
PHYSICAL REVIEW B 97, 014412 (2018)

Magnetization plateaus in the spin-1
2 antiferromagnetic Heisenberg model on a kagome-strip chain

Katsuhiro Morita,1,* Takanori Sugimoto,1 Shigetoshi Sota,2 and Takami Tohyama1

1Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
2RIKEN Advanced Institute for Computational Science (AICS), Kobe, Hyogo 650-0047, Japan

(Received 1 October 2017; revised manuscript received 27 December 2017; published 16 January 2018)

The spin- 1
2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic

structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of
frustration is expected. We thus study the magnetization plateaus of the spin- 1

2 Heisenberg model on a kagome-strip
chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-
group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus,
nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The
structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with
a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit
cells.
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I. INTRODUCTION

Quantum phase transitions are a subject undergoing intense
study in the field of condensed-matter physics. In geometrically
frustrated quantum spin systems, quantum phase transitions
are frequently induced by applying a magnetic field. At zero
temperature, magnetization plateaus, cusps, and jumps are
manifestations of the transitions.

A typical frustrated system is a spin- 1
2 two-dimensional

(2D) Heisenberg model with a kagome lattice [1]. With the high
magnetic field, the saturation of magnetization, Msat, occurs in
this system. Upon decreasing the magnetic field, there is a
sudden decrease in magnetization M from Msat to a plateau
with M/Msat = 7/9, which is described by localized multi-
magnon states (LMMSs) [2,3]. Upon decreasing the magnetic
field further, magnetization plateaus with M/Msat = 5/9, 1/3,
and 1/9 are predicted. However, no consensus has been reached
on the magnetic structure of their ground state. For example, a
valence-bond crystal (VBC) with

√
3 × √

3 order [4–6] and an
up-up-down structure [7] have been predicted for the ground
state at the 1/3 plateau. The absence of the 1/3 plateau was
also discussed [8]. For the 1/9 plateau, the ground state has
been proposed as either Z3 spin liquid [4] or a VBC [7]. Even
for zero magnetic field, the nature of the ground state is still
under discussion: it is either a gapped Z2 spin liquid [9,10], a
gapless U(1) spin liquid [11–14], or a VBC [15–17]. Therefore,
the understanding of magnetization processes and induced
quantum phase transitions in the kagome-type 2D Heisenberg
model is still far from complete.

Another kagome-type frustrated model is a spin- 1
2 one-

dimensional (1D) Heisenberg model with a kagome strip (see
Fig. 1). Since the model contains a basic kagome structure,
i.e., a five-site unit cell, the clarifications of magnetization
processes and field-induced quantum phase transition in the
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model may contribute to our further understanding of the
magnetic properties of the 2D kagome lattice. The ground
state of the spin- 1

2 kagome-strip chain has been studied, and
it was realized that a strongly localized Majorana fermion
will exist in zero magnetic field [18]. The singlet-triplet gap
has been estimated to be around 0.01J in the condition in
which all of the exchange interactions are equivalent [19],
i.e., JX = J1 = J2 in Fig. 1. However, the ground state of this
model in the magnetic field has not been examined, and thus
detailed characteristics in the field are not known. Furthermore,
the model containing inequivalent three exchange interactions
has not been examined as far as we know even for zero magnetic
field. Recently, a compound with a distorted kagome-strip
chain, A2Cu5(TeO3)(SO4)3(OH)4 (A = Na,K), was reported
[20]. Therefore, the model is now attractive not only for a
purely theoretical investigation but also for an experimental
one.

In this paper, we study the ground state of a spin- 1
2 Heisen-

berg model on the kagome-strip chain in a magnetic field using
the density-matrix renormalization-group (DMRG) method.
We accurately determine the magnetic structures of the chain
in a certain parameter range, and we find various types of
plateaus that have not been reported before. In total, we identify
twelve kinds of magnetization plateaus, nine of which have
magnetic structures that break translational and/or reflection
symmetry spontaneously. The structures are classified by an
array of five-site unit cells with specific bond-spin correlations.
Among the plateaus, we find a nontrivial plateau, namely a
3/10 plateau, whose magnetic structure consists of a period of
four unit cells. To the best of our knowledge, such long-period
magnetic structure has not been reported before in 1D quantum
spin systems.

The arrangement of this paper is as follows. In Sec. II,
we describe our kagome-strip chain model and numerical
method. In Sec. III, we discuss the results of the magnetization
plateaus and magnetic structures. Finally, a summary is given in
Sec. IV.
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JX =1
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FIG. 1. Structure of a kagome-strip chain. The black solid, red
dashed, and blue broken lines denote the exchange interactions JX ,
J1, and J2, respectively. We set JX = 1.

II. MODEL AND METHOD

The Hamiltonian for a spin- 1
2 kagome-strip chain in a

magnetic field is defined as

H =
∑
〈i,j〉

Ji,j Si · Sj − h
∑

i

Sz
i , (1)

where Si is the spin- 1
2 operator, 〈i,j 〉 runs over the nearest-

neighbor spin pairs, Ji,j corresponds to one of JX, J1, and J2

shown in Fig. 1, and h is the magnetic-field magnitude. In
the following, we set JX = 1 as an energy unit. We perform
the DMRG calculations at zero temperature for the kagome-
strip chain up to system size N = 325(=5 × 65) in the open
boundary condition (OBC) for various values of J1 and J2. The
number of states kept in the DMRG calculations are m = 400,
and resulting truncation errors are less than 5 × 10−7. Since
the chain is formed by an array of five-site unit cells, N is a
multiple of 5. Furthermore, we determine the number of unit
cells by taking into account a period of magnetic structures in
each plateau.

III. RESULTS AND DISCUSSION

We first consider equivalent exchange interactions, i.e.,
JX = J1 = J2 = 1, for comparison with the 2D kagome lat-
tice. Figure 2(a) shows the magnetization curve, where plateaus
with M/Msat = 3/5 and 1/5 are observed. In addition, there
is a shoulderlike anomaly around M/Msat = 2/5, which looks
like the signature of the 2/5 plateau. We do not find a 4/5
plateau corresponding to the 7/9 plateau in the 2D kagome
lattice, indicating no LMMSs in the kagome-strip chain with
equivalent exchange interactions. We cannot confirm a zero-
magnetization plateau in our calculation because the singlet-
triplet gap reported to be small (around 0.01 J) [19] may
become even smaller due to the influence of OBC.

Figures 2(b) and 2(c) show nearest-neighbor spin corre-
lation 〈Si · Sj 〉-〈Sz

i 〉〈Sz
j 〉 and local magnetization 〈Sz

i 〉 in the
3/5 and 1/5 plateaus, respectively. The lines connecting two
nearest-neighbor sites denote the sign and magnitude of spin
correlation by color and thickness, respectively. The circle on
each site represents 〈Sz

i 〉. We find that both spin correlation and
magnetization shown in Figs. 2(b) and 2(c) hold translational
and reflection symmetries. This is in contrast to the 1/3, 5/9,
and 7/9 plateaus of the 2D kagome lattice, breaking these
symmetries [4,5,7].

The magnetic structure in the 3/5 plateau consists of five-
site clusters with “X”-like structure as shown in Fig. 2(b).
The “X”-like magnetic structure is obtained in an eigenstate
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FIG. 2. (a) Magnetization curve of the kagome-strip chain with
N = 200(= 5 × 40) for JX = J1 = J2 = 1 at zero temperature. The
symbol A (B) represents the 3/5 (1/5) plateau. (b) The nearest-
neighbor spin correlation 〈Si · Sj 〉-〈Sz

i 〉〈Sz
j 〉 and the local magneti-

zation 〈Sz
i 〉 in the 3/5 plateau for 5 × 3 sites at the center of the chain.

Black solid (purple dashed) lines connecting two nearest-neighbor
sites denote negative (positive) values of the spin correlation, and
their thicknesses represent the magnitudes of correlation. Blue (red)
circles on each site denote a positive (negative) value of 〈Sz

i 〉, and
their diameters represents its magnitude. (c) Same as (b) but for the
1/5 plateau.

of a five-site unit with JX and J1 in the space of total spin
S = 3/2 and its z component Sz = 3/2 (see the Appendix).
The corresponding magnetic structure is shown in Fig. 3. The
“X” state has spin correlation and local magnetization similar
to a five-site unit cell in Fig. 2(b).

We can construct other magnetic structures from eigenstates
of the five-site JX-J1 unit as denoted by “�,” “α,” “β,”
and “Z” for the space of S = Sz = 1/2. These components
appear in magnetic structures of magnetization plateaus in the
kagome-strip chain as discussed below. Note that there is no
five-site component corresponding to the magnetic structure in
Fig. 2(c), where the J2 bond has the strongest spin correlation
resembling the ground state in the limit J2 → ∞.

1 2

3

4 5

::

: : :
FIG. 3. Magnetic structures of a five-site JX-J1 unit. Black solid

(purple dashed) lines connecting two nearest-neighbor sites denote
negative (positive) values of spin correlation defined as 〈Si · Sj 〉
-〈Sz

i 〉〈Sz
j 〉, and their thicknesses represents the magnitudes of cor-

relation. Blue (red) circles on each site denote a positive (negative)
value of local magnetization 〈Sz

i 〉, and their diameters represent its
magnitude. We use symbols “X,” “�,” “α,” “β,” and “Z” to represent
each magnetic structure. The total spin S and its z component Sz in
each state are equal, i.e., S = Sz, with 3/2, 1/2, 1/2, 1/2, and 1/2 for
“X,” “�,” “α,” “β,” and “Z,” respectively. The state “Z” is given by
a linear combination of “�,” “α,” and “β” (see the Appendix).
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FIG. 4. Magnetization curve of the kagome-strip chain with
OBC for JX = 1 at zero temperature. (a) J1 = 1.0 and J2 = 1.5
for N = 200(= 5 × 40). (b) J1 = 1.3 and J2 = 0.6 for N = 195(=
5 × 39). (c) J1 = 0.9 and J2 = 0.1 for N = 200. (d) J1 = 1.0 and
J2 = 0.3 for N = 200. (e) J1 = 1.1 and J2 = 0.4 for N = 200.
(f) J1 = 1.1 and J2 = 0.7 for N = 200. (g) J1 = 1.3 and J2 = 0.9 for
N = 235(=5 × 47). Magnetic structures of the plateaus C, D, E, F ,
G, H , I , J , K , and L shown in each panel are displayed in Fig. 5. The
magnetic structures of the plateaus, A′ and D′, are almost the same as
that of the plateau A in Fig. 2(a) and D, respectively. (h) The position
of the plateaus in the J2 vs J1 plane.

We examine magnetization processes for various parameter
sets of exchange interactions in J1 versus J2 space as denoted
by dots in Fig. 4(h). At the equivalent case, i.e., J1 = J2 =
1, we do not find the 4/5 plateau, but with increasing J2 we
identify the 4/5 plateau denoted by C in Fig. 4(a) with J1 = 1
and J2 = 1.5. Not only the 4/5 plateau but also a macroscopic
magnetization jump just below the saturation field is observed.
The 4/5 plateau exhibits the wave function with a period of
5 × 2 as shown in Fig. 5(a), which indicates LMMS with a
spontaneous translational symmetry breaking as expected from
the 2D kagome lattice [2].

We also examine the parameter region of J1 at J2 = 1.5,
where the 4/5 plateau emerges. We calculate the lower mag-
netic field hl and the upper magnetic field hu for M/Msat =
4/5. The difference hu − hl is shown in Fig. 6 as a function

(j) F
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(d) H(c) G
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J1=1.3,  J2=0.6

(e) I J1=1.1,  J2=0.4

J1=0.9  J2=0.1

FIG. 5. The nearest-neighbor spin correlation 〈Si · Sj 〉 -〈Sz
i 〉〈Sz

j 〉
and the local magnetization 〈Sz

i 〉 in each plateau for 5 × 7 sites at the
center of the chain. (a) The plateau C, (b) D, (c) G, (d) H , (e) I , (f)
J , (g) K , (h) L, (i) E, and (j) F in Fig. 4. Black solid (purple dashed)
lines connecting two nearest-neighbor sites denote negative (positive)
values of the spin correlation, and their thicknesses represent the
magnitudes of correlation. Blue (red) circles on each site denote a
positive (negative) value of 〈Sz

i 〉, and their diameters represents its
magnitude.

of J1 for N = 200. Because of the finite-size effect, hu − hl

is always finite in spite of the absence of the plateau. At
J1 = 1.03, there is a jump of hu − hl, indicating the upper
bound of the 4/5 plateau. On the other hand, there is no clear
jump for the lower bound. To determine the boundary, we make
a finite-size scaling for both hu and hl, which is shown in
the inset of Fig. 6. From the scaling, we estimate the lower
boundary to be around J1 = 0.86.

The 2/5 plateau is also missing in the equivalent case. With
J1 = 1.3 and J2 = 0.6, however, we find the 2/5 plateau as
denoted by D in Fig. 4(b). The magnetic structure in this
plateau is shown in Fig. 5(b), where an alternating order of
five-site “X”-like and “�”-like structures emerges. This phase
also breaks translational symmetry. We can understand the
emergence of the 2/5 plateau for J1 > 1 by using a first-order
perturbation with respect to J2. Based on the fact that, for
J1 > 1, the lowest-energy state of the five-site cluster with
Sz = 1/2 is the “�” state and that with Sz = 3/2 is the “X”
state, we can construct an effective Hamiltonian in the first
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FIG. 6. The difference of the upper and lower magnetic fields,
hu − hl, for M/Msat = 4/5 as a function of J1 at J2 = 1.5 for N =
200. The 4/5 plateau exists at 0.86 � J1 � 1.03. Inset: the size scaling
of hu and hl for several value of J1 as a function of 1/N . Both hu and
hl, denoted by blue and red circles, respectively, are extrapolated by
a linear line.

order of J2 given by

Heff = 81

200
J2

∑
〈i,j〉

T z
i T z

j

+
(

81

200
J2 + 2J1 − h − 3

2

) ∑
i

T z
i + const, (2)

where T z
i represents the z component of the spin- 1

2 operator
at site i acting on the “�” and “X” states. The effective
Hamiltonian (2) corresponds to an Ising single chain in a
magnetic field. The Néel state is realized in the chain when
2J1 − 3/2 < h < 2J1 − 3/2 + 81

100J2, which is equivalent to
the alternating order of the “X”-like and “�”-like structures in
the 2/5 plateau obtained from the Hamiltonian (1).

As shown in Fig. 2(a), the 1/5 plateau denoted by B exists
in the equivalent case J1 = J2 = 1. In addition to B, we find
three new types of the 1/5 plateau for J1 ∼ 1 and small J2.
Plateaus in Figs. 4(c), 4(d), and 4(e), denoted by G, H , and
I , respectively, correspond to the new types. The magnetic
structures for G, H , and I are shown in Figs. 5(c), 5(d),
and 5(e), respectively. They are different from the magnetic
structure in B as shown in Fig. 2(a) in the sense that the spin
correlation connecting two five-site units is so small that the
component of magnetic structure is composed of five-site units
with four types “α,” “β,” “�,” and “Z” shown in Fig. 3. We
note that the “α,” “β,” and “�” states are eigenstates of the
five-site system, while the “Z” state is a linear combination
of the three-state system (see the Appendix). At 0.5 < J1 < 1,
the ground state of the S = Sz = 1/2 space in the five-site

unit has twofold degeneracy given by the “α” and “β’ states.
Introducing small J2 [J2 = 0.1 in Fig. 4(c)], the degeneracy is
lifted and, as a result, the plateau G exhibits alternating order
of the “α” and “β” states as shown in Fig. 5(c). We can easily
obtain an Ising-type effective Hamiltonian by the first-order
perturbation with respect to J2, which is given by

Heff = 2

9
J2

∑
〈i,j〉

S̃z
i S̃

z
j + const, (3)

where S̃z
i represents the z component of the spin- 1

2 operator
at site i acting on the “α” and “β” state. When J2 > 0, the
ground states become the alternating “α” and “β” order states,
being consistent with the plateau G. Note that when J2 < 0, the
ground state is ferromagnetic corresponding either to the “α”
or “β” order states. At J1 = 1, the “�” state degenerates with
“α” and “β” in the five-site unit. With small J2 [J2 = 0.3 in
Fig. 4(d)], the degeneracy is lifted and the linear combination
of these three states emerges in the plateau H , whose magnetic
structure is an array of “Z” structures as shown in Fig. 5(d).
At J1 > 1, the � state in Fig. 3 becomes the ground state of
the five-site unit and its array appears in the plateau I [see
Figs. 4(e) and 5(e)].

We find two kinds of zero-magnetization plateaus: the
plateau J in Fig. 4(e) for J1 = 1.1 and J2 = 0.4 and the plateau
K in Fig. 4(f) for J1 = 1.1 and J2 = 0.7, whose ground states
are VBC with two-unit cells as shown in Figs. 5(f) and 5(g),
respectively. We find that magnetic structure forms decamers
[Fig. 5(d)] or dimers and hexamers [Fig. 5(e)]. The dimer-
hexamer-ordered state is consistent with a previous report [19].
However, there has been no report on the decamer-ordered state
as far as we know. The presence of a large unit cell such as a
decamer is surprising in the sense that VBC usually becomes
unstable as the cluster size increases. This anomaly indicates
strong frustration in this kagome-strip chain.

In the 1D systems consisting of only nearest-neighbor
interactions, the appearance of long-period magnetic structures
is a nontrivial phenomenon. We find such structures in the 7/15
(L) plateau in Fig. 4(g) as well as the 1/3 (E) and 3/10 (F )
plateaus in Fig. 4(b). The magnetic structures of L, E, and F

have periods of three-, three-, and four-unit cells as shown in
Figs. 5(h), 5(i), and 5(j), respectively. The magnetic structure
of the L plateau consists of almost upward spins, dimers, and
hexamers, while the structures of E and F are based on “X”
and “�.” Since such long-period structures are usually unstable
in 1D systems, we perform finite-size scaling on the lower
and upper magnetic fields of the three plateaus as shown in
Fig. 7. We set the scaling function of the upper (lower) fields
hu(l) = au(l)(1/N )2 + bu(l)(1/N ) + cu(l). In all plateaus, L, E,
and F , the difference of the upper and lower fields, cu − cl, is
finite in the thermodynamic limit N → ∞. This is evidence of
stable long-period structures in the three plateaus.

We finally discuss the relationship between the magneti-
zation plateaus we have found and the Oshikawa-Yamanaka-
Affleck (OYA) criterion [21]. In the kagome-strip chain, the
OYA criterion states that a necessary condition for the appear-
ance of a plateau is 5

2p(1 − M/Msat) = n (n is an integer),
where p is the ground-state period based on the unit cell. All
plateaus obtained in the present study satisfy the OYA criterion.
For example, the M/Msat = 3/10 plateau (F ) is compatible
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FIG. 7. Finite-size scaling of the lower and upper magnetic fields
of magnetization plateaus. (a) The 7/15 plateau (L) in Fig. 4(g).
(b) The 1/3 plateau (E) and (c) the 3/10 plateau (F ) in Fig. 4(e).
The solid lines show fitted results with scaling functions of hu(l) =
au(l)(1/N )2 + bu(l)(1/N ) + cu(l) for the upper (lower) field.

with p = 4, and the M/Msat = 0 plateaus (J and K) are
compatible with p = 2.

IV. SUMMARY

In summary, motivated by recent progress in our under-
standing of frustration in the 2D kagome lattice, we have
investigated the ground state of a spin- 1

2 Heisenberg model
on the kagome-strip chain in a magnetic field using the
DMRG method. We have accurately determined the magnetic
structures of the chain in a certain parameter range, and
we have found various types of plateaus that have not been
reported before. We have identified twelve kinds of magneti-
zation plateaus, nine of which have magnetic structures that
break translational and/or reflection symmetry spontaneously.
Among the nine plateaus, we have identified a nontrivial
plateau, a 3/10 plateau, whose magnetic structure consists of a
period of four unit cells. To the best of our knowledge, this
is the first report of such a long-period magnetic structure
in 1D quantum spin systems. All plateaus obtained in the
present study satisfy the OYA criterion. Our study reveals
that there are a number of magnetization plateaus even with
three different exchange interactions in the kagome-strip
chain. It thus suggests that magnetization plateaus appear not
only in a perfect kagome lattice [22] but even in distorted
kagome lattices [23–33]. In fact, a 1/3 plateau confirmed in
Cs2Cu3CeF12 [33] corresponds to the 1/5 plateaus, B and I ,
in the kagome-strip chain. The recently discovered compound
A2Cu5(TeO3)(SO4)3(OH)4 (A = Na,K) [20] consists of a spin-
1
2 kagome-strip chain. Though the compound has a distorted
five-site unit cell in contrast to an undistorted cell in the
present theoretical model, the kagome-strip chain, it might be a
possible candidate to reveal nontrivial magnetization plateaus.
Experimental and theoretical studies to confirm the plateaus in
this compound are desired.
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APPENDIX: FIVE-SITE MODEL

We discuss the eigenstates of a five-site JX-J1 unit cell using
an approach similar to that of Ref. [34]. The Hamiltonian is
defined as

H = JXS3 · (S1 + S2 + S4 + S5) + J1(S1 · S2 + S4 · S5)

= JXS3 · (Tu + Td ) + J1

(
T2

u

2
+ T2

d

2

)
− 3

2
J1, (A1)

where subscript numbers of S represent lattice positions in
Fig. 3 in the main text, and Tu = S1 + S2 and Td = S4 +
S5. We can easily confirm that [H,T2

u(d)] = 0 and T2
u(d) =

Tu(d)(Tu(d) + 1) for Tu(d) ∈ {0,1}. Each eigenstate of H can be
characterized by Tu and Td , and eigenstates with different sets
of (Tu,Td ) are orthogonal to each other.

In the space of total spin S = 3/2 and its z component Sz =
3/2 for (Tu,Td ) = (1,1), the “X” state shown in Fig. 3 in the
main text appears. The eigenfunction of “X” is expressed as

|X〉 = 1√
10

|t〉+12|↑ 〉3|t〉0
45 − 2√

5
|t〉+12|↓ 〉3|t〉+45

+ 1√
10

|t〉0
12|↑ 〉3|t〉+45, (A2)

with eigenvalue − 3
2JX + 1

2J1. In the space of S = Sz = 1/2
for (Tu,Td ) = (1,0), (0,1), and (0,0), the eigenfunctions of the
“α,” “β,” and “�” states (see Fig. 3 in the main text) are given
by

|α〉 = 1√
3

[√
2|t〉+12|↓ 〉3|s〉45 − |t〉0

12|↑ 〉3|s〉45
]
, (A3)

|β〉 = 1√
3

[√
2|s〉12|↓ 〉3|t〉+45 − |s〉12|↑ 〉3|t〉0

45

]
, (A4)

and

|�〉 = |s〉12|↑ 〉3|s〉45, (A5)

with eigenvalues −JX − 1
2J1, −JX − 1

2J1, and − 3
2J1, respec-

tively, where

|t〉+ij = |↑ 〉i |↑ 〉j , (A6)

|t〉0
ij = 1√

2
(|↑ 〉i |↓ 〉j + |↓ 〉i |↑ 〉j ), (A7)

|s〉ij = 1√
2

(|↑ 〉i |↓ 〉j − |↓ 〉i |↑ 〉j ). (A8)

At JX = J1, the “α,” “β,” and “�” states are degenerate. The
“Z” state, which is a linear combination of the three states, is
also the eigenstate of H whose eigenfunction is given by

|Z〉 =
√

3√
10

|α〉 −
√

3√
10

|β〉 − 2√
10

|�〉

= 2√
10

[|↑ 〉1|s〉23|s〉45 + |s〉12|s〉34|↑ 〉5]. (A9)
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