,
and TS), and then studied their competition for the ground state
by doing triplon analysis. However, it would be nice, if we
could also arrive at the same or similar physical conclusions
by some alternate method without many a priori assumptions
about the possible ground state. With this motivation, we
further investigate the Hida model by doing Schwinger boson
mean-field theory (SBMFT) in the next section. Interestingly,
the results of SBMFT qualitatively agree with what TMFT has
taught us, and also reveal some novel features of the HS (for
small JF ) to TS (for large JF ) transition.
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FIG. 6. Comparing the S(q) in the D-HS and TS states of the Hida model (at JF /JA = −10) with that in the TS ground state of the spin-1
kagome Heisenberg antiferromagnet.

IV. SCHWINGER BOSON MEAN-FIELD THEORY

The SBMFT (Schwinger boson mean-field theory) has been
proven to be effective in describing the ordered and disordered
phases of interacting quantum spins [36–39]. It has been
applied to the Heisenberg models on different lattices such as
the square [40], triangular [41,42] and kagome lattices [41–46].
Here, we formulate the SBMFT for the Hida model of Eq. (1).
We start by writing the Schwinger boson representation of the
spin operators in terms of the boson operators ai and bi defined
on every site i as

S+
i = a

†
i bi, (40a)

S−
i = b

†
i ai, (40b)

Sz
i = 1

2
(a†

i ai − b
†
i bi) (40c)

with the constraint a
†
i ai + b

†
i bi = 2S for the spin quantum

number S. For the moment, we keep S as general, but
eventually, we will consider S = 1/2.

To write the Heisenberg exchange interaction between the
spins, �Si and �Sj , we introduce the following two bosonic
operators involving the sites i and j :

Aij = 1√
2

(aibj − biaj ), (41a)

Fij = 1√
2

(a†
i aj + b

†
i bj ). (41b)

Physically, the Fij represents the hopping of the bosons and
A

†
ij forms the singlet between ith and j th sites. Using these two

operators, the Heisenberg exchange operator can be written as
�Si · �Sj = : F

†
ijFij : −A

†
ijAij , where : O : is the normal ordered

form of the operator O. Given this operator identity, the Hida
model of Eq. (1) takes the following form:

H = JF

2

∑
〈i,j〉

(: F
†
ijFij : −A

†
ijAij )

+ JA

2

∑
〈i,j〉

(: F
†
ijFij : −A

†
ijAij ). (42)

Due to the local constraint on the number of bosons per site,
the Aij and Fij are also constrained to satisfy the condition

: F
†
ijFij : +A

†
ijAij = 2S2. (43)

Since Eq. (42) is quartic in Schwinger bosons, we decouple
the operators there by introducing the mean fields, αF , φF , α,
φ, α′, and φ′, which are defined as follows: on all FM bonds

( ), αF = 〈Aij 〉 and φF = 〈Fij 〉, on every AFM bond of

the up-oriented hexagons ( ), αA = 〈Aij 〉 and φA = 〈Fij 〉,
and on every AFM bond of the down-oriented hexagons

( ), α′
A = 〈Aij 〉 and φ′

A = 〈Fij 〉. This choice of mean-field
parameters is the very minimal that would allow spontaneous
symmetry breaking (dimerization of the AFM hexagons), not
by a priori assumption, but by the self-consistent determination
of (αA,φA) and (α′

A,φ′
A) through the mean-field dynamics of the

Schwinger bosons. So, if it turns out that (αA,φA) = (α′
A,φ′

A),
then we have the uniform HS phase. But if (αA,φA) �= (α′

A,φ′
A),

then we have the D-HS phase. For simplicity, we treat these
mean-field parameters as real.

Under this mean-field approximation, the Hamiltonian in
Eq. (42) takes the following form:

HSB
MF = JF

2

∑
〈i,j〉

[φF (F †
ij + Fij ) − αF (A†

ij + Aij )]

+ JA

2

∑
〈i,j〉

[φA(F †
ij + Fij ) − αA(A†

ij + Aij )]

+ JA

2

∑
〈i,j〉

[φ′
A(F †

ij + Fij ) − α′
A(A†

ij + Aij )]

− 3JF

2
Nuc
(
φ2

F − α2
F

)
− 3JA

2
Nuc
[(

φ2
A − α2

A

)+ (φ′
A

2 − α′
A

2)]
+ λ

∑
i

(a†
i ai + b

†
i bi − 1). (44)
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Here, the last term imposes the local number constraint, a†
i ai +

b
†
i bi = 2S for S = 1/2, only on average through the Lagrange

multiplier λ.
Although bilinear in Schwinger boson operators, the mean-

field problem in Eq. (44) needs to be handled carefully. To
proceed, we first consider an isolated FM bond, say, the 1-2
bond in Fig. 1. The Hamiltonian of this FM bond in SBMFT
reads as

HSB
MF,12 = JF

2

[
φF (F †

12 + F12) − αF (A†
12 + A12)

−φ2
F + α2

F

]+ λ
∑
i=1,2

(a†
i ai + b

†
i bi − 1). (45)

We diagonalized it by applying the Bogoliubov transformation:⎡⎢⎢⎣
a1

a2

b
†
1

b
†
2

⎤⎥⎥⎦ = U

⎡⎢⎢⎣
ã−
ã+
b̃
†
−

b̃
†
+

⎤⎥⎥⎦,

where

U = 1√
2

⎡⎢⎣ cosh η cosh η − sinh η sinh η

cosh η − cosh η sinh η sinh η

sinh η − sinh η cosh η cosh η

− sinh η − sinh η cosh η − cosh η

⎤⎥⎦
for tanh 2η = −JF αF /2

√
2λ. Under this transformation, the

FM bond Hamiltonian reads as

HSB
MF,12 = ω−(ã†

−ã− + b̃
†
−b̃−) + ω+(ã†

+ã+ + b̃
†
+b̃+)

− JF

2

(
φ2

F − α2
F

)+ (ω+ + ω−) − 4λ, (46)

where

ω± = ±|JF |φF

2
√

2
+
√

λ2 −
(

JF αF

2
√

2

)2

. (47)

Importantly, we recognize that the operators ã− and b̃− with
energy ω− will have to condense in order to form a bound
moment (spin-1) in the ground state. Therefore we treat
the operators ã− and b̃− as average amplitudes ā and b̄,
respectively. We do the same treatment of all the FM bonds
of the Hida model, taking the same average amplitudes, ā

and b̄. Moreover, we drop the subscript, +, from ã+ and b̃+
(which is not essential anymore), and label these operators by
the bond index I, II, and III for the FM bonds 1-2, 3-4, and 5-6,
respectively.

As a result of the above treatment, the full Hamiltonian in
Eq. (44) will also acquire linear terms in ãi’s and b̃i’s (for
i = I, II, and III), in addition to the bilinear terms. We get rid
of these linear terms by making the following displacement
transformation: [

ãi

b̃i

]
→
[
ãi + rb̄

b̃i + rā

]
,

where r = − JA

2
√

2
(αA + α′

A)/[ω+ − JA

2
√

2
(φA + φ′

A)]. Next, we
do the Fourier transformation as follows:

ãi(r) = 1√
Nuc

∑
k

ãi,ke
−ik·r, (48a)

b̃i(r) = 1√
Nuc

∑
k

b̃i,ke
ik·r. (48b)

The resulting SBMFT Hamiltonian in the momentum space
can be written as

HSB
MF =

∑
k

[
ã†

k b̃k

][V1k V2k

V†
2k V1k

][
ãk

b̃†
k

]
+ e0Nuc, (49)

where ã†
k = [ã†

I,k ã
†
II,k ã

†
III,k], b̃k = [b̃I,k b̃II,k b̃III,k],

V1k =
⎡⎣ ω+ � + �′e−ik·a2 � + �′e−ik·a3

� + �′eik·a2 ω+ � + �′e−ik·a1

� + �′eik·a3 � + �′eik·a1 ω+

⎤⎦,

(50)

and

V†
2k =

⎡⎣ 0 −t + t ′eik·a2 t − t ′eik·a3

t − t ′e−ik·a2 0 −t + t ′eik·a1

−t + t ′e−ik·a3 t − t ′e−ik·a1 0

⎤⎦,

t = JA

4
√

2
(−αA + φA sinh 2η),

t ′ = JA

4
√

2
(−α′

A + φ′
A sinh 2η),

� = JA

4
√

2
(−αA sinh 2η − φA) and

�′ = JA

4
√

2
(−α′

A sinh 2η − φ′
A). (51)

Here, a1 and a2 are lattice vectors as given in Fig. 1. In Eq. (49),
the constant e0 is given by

e0 = 3

{
−ω+ − 2λ(2S + 1) − JF

2

(
φ2

F − α2
F

)− JA

2

[(
φ2

A − α2
A

)+ (φ′
A

2 − α′
A

2)]+ 2

√
λ2 − 1

2
J 2

F α2
F

+
⎡⎣ω+ + JA

2
√

2
(φA + φ′

A) −
(

JA

2
√

2
(αA + α′

A)
)2

ω+ − JA

2
√

2
(φA − φ′

A)

⎤⎦ρ̄2

− JA

2
√

2
(αA + α′

A) sinh 2η

⎡⎣1 +
(

JA

2
√

2
(αA + α′

A)

ω+ − JA

2
√

2
(φA − φ′

A)

)2
⎤⎦ρ̄2

⎫⎬⎭. (52)
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The ρ̄2 = ā2 + b̄2 is a measure of the moment formation per
FM bond. For large negative JF , which corresponds to having
spin-1 moment per FM bond, ρ̄2 must tend to the value of 2
(which it does in our calculations).

We diagonalized Eq. (49) using Bogoliubov transformation.
In the diagonal form, it reads as

HSB
MF =

∑
k

3∑
i=1

Ei,k(a†i,kai,k + bi,kb†
i,k) + e0Nuc,

where Ei,k’s are the six quasiparticle dispersions for six boson
modes per unit cell. Its ground state is the vacuum of the
Bogoliubov quasiparticles, and the ground-state energy per
unit cell is given as

eg = 1

2Nuc

∑
k

6∑
i=1

Ei,k + e0, (53)

which is a function of the mean-field parameters, αF , φF , αA,
φA, α′

A, φ′
A, the Lagrange multiplier λ, and ρ̄2. A physical

solution for all these parameters would be the one that mini-
mizes eg . We reparameterize our mean-field parameters using
the constraint in Eq. (43):

(φF ,αF ) =
√

2 S(cos θF , sin θF ), (54a)

(φA,αA) =
√

2 S(cos θA, sin θA), (54b)

(φ′
A,α′

A) =
√

2 S(cos θ ′
A, sin θ ′

A). (54c)

To solve for the physical values of the mean-field param-
eters, we minimize the following function using the simplex
method (see Ref. [47]):

F(λ,ρ̄2,θF ,θA,θ ′
A)

= eg + wλ

(
∂eg

∂λ

)2

+ wρ̄2

(
∂eg

∂ρ̄2

)2

+wθF

(
∂eg

∂θF

)2

+ wθA

(
∂eg

∂θA

)2

+ wθ ′
A

(
∂eg

∂θ ′
A

)2

. (55)

The tolerance of the standard deviation of the simplex is set to
be 10−12. We set the weight, wλ, to have a higher value than the
other w’s. This ensures a faster convergence. It is also possible
to get complex Eik in the parameter space. This situation is
avoided by adding a huge penalty to the function values. If
the system becomes gapless then the minimization algorithm
will not converge, or will give physically inconsistent results.
In such cases, it will be required to introduce a condensation
order parameter for the gapless mode. This does not concerns
us currently, as we find them to be gapped.

Results from the SBMFT calculations

The SBMFT formulated above allows us to investigate
with increasing JF the following aspects of the problem: (1)
spontaneous dimerization, if any, of the AFM bonds and (2)
the formation of spin-1 moments on the FM bonds.

Through the numerical minimization of the ground-state
energy, we compute the mean-field parameters as a function of
JF . On the FM bonds, we find (φF ,αF ) = (1/

√
2,0) for all JF .

The other mean-field parameters are presented in Fig. 7. For the

FIG. 7. Variation of the mean-field parameters on the AFM bonds
with JF . The αA and φA stay constant at 1/

√
2 and 0, respectively,

for all JF . The α′
A and φ′

A compete to dominate each other with a
marked change in their relative strengths across JF /JA ∼ −2.33.
Notably, α′

A �= αA (except when JF /JA is closer to zero), which
implies spontaneous dimerization of the AFM bonds in the Hida
model.

AFM bonds on the up-oriented hexagons, we find (φA,αA) =
(0,1/

√
2) for all JF . The α′

A and φ′
A on the AFM bonds of

the down-oriented hexagons, however, change with JF in an
interesting way. For large negative JF , the α′

A is nearly zero,
as opposed to αA. It clearly points to the dimerization of AFM
bonds in the Hida model. For very small values of JF , (φ′

A,α′
A)

tends to become (φA,αA) [keeping φ′
A

2 + α′
A

2 = 1/2, as per
Eq. (43)]. This suggests that for very small JF , the dimerization
tends to vanish and gives way to the uniform HS phase. In going
from strong to weak negative JF , the mean-field parameters
vary continuously, but the slopes dφ′

A/dJF and dα′
A/dJF show

a jump discontinuity at JF /JA = −2.33, which is an indication
of a continuous quantum phase transition.

For a more direct physical understanding of the SBMFT re-
sults, we calculate (1) the order parameter for the dimerization
of the AFM bonds and (2) the total spin moment per FM bond.
The dimerization order-parameter, OD , is defined as

OD = 1

3Nuc

∣∣∣∣∣∣∣∣
∑
〈i,j〉

〈 �Si · �Sj 〉 −
∑
〈i,j〉

〈 �Si · �Sj 〉

∣∣∣∣∣∣∣∣. (56)

It distinguishes the singlet weight on the AFM bonds of the up-
oriented hexagons from that of the down-oriented hexagons.
The average total spin moment, S̃, per FM bond is defined as
follows:

S̃(S̃ + 1) = 1

3Nuc

∑
〈i,j〉

〈(�Si + �Sj )2〉

= 1

3Nuc

∑
〈i,j〉

(〈�S2
i

〉+ 〈�S2
j

〉+ 2〈�Si · �Sj 〉
)
. (57)
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FIG. 8. The dimerization order parameter OD vs JF /JA. The
horizontal (dot-dashed) line at 0.05 corresponds to the value of the
trimerization order parameter for spin-1 kagome antiferromagnet (see
Appendix). The inset zooms in to show the dimerization transition at
JF /JA = −0.28.

To compute OD and S̃, we rewrite Eqs. (56) and (57) in
the Schwinger boson representation and then calculate the
expectation values in the ground state of HSB

MF.3

The OD is found to be zero for very small values of JF

implying a uniform HS phase. For −JF /JA � 0.28, however,
the OD takes nonzero values that grow continuously as shown
in Fig. 8. This implies “spontaneous” dimerization for the
AFM bonds in the Hida model. Thus, at JF /JA = −0.28, the
SBMFT ground state of the Hida model undergoes a symmetry-
breaking transition from the HS to D-HS phase. Moreover, for
large negative JF , the OD is found to saturate to a value which
is the same as the “trimerization” order-parameter value of
the spin-1 KHA (see Appendix for the SBMFT calculation

3In the computation of Eq. (57), it was very helpful to use DiracQ:
A Quantum Many-Body Physics Package [48].

FIG. 9. The average total spin per FM bond vs JF /JA. For large
negative JF , it approaches the value of a spin-1 moment. However, for
−JF /JA < 1.46, it is (nearly) a constant at 1.5, which corresponds to
having two uncorrelated spin-1/2’s. It implies that only when JF /JA

is stronger than a critical value (−1.46) that the pair of spin-1/2’s on
a FM bond start to behave as a bound moment.

of the spin-1 KHA model). These findings are in qualitative
agreement with what we learnt from TMFT.

The moment per FM bond, S̃, correctly tends to 1 for large
negative JF , as shown in Fig. 9. It decreases continuously as
|JF |/JA decreases. But for |JF |/JA � 1.46, the S̃(S̃ + 1) stops
decreasing and stays put at a value of 1.5, which corresponds to
having two uncorrelated spin-1/2’s on every FM bond.4 This
is an interesting result. It says that the spin-1/2’s on the FM
bonds of the Hida model require a critical strength of JF to form
bound moments! Thus, when S̃(S̃ + 1) starts to increase from
1.5, it marks a transition from a phase of spin-1/2 moments to
a phase with bound spin-1/2’s on FM bonds.

Therefore, according to our SBMFT calculations, two
different quantum phase transitions occur in the ground state
of the Hida model. The first of these is the “dimerization”
transition at (JF /JA)c1 = −0.28, across which the AFM bonds
of the Hida model undergo spontaneous dimerization. The sec-
ond one is the “moment-formation” transition at (JF /JA)c2 =
−1.46, under which the pair of spin-1/2’s on every FM bond
starts expressing as a bound moment (that eventually becomes
spin-1 for large JF ’s). This leads to the following three distinct
phases: (1) the uniform HS phase of spin-1/2 moments below
(JF /JA)c1, (2) the D-HS phase of spin-1/2 moments between
(JF /JA)c1 and (JF /JA)c2, and (3) the D-HS phase with bound
moments on FM bonds above (JF /JA)c2, which adiabatically
continues to become the TS phase of spin-1 KHA for large
negative JF .

In addition to this, as we noticed in Fig. 7, the jump
discontinuities of the slopes of α′

A and φ′
A also suggest a

quantum phase transition at (JF /JA)c3 = −2.33. However, it is
not clear how to interpret it, becauseα’s andφ’s are not physical
observables. Besides, it has no particular bearing on the two
physical transitions described above, but it seems to mark the
qualitative change from a phase with weak dimerization of
AFM bonds and weakly bound spin-1/2’s on FM bonds to a
phase with strong dimerization and strongly bound moments.

Overall, the SBMFT of Hida model presents a very novel
picture of its ground state. It also adds nicely to the under-
standing of spontaneous trimerization in the ground state of
the spin-1 KHA model.

V. SUMMARY

Motivated by recent studies on spin-1 kagome Heisenberg
antiferromagnet (KHA), we have investigated the Hida model,
which is a spin-1/2 model of antiferromagnetic hexagons
coupled via ferromagnetic bonds (on honeycomb lattice).
We have employed triplon and Schwinger boson mean-field
approaches to study the evolution of the ground state from the
hexagonal singlet (HS) phase at small JF /JA to the trimerized
singlet (TS) phase at large negative JF /JA (which is the ground
state of spin-1 KHA).

4Ideally, S̃(S̃ + 1) should be exactly 1.5 at JF = 0. However, in
Fig. 9, it goes a little below 1.5 for JF very close to zero. This
minor discrepancy, we believe, can be cured by including the quantum
fluctuations of the condensed modes, ã− and b̃− of Eq. (46). In the
present “minimal” formulation, we have ignored these fluctuations
(which is fine for JF ’s not so close to zero).
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From triplon mean-field theory we learnt that, at some
intermediate value of JF /JA, the uniform HS ground state
gives way to the dimerized hexagonal singlet (D-HS) state,
which then remains the ground state of the Hida model for all
negative JF ’s. The TS ground state of spin-1 KHA is same as
the D-HS ground state of the Hida model at large negative JF .

From the Schwinger boson mean-field theory, in an inde-
pendent and unbiased way, we again found that the ground
state of the Hida model exhibits spontaneous dimerization at
JF /JA = −0.28. It also revealed to us a second quantum phase
transition at JF /JA = −1.46, under which the spin-1/2’s of an
FM bond begins to express as a bound moment, which grad-
ually becomes spin-1 for stronger JF . The dimerization order
parameter in the ground state of the Hida model approaches
the same value as the trimerization order parameter for spin-1
KHA (see Appendix). Thus both triplon and Schwinger boson
methods produce a mutually consistent picture of the ground
state of the Hida model, and tell us clearly about how the
trimerized singlet ground state is formed in a spin-1 KHA from
the perspective of the Hida model.

In the light of our investigations of the Hida model, we
predict that the m-MPYNN · X organic salts (which histori-
cally motivated these studies) would realize the D-HS phase
at low temperatures, as opposed to the hexagonal singlet
solid (HSS) phase considered by Hida. The D-HS phase is
both nonmagnetic and spin-gapped, which is qualitatively
consistent with the known experimental features of these
materials. However, the same is also true of the uniform HS (or
HSS) phase. Therefore we propose to ascertain the existence of
a dimerized hexagonal singlet phase in these organic salts by
measuring the static structure factor using Neutron diffraction.
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APPENDIX: THE SBMFT OF SPIN-S KAGOME
HEISENBERG ANTIFERROMAGNET

We present here a Schwinger boson mean-field study of
the KHA. Although quite a few different SBMFT studies of
KHA have been done before [41–46], they never explored the
possibility of spontaneous trimerization therein. We try to fill
this gap here.

The spin-S KHA model is given by

HKHA = J̃A

∑
〈i,j〉

Si · Sj , (A1)

where J̃A > 0 and Si’s are the spin-S operators. The spin-1
case with J̃A = JA/4 is relevant to the Hida model for large
JF ’s. In the Schwinger boson representation as defined in the

1 2

3

FIG. 10. The kagome lattice with primitive vectors a1 = 2x̂ and
a2 = −x̂ + √

3ŷ.

main text, the KHA Hamiltonian reads as

HKHA = J̃A

2

⎡⎢⎢⎣∑
〈i,j〉

(: F
†
ijFij : −A

†
ijAij )

+
∑
〈i,j〉

(: F
†
ijFij : −A

†
ijAij )

⎤⎥⎥⎦. (A2)

In the mean-field approximation, withα = 〈Aij 〉 andφ = 〈Fij 〉
on the bonds of all up triangles ( , see Fig. 10), α′ = 〈Aij 〉
and φ′ = 〈Fij 〉 on the bonds on all down triangles ( ), the

FIG. 11. The trimerization order parameter OT vs S from a
Schwinger boson mean-field calculation of the spin-S KHA.
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Hamiltonian takes the following form:

HSB
MF = J̃A

2

∑
〈i,j〉

[φ(F †
ij + Fij ) − α(A†

ij + Aij )]

+ J̃A

2

∑
〈i,j〉

[φ′(F †
ij + Fij ) − α′(A†

ij + Aij )]

− 3J̃A

2
Nuc[(φ2 − α2) + (φ′2 − α′2)]

+ λ(a†
i ai + b

†
i bi − 2S). (A3)

Here, λ is the Lagrange multiplier to satisfy the boson number
constraint, a

†
i ai + b

†
i bi = 2S, on average.

In momentum space, the mean-field Hamiltonian can be
written as

HSB
MF =

∑
k

[a†
k bk]

[V1k V2k

V†
2k V1k

][
ak

b†
k

]
+ e0Nuc, (A4)

where a†
k = [a†

1,k a
†
2,k a

†
3,k] and bk = [b1,k b2,k b3,k]. The

Fourier transform of the Schwinger boson operators is defined

below:

ai(r) = 1√
Nuc

∑
k

ai,ke
−ik·r, (A5)

bi(r) = 1√
Nuc

∑
k

bi,ke
ik·r. (A6)

In Eq. (A4),

e0 = 3J̃A

2
[(α2 − φ2) + (α′2 − φ′2)] − 3λ(2S + 1). (A7)

Moreover,

V1k = J̃A

2
√

2

⎡⎣ 0 φ + φ′eik.a1 φ + φ′eik.a3

φ + φ′e−ik.a1 0 φ + φ′eik.a2

φ + φ′e−ik.a3 φ + φ′e−ik.a2 0

⎤⎦
+ λ × I3×3 (A8)

and

V2k = J̃A

2
√

2

⎡⎣ 0 −α − α′eik.a1 α + α′eik.a3

α + α′e−ik.a1 0 −α − α′eik.a2

−α − α′e−ik.a3 α + α′e−ik.a2 0

⎤⎦ (A9)

with a3 = a1 + a2.
The Hamiltonian in Eq. (A4) is diagonalized using Bogoli-

ubov transformation. The ground-state energy per unit cell in
terms of the Bogoliubov quasiparticle dispersions, Ei,k’s, is
given by

eKHA
g = e0 + 1

2Nuc

∑
i,k

Ei,k. (A10)

Given that F
†
ijFij : +A

†
ijAij = 2S2, we reparameterize the

mean-field variables as {α,φ} = √
2 S(sin θ, cos θ ) and

{α′,φ′} = √
2 S(sin θ ′, cos θ ′). We then numerically minimize

the following weighted energy function with respect to λ, θ ,
and θ ′:

F(λ,θ,θ ′) = eKHA
g + wλ

(
∂eg

∂λ

)2

+ wθ

(
∂eg

∂θ

)2

+ wθ ′

(
∂eg

∂θ ′

)2

.

(A11)

To see spontaneous trimerization, if any, in the ground state,
we define the trimerization order parameter OT :

OT = 1

3Nuc

⎛⎜⎜⎝∑
〈i,j〉

〈Si · Sj 〉 −
∑
〈i,j〉

〈Si · Sj 〉

⎞⎟⎟⎠. (A12)

The OT versus S, as obtained from this calculation, is
shown in Fig. 11. The data presented here correspond to
the ground state with gapped spin excitations. Here, we first
see no trimerization (OT = 0) for S � 0.62. However, then,
for S � 0.62, we obtain OT �= 0, which means spontaneous
trimerization. It clearly implies the TS ground state from
spin-1 KHA. Interestingly, our simple calculation also finds an
expectedly different (uniform; without trimerization) ground
state for spin-1/2 KHA. Moreover, for S � 1.24, the SBMFT
ground state is found to become gapless implying

√
3 × √

3
AFM order. This is also consistent with the expected large S

behavior.5

We end this discussion by noting that the OT = 0.05 for
S = 1 in Fig. 11 is same as the values of OD in Fig. 8 for
large negative JF . This shows that the trimerized singlet ground
state of spin-1 KHA is adiabatically connected to the dimerized
hexagonal singlet ground state of the Hida model.

5As the number fluctuations in SBMFT can give slightly lower value
than S(S + 1) for the local moment, 〈�S2

i 〉 [45], it is possible that spin-
3/2 KHA could also be gapped.
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