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We report the temperature-dependent evolution of spin ordering and excitations of the frustrated tetragonal
(c > a) spinel ZnMn2O4 across the two-dimensional antiferromagnetic transition. Muon spin relaxation indicates
full development of ordered magnetic moments immediately below TN = 62.7(2) K in spite of the apparent
low-dimensional ordering. Using inelastic neutron scattering, we obtained the spin Hamiltonian accounting for
the temperature-dependent spin excitations. The damped spin waves at high temperature exhibit a continuous
increase in their lifetime on cooling across TN. In contrast, the finite anisotropy gap appears suddenly below
TN indicating that single-ion anisotropy stabilizes the antiferromagnetic chains. We also observed the frustrated
out-of-plane exchange contributing to the high-energy modes.
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I. INTRODUCTION

In antiferromagnetic materials, the establishment of long-
range ordering is often hindered by the symmetries of un-
derlying crystal structures. Such phenomena, or geometrical
frustrations, are known to be strong in cubic spinel oxides
(AB2O4) particularly when their nearest-neighbor B-B bonds
compete among themselves to satisfy the antiferromagnetic
exchanges. Long-range magnetic order is often achieved often
via various lattice distortions breaking the degeneracy among
six B-B bonds within the B4 tetrahedra. Good examples of
this are found in chromites, or ACr2O4 (A = Zn, Cd, Hg, Mg),
where Cr3+ ions are subject to no orbital asymmetry [1–4].
In spite of the apparent similarities, these materials exhibit
an interesting variety of magnetostructural distortions leading
to complex magnetic order. Whereas a simple ordering is
expected on uniaxial lattice contraction (c < a), ZnCr2O4 and
MgCr2O4 in their tetragonal phases exhibit complex magnetic
structures with multiple magnetic ordering wave vectors [5–8].
CdCr2O4, in contrast, establishes incommensurate magnetic
order on tetragonal elongation (c > a), the origin of which is
not well understood [9]. HgCr2O4 shows an even more com-
plicated ground state involving an orthorhombic structure and
multiple magnetic ordering vectors [10]. These observations
commonly suggest that the geometrical frustrations continue
to play a significant role in the distorted spinel lattices.

In this paper, we are particularly interested in the spinel
oxides with tetragonal elongations along c axes (c > a) as
depicted in Fig. 1(a). The prototypical example is found in
manganites, or AMn2O4, where the elongation is robustly
supported by strong Jahn-Teller effect of octahedral Mn3+
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g , S = 2) ions. When no additional orbital degen-

eracies are involved, the space group of the crystal lattice
changes from cubic Fd3̄m to tetragonal I41/amd causing
the Mn-Mn bonds to become longer along the c axis. Since
the direct exchanges between adjacent Mn3+ ions should be
stronger along the bonds in the c planes (J1), antiferromagnetic
spin chains are expected to form in these planes. While one-
dimensional chains will not be stable due to their propensity
for thermal disorder, even in three dimensions their long-range
orderings often turn out to be nontrivial. This is because the
spin chains on any pair of adjacent planes are orthogonal to
each other and thus the out-of-plane interchain exchanges (J ′

1)
cancel out [for instance, see Fig. 1(c)]. It was suggested that the
associated geometrical frustration should cause magnetostruc-
tural instabilities in Mn3O4 [11–13]. When the tetragonal
symmetry remains intact, Mn3O4 shows the Yafet-Kittel-type
ferrimagnetic ordering where tilting patterns of Mn3+ spins
reverse between two parallel chains [14,15]. Such magnetic
cell-doubling (CD) modulations propagate along the net mag-
netization direction parallel to the a axis, which are observed
by neutron diffraction as magnetic Bragg peaks according to
the ordering wave vector kCD = (1/2,1,0) [11,12]. These CD
peaks become suppressed when the underlying geometrical
frustration is perturbed via orthorhombic distortions [16].

ZnMn2O4 apparently is one of the simplest among c-
elongated tetragonal spinels as its tetrahedral A ions are non-
magnetic [17,18]. Although the Curie-Weiss temperature indi-
cates strong antiferromagnetic interactions (|�CW| ≈ 900 K),
its magnetization data typically show weakly spin-glass behav-
iors without revealing clear transitions suggesting persistent
geometrical frustration [19]. The transition to the long-range
ordered antiferromagnetic phase has only recently been iden-
tified in heat capacity measurements (TN ≈ 60 K), below
which the ordered phase involved the CD modulations similar
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FIG. 1. (a) The crystal structure of ZnMn2O4 shown on its
body-centered tetragonal unit cell. The shaded polyhedra represent
octahedral oxygen cages enclosing Mn3+ ions. (b) The substructure
of Mn3+ ions on the B sites of AB2O4 spinel. The solid and dashed
lines connecting ions represent in-plane and out-of-plane bonds,
respectively. (c) The antiferromagnetic spin arrangements on the
Mn3+ sites exhibiting the cell-doubled ordering simultaneously along
the a and b axes. Also shown are exchange constants included in the
spin wave calculations discussed in the text.

to Mn3O4 [20]. Two-dimensional spin fluctuations were
reported to develop via interchain antiferromagnetic exchanges
at high temperatures followed by static ordering upon cooling
belowTN. In our current work, we investigated the temperature-
dependent evolution of magnetic order and excitations in
ZnMn2O4 with a particular emphasis on how the long-range
order becomes stabilized across TN. By combining muon spin
relaxation (μSR) and neutron scattering measurements on a
polycrystalline sample, we find that the magnetic easy-axis
anisotropy of Mn3+ ions plays a decisive role in stabilizing
long-range antiferromagnetic order.

II. EXPERIMENTAL

The polycrystalline samples of ZnMn2O4 were synthesized
by heating a mixture of ZnO and Mn2O3 at 1,323 K for 24
hours. Using x-ray powder diffraction, the obtained samples
were confirmed to be single phase with the lattice parameters
a = 5.7163(1) Å and c = 9.2520(1) Å at room temperature.

Magnetic susceptibility was measured using vibrating sample
magnetometry under an applied field of 1 kOe. Muon spin
relaxation measurements were performed in zero field using
the D1 (MUSE) instrument of KEK at J-PARC. Time-of-flight
inelastic neutron scattering measurements were performed
using the MARI spectrometer at the ISIS facility of the
Rutherford Appleton Laboratory. We used neutron beams with
two different incident energies, Ei = 50 and 150 meV, for
obtaining high- and low-resolution data, respectively. The
associated full-width-half-maxima in energy were adjusted
by the chopper frequencies to be 1.60 meV and 5.81 meV,
respectively.

III. RESULTS AND DISCUSSIONS

We begin by discussing the temperature dependence of
zero-field μSR asymmetry, A(t) = [F (t) − αB(t)]/[F (t) +
αB(t)], obtained from polycrystalline ZnMn2O4. Above, F (t)
and B(t) are positron counts in the forward and backward de-
tectors, respectively, while α is the relative counting efficiency
[21]. A time-dependent decrease of the muon asymmetry

FIG. 2. (a) Time-dependent zero-field μSR asymmetries of poly-
crystalline ZnMn2O4 at selected temperatures. The plotted asymme-
tries include a few percent of contributions from a silver backing plate.
The solid lines through the data are the stretched exponential fitting
curves as discussed in the text. The obtained best-fit parameters, A0

and λ, are shown in (b). The Néel temperature, TN, was obtained by the
inverse power-law fitting to λ(T ). (c) The temperature dependences
of dc magnetic susceptibility and its temperature derivative under the
external field H = 1 kOe.
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generally indicates depolarization of spin-polarized μ+ par-
ticles under the sample’s local magnetic field. While the A(t)
curves showed almost linear decreases at high temperatures,
significant curvatures developed as the temperature was low-
ered below 100 K as shown in Fig. 2(a). Such changes indicate
that antiferromagnetic fluctuations preexisted at T > 100 K
and slowed down near TN reaching a time scale of a few μs.
Nevertheless, the initial value of the asymmetry, A(t = 0) ≡
A0, remained almost unchanged down to 63 K suggesting the
lack of static magnetic ordering. The initial asymmetry finally
dropped abruptly at 62 K indicating the local stabilizations of
magnetic moments. The apparent absence of muon-spin pre-
cession at small t suggests that the depolarizations occur much
faster than the time resolution of the current measurement
(�t = 0.08 μs), which is not surprising given the expected
large magnetic moment of Mn3+ ions (≈4μB) [20]. We obtain
the initial asymmetries by fitting a stretched exponential from,
A(t) = A0 exp[−(λt)β], and plot the temperature dependences
of the obtained parameters in Fig. 2(b). The value of A0 exhibits
a sharp decrease near 63 K within a temperature range narrower
than 1 K clearly indicating that static magnetic moments
appear abruptly. The relaxation rate, λ(T ), consistently shows
a sharp divergence, from which we estimated the Néel ordering
temperature to be TN = 62.7(2) K. Below TN, the relaxation
rate rapidly decreases and then exhibits a weak enhancement
below 40 K. Such behavior suggests that a significant degree
of spin fluctuations persist in the long-range ordered phase of
ZnMn2O4 [22–25].

The abrupt change in the μSR spectra is in striking contrast
to the dc magnetization, M(T ), which is plotted in Fig. 2(c)

FIG. 3. Time-of-flight neutron scattering intensities of polycrys-
talline ZnMn2O4. The neutron energy incident to the sample is
Ei = 150 meV for the top panel, and Ei = 50 meV for the bottom.
The measurement temperatures, 300 K (>TN) or 45 K (<TN), are
denoted in the corresponding plots. Dark curved areas extending
upwards are due to the detector gaps of the instrument.

for comparison. The latter only shows the smooth downturn
that appears below 200 K and continues on cooling across
TN, finally reaching a minimum well below the ordering tem-
perature. No relevant features are observed in dM/dT except
the change of sign well below TN. Such behavior of the dc
magnetization is explained as the development of one- or two-
dimensional antiferromagnetic spin correlations susceptible to
thermal instabilities [26,27]. While such is consistent with
the previously reported two-dimensional magnetic ordering
[20], the changes observed in the μSR spectra are surprisingly
sharp for the supposed low dimensionality. We suppose that
additional interactions should contribute to the local stability
of spins and make them appear static on the time scale of the
muon response.

In order to understand magnetic interactions underlying the
apparent low-dimensional ordering, we performed time-of-
flight inelastic neutron scattering measurements over a wide
temperature range below 300 K. We first used an incident
energy ofEi = 150 meV in order to visualize the full excitation
spectra. As displayed in the top panel of Fig. 3, the excitation
spectra appeared to have similar patterns between 300 K
and 45 K in spite of the large temperature difference. The
intensities at higher momentum transfer (Q � 6 Å−1) and
extending up to about 80 meV in energy transfer are ascribed
to phonon excitations, whereas magnetic excitation intensities
are limited to below 30 meV and 5 Å−1. We thus selected an
incident energy of Ei = 50 meV for further measurements.

FIG. 4. Constant-h̄ω cuts from the time-of-flight neutron scat-
tering spectra for (a) selected energy transfers at 300 K and (b)
selected temperatures at h̄ω = 7 meV. The solid lines through the
data are fitting curves using asymmetric Warren line-shape functions
[28]. (c) Constant-Q cuts (Q = 1.4 Å−1) of the neutron scattering
spectra at selected temperatures. The horizontal bar indicates the
energy resolution at h̄ω ≈ 8 meV. (d) Temperature dependencies of
magnetic Bragg peak and low-energy inelastic scattering intensities.
The vertical dashed line marks TN = 62.7 K.
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FIG. 5. (a) Inelastic neutron scattering intensities at 6 K integrated
over finite Q ranges as shown in the panel. Solid lines are the
calculated intensities using the model discussed in the text and the
parameters listed in Table I. Dashed lines show the similar calculations
with J ′

1 set to be zero for comparison. The sudden dips in the top two
plots are ascribed to the missing detectors. Temperature dependences
of (b) the single-ion anisotropy and (c) the full-width-half-maximum
obtained from the least-square fitting method. Solid lines are guides
to the eye. In (c), the horizontal dashed line marks the instrumental
resolution of 1.60 meV.

As shown in Fig. 3(c), the magnetic excitation at 300 K
showed a broad distribution in intensity centered around Q =
1.4 Å−1 and extending approximately up to h̄ω = 27 meV.
The plots in Fig. 4(a) show that its momentum dependence is
virtually independent of the energy transfer, which suggests
that spin fluctuations are short ranged at this temperature. As
the temperature was lowered toward TN, the excitation spectra
underwent significant changes particularly in their momentum

TABLE I. The exchange and anisotropy constants obtained at
6 K from the least-squares fitting of the inelastic neutron scattering
intensities. The corresponding experimental and calculated spectra
are shown in Figs. 5(a), 6, and 7(b).

S J1 J ′
1 J3 D

2 6.0(3) meV 0.6(5) meV 0.15(5) meV 0.26(4) meV

dependence. As shown in Fig. 4(b), the excitation at 150 K
looks significantly asymmetric in Q and can be fitted by the
Warren line-shape function [28]. Such an asymmetric peak line
shape is consistent with the previously observed development
of extended two-dimensional spin correlations [20]. Finally,
below TN, typical spin-wave-like dispersions emerge with a
finite anisotropy gap [see Fig. 3(d)]. Excitation intensities were
accumulated strongly around ∼9 meV reflecting the magnon
states concentrated above the anisotropy gap, from which dis-
persive modes extend upward and sideways at the same time.
We notice that the upper cutoff energy is virtually unchanged
across the transition, which suggests that the disordered phase
well above TN already is subject to strong antiferromagnetic
exchange interactions [19]. We also found that the low-energy
excitation gap starts to develop immediately belowTN as shown
in Fig. 4(c). The plots in Fig. 4(d) clearly show that such
development of the gap is directly related to the stabilization
of long-range antiferromagnetic ordering indicated by the
magnetic Bragg peaks.

We performed the quantitative analysis of the observed
magnetic excitation spectra using the linear spin-wave calcu-
lations in the Holstein-Primakoff formalism. First, we used
the two-dimensional magnetic structure with the CD ordering
suggested by Disseler et al. assuming that each Mn3+ spin

FIG. 6. Thin solid lines show the spin wave dispersions calculated as discussed in the text using the parameters listed in Table I. Thick
dashed lines are calculated using Eq. (2) excluding J ′

1. The insets illustrate the spin displacement patterns for the corresponding modes indicated
by arrows. The filled circles on the left panel are the single-crystal data reproduced from Ref. [20].
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(S = 2) is oriented along the c axis [20]. The spin Hamiltonian
includes the isotropic exchanges, Jij , and the uniaxial single-
ion anisotropy constant along the c axis, D, as below:

H = 1

2

∑
i,j

Jij (�Si · �Sj ) −
∑

i

D(�S · ĉ)2. (1)

As illustrated in Fig. 1(c), we assigned J1 for exchanges
between the intrachain nearest-neighbor spins, and J3 between
interchain pairs to account for the CD ordering [20]. We
then obtain the following analytical solution for the twofold
degenerate modes:

h̄ω(qx,qy)

= 2S

√
(J1 + J3 + D)2 − [J3 cos (2qxπ ) + J1 cos(qyπ )]2.

(2)

The above solution is given as a function of the re-
duced in-plane wave vector �q = (qx,qy,0) with respect to the
magnetic ordering wave vector kCD = (1/2,1,0). Assuming
that the intrachain exchange is significantly stronger than
the interchain (J1 > J3), the solution gives the maximum
magnon energy of h̄ω(0, 1

2 ) = 2S
√

(J1 + J3 + D)2 − J 2
3 along

the intrachain mode. In comparison, the interchain mode
will reach its maximum at the lower energy, h̄ω( 1

2 ,0) =
2S

√
(J1 + J3 + D)2 − (J3 − J1)2, along the perpendicular di-

rection in the reciprocal lattice.
In order to obtain quantitative values of the involved

constants, we performed a least-squares fit of the calculated
scattering cross sections to the experimental data. We first
obtained the dynamical magnetic structure factor, �FM(ω, �Q),
from the linear spin waves, and subsequently calculated the
inelastic neutron scattering cross sections using the single
mode approximation as follows [29–32]:

I (ω, �Q) ∝ 1

ω
|Q̂ × �FM(ω, �Q) × Q̂|2[n(ω) + 1], (3)

where n(ω) is the Bose factor. The calculated cross sections
were then convoluted by a Gaussian peak-shape function of the
full-width-half-maximum, 	, in energy transfer. The powder-
averaging integration was performed using the Monkhorst-
Pack algorithm [33], and the process was iterated to find the
set of the best-fit parameters. Figure 5(a) shows the direct
comparison between the experimental data at 6 K and the
best-fit calculations (see the dashed lines) at several momentum
transfers. The calculations using the current two-dimensional
model reasonably reproduced the experimental data at low
energies. However, significant disagreements were visible
at high energies. Most importantly, the model calculation
overestimated the intensity distribution near h̄ω = 25 meV
[see the plot in the middle of Fig. 5(a)] and failed to account for
weak dispersions nearby [see the bottom plot in Fig. 5(a)]. The
best-fit parameters of J1, J3, and D, respectively, obtained from
these calculations are listed in Table I [34]. The corresponding
spin wave energies are shown in Fig. 6 as thick dashed lines
along high-symmetry directions, which apparently reproduce
the previous single-crystal data at low energies reasonably
well [20].

From the analysis of the eigenvectors, we identify that the
high-energy modes involve opposite motions of the nearest

FIG. 7. The left panels show the time-of-flight inelastic neutron
scattering intensities observed at selected temperatures, which were
subtracted with constant-Q backgrounds. The right panels show the
spin wave excitation intensities calculated at corresponding temper-
atures using the model including all parameters listed in Table I as
well as 	 as discussed in the text. Only D and 	 were assumed to
vary with temperature while the other parameters were fixed.

intrachain spin pairs (see the inset in Fig. 6). It suggests that
they should be subject to the antiferromagnetic exchanges
between two orthogonal spin chains at adjacent c planes, which
should otherwise be frustrated. We therefore introduced an ad-
ditional exchange constant, J ′

1, out of the c planes as depicted in
Fig. 1(c). To accommodate it and account for the CD orderings
simultaneously along a and b axes, we extended the magnetic
supercell to include 16 spins in total. As shown with solid
lines in Fig. 5(a), excellent agreement was achieved for the
high-energy modes when we used J ′

1 ≈ 0.1J1. The associated
dispersions are plotted as thin solid lines in Fig. 6, which reveal
a gap appearing in the high-energy modes. Although the full
analytical solutions are not available for this model, we find
that the out-of-plane exchange causes the splitting by ±SJ ′

1
at the magnetic zone boundaries. The observed and calculated
intensities at 6 K are also displayed as two-dimensional plots in
Figs. 7(a) and 7(b), respectively, for comparison. Both of them
commonly reveal weak discontinuities in intensity distribution
near ∼24 meV, which is caused by the presence of J ′

1. These
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results indicate that the geometrical frustration does not render
the spin excitations in ZnMn2O4 to be truly two dimensional.

Finally, we investigated the quantitative changes in the
inelastic excitation spectra as the temperature was increased
across TN . Since there are no structural phase transitions below
300 K, we assume the exchange interactions remain constant
within the investigated temperature range. By adjusting only
D and 	 as temperature-dependent parameters, we repeated
the least-squares fitting of the inelastic neutron scattering
intensities at higher temperatures. As shown in Fig. 7, the
experimentally observed intensities could be well reproduced
up to 100 K, at which point the excitation spectra exhibited
significant broadening in line width and closing of the gap.
We find that the single-ion anisotropy constant increases
sharply near TN as plotted in Fig. 5(b). In contrast, Fig. 5(c)
shows that the line width decreases monotonously across TN

without noticeable anomalies. It indicates that the lifetime
of the spin excitations increases monotonously suggesting
a continuous stabilization of the spin wave modes across
the antiferromagnetic transition. The comparison between
two sets of data provides an explanation of the apparently
contrasting temperature dependencies of the μSR asymmetry
and dc magnetization. While the robustness of long-range
order will directly determine spin wave lifetime as well as dc
magnetization, the local stabilities due to single-ion anisotropy
will primarily affect the μSR spectra. The simultaneous sharp
changes observed in A0(T ) and as well as in D(T ) can thus
be viewed as indicators of the local stability of spins. Upon
local tilting due to thermal fluctuations, the uniaxial anisotropy
term [−D(�S · ĉ)2] will provide a better stability than isotropic
exchanges of similar magnitudes. We thus conclude that the

uniaxial single-ion anisotropy plays the most important role in
stabilizing the antiferromagnetic ordering in ZnMn2O4.

IV. SUMMARY

We investigated the temperature-dependent dynamics in
the frustrated tetragonal (c > a) spinel ZnMn2O4, where two-
dimensional order of antiferromagnetic spin chains had been
reported [20], While the transition to the ordered phase was
not detected by dc magnetization, the zero-field μSR showed
a clear and sharp transition at TN = 62.7(2) K. By performing
linear spin wave analysis on the powder-averaged inelastic
neutron scattering data, we obtained the spin Hamiltonian
including the in-plane as well as frustrated out-of-plane ex-
changes that successfully accounted for the magnetic order
and excitations below TN. As the temperature is increased
across TN, the lifetime of the observed spin waves decreases
monotonously contrary to the sharp change in the single-
ion anisotropy. We thus conclude that the stability of the
antiferromagnetic ordering in ZnMn2O4 is ascribed to the local
magnetic anisotropy in competition with thermal instabilities
of the long-range two-dimensional spin correlations.
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