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Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

Randy S. Fishman
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 18 August 2017; revised manuscript received 1 November 2017; published 3 January 2018)

Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy
restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P. However,
recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal
to P away from the magnetic field orientation m. We show that the previously neglected threefold anisotropy
K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold
axis, the domain with q parallel to m remains metastable below Bc1 ≈ 7 T. Due to the pinning of domains by
nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T,
when the component of the torque τ = M × B along P exceeds a threshold value τpin. Since τ = 0 when m ⊥ q,
the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results
explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering
measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The
model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be
manipulated by a magnetic field.
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I. INTRODUCTION

The manipulation of magnetic domains with electric and
magnetic fields is one of the central themes [1–3] in the
study of multiferroic materials. Applications of multiferroic
materials depend on a detailed understanding of how domains
respond to external probes. Despite recent advances [4] in our
understanding of the room-temperature multiferroic BiFeO3,
some crucial questions remain about how its cycloidal domains
respond to a magnetic field.

A type I or “proper” multiferroic, BiFeO3 exhibits a strong
ferroelectric polarization of about 80 μC/cm2 along one of
the pseudocubic diagonals below the ferroelectric transition
at TFE = 1100 K [5,6]. Below TFE, broken symmetry pro-
duces two Dzaloshinskii-Moriya (DM) interactions between
the S = 5

2 Fe3+ ions. A magnetic transition at TN = 640 K
[7] allows the cycloidal spin state to take advantage of this
broken symmetry.

Until recently, it seemed that a complete theoretical descrip-
tion [8–13] of rhombohedral BiFeO3 was in hand. Utilizing
the first available single crystals, the measured cycloidal
frequencies [14–16] of BiFeO3 provided a stringent test for
theory. A microscopic model for BiFeO3 that includes two
DM interactions D1 and D2 and single-ion anisotropy K1

successfully predicted [12,13] the mode frequencies in zero
field [14,15] and their evolution in magnetic field [16] for
several field orientations. Since all model parameters were
determined [17] from the zero-field behavior of BiFeO3,
the field evolution of the cycloidal modes [13] provided a
particularly good test of the microscopic model. But, new
evidence suggests that this model is not complete.

With the electric polarization P = P z′ along the pseu-
docubic diagonal [1,1,1] ([a,b,c] is a unit vector), the three
magnetic domains of BiFeO3 in zero field [18] have wave
vectors Qk = Q0 + qk where Q0 = (π/a)(1,1,1) is the anti-

ferromagnetic (AF) Bragg vector,

q1 = 2πδ

a
(−1,1,0), (1)

q2 = 2πδ

a
(1,0−1), (2)

q3 = 2πδ

a
(0,−1,1), (3)

a = 3.96 Å is the lattice constant of the pseudocubic unit
cell, and δ ≈ 0.0045 determines the cycloidal wavelength
λ = a/

√
2δ ≈ 620 Å. As shown in Fig. 1, each qk lies along a

different hexagonal axis perpendicular to z′. In zero field, the
three domains of BiFeO3 with wave vectors qk are degenerate.
For each domain k, the spins of the cycloid lie primarily in the
plane defined by z′ = [1,1,1] and x′, which is the unit vector
along qk . A magnetic field favors domains with x′ ⊥ B because
χ⊥ � χ‖ [19] for BiFeO3.

The model described above successfully predicted the field
dependence of the mode frequencies [13,16] when the stable
domain has wave vector q ≡ Q − Q0 perpendicular to the
magnetic field B = Bm. For example, the mode frequencies
for domain 1 with m = [0,0,1] or for domain 3 with m =
[0,1,1] almost exactly match the theoretical predictions. But,
for m along a threefold-symmetric axis like [1,0,−1], the mode
frequencies are not as well described by taking the domain
wave vector q along [−1,1,0] or [0,−1,1]. Rather, the mode
frequencies are then virtually identical to those predicted with
m = [−1,2,−1] and q along [1,0,−1] ⊥ m [20]. In addition,
the selection rules for the appearance of the spectroscopic
modes do not follow the expected rules when the domain wave
vectors lie along the threefold axis [21]. So, it appears that for
m = [1,0,−1], the domain wave vectors q1 and q3 rotate away
from m towards [−1,2,−1], as indicated in Fig. 1.

2469-9950/2018/97(1)/014405(10) 014405-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.014405&domain=pdf&date_stamp=2018-01-03
https://doi.org/10.1103/PhysRevB.97.014405


RANDY S. FISHMAN PHYSICAL REVIEW B 97, 014405 (2018)

FIG. 1. A hexagonal plane normal to Z with the magnetic field
taken to lie along X. In zero field, three domains with wave vectors
qk are stable. Wave vectors q1 and q3 rotate towards Y ⊥ m with
increasing field. A domain with wave vector q′ ‖ Y is stable above
Bc2 in the absence of pinning. Below Bc1, the domain with wave vector
q2 is metastable.

Another discrepancy appears in measurements of the crit-
ical field Bc3(m) above which the canted AF (CAF) phase
becomes stable. Predictions based on the “canonical” model
indicate that Bc3(m) depends on the stable domain as m is
rotated about z′ = [1,1,1] by the azimuthal angle ζ [22].
However, experimental measurements [23,24] find that Bc3(m)
depends primarily on the polar angle ϑ = cos−1(m · z′) and
does not sensitively depend on the azimuthal angle ζ .

Direct evidence for domain rotation in a magnetic field was
recently provided by small-angle neutron scattering (SANS)
[25]. Those measurements indicate that the metastable domain
with wave vector q along m is slowly depopulated with
increasing field and disappears above about 7 T. The other
two domain wave vectors q begin to rotate perpendicular to m
but q · m never reaches zero.

This behavior is caused by the pinning of domains by
nonmagnetic impurities. In a ferromagnet [26,27], domain
walls move when the component of B along the domain magne-
tization M exceeds the pinning field Bpin. In the strong-pinning
limit with m along a threefold axis, cycloidal wave vectors q
begin to rotate away from m when the component of the torque
τ = M × B along z′ exceeds a threshold value τpin. Since M is
induced by the component of B perpendicular to the cycloidal
plane containing q, τ = 0 when q ⊥ m. Consequently, the
wave vector q never becomes completely perpendicular to the
external field unless it lies along a threefold axis perpendicular
to m.

This paper modifies the “canonical” model of BiFeO3 to
address the discrepancies described above. For a fixed P,
the revised model now describes the pinning and rotation of
multiferroic domains in an arbitrary magnetic field. Future
measurements based on these results will be able to explore
the precise mechanism underlying the pinning of macroscopic
multiferroic domains.

Section II discusses the present “canonical” model for
BiFeO3. In Sec. III, we present the higher-order anisotropy
terms that break threefold symmetry. The next two sections
describe the consequences of this modified model in the
absence of pinning. Section IV A treats the case where m
lies along a threefold axis so that the wave vectors of the
stable domains rotate away from the other two threefold axes
with increasing field. Section IV B treats the case where m is
perpendicular to a threefold axis so that the wave vector of the
stable domain does not rotate. Section V discusses the effects
of pinning and provides an exact solution for domain rotation in
the strong-pinning limit. Section VI modifies the conclusions
of Sec. IV to include the effects of pinning. Section VII
contains a conclusion. The magnetoelastic coupling of BiFeO3

is examined in the Appendix.

II. “CANONICAL” MODEL

The “canonical” model of BiFeO3 is given by the
Hamiltonian

H = −J1

∑
〈i,j〉

Si · Sj − J2

∑
〈i,j〉′

Si · Sj

+D1

∑
〈i,j〉

(z′ × ei,j /a) · (Si × Sj )

+D2

∑
〈i,j〉

(−1)hi z′ · (Si × Sj )

−K1

∑
i

(z′ · Si)
2 − 2μBB

∑
i

m · Si , (4)

where ei,j = ax, ay, or az connects the spin Si on site Ri with
its nearest neighbor Sj on site Rj = Ri + ei,j . The integer
layer number hi is defined by

√
3Ri · z′/a. The first DM

interaction D1 determines the cycloidal wavelength λ; the
second DM interaction D2 produces a small tilt τ ≈ 0.3◦ of the
spins out of the x′-z′ plane [8,10,28]. These DM interactions
are created by the antiferrodistortive and polar modes of the
BiFeO3 lattice [29–32] that develop below its ferroelectric
transition temperature.

The first DM term in H,

HD1 = D1

∑
〈i,j〉

(z′ × ei,j /a) · (Si × Sj ), (5)

does not depend on the choice of domain and qk . In earlier [4]
versions of the “canonical” model, this term was restricted to a
specific domain of the cycloid. For domain 2 with q2 parallel to
x′ = [1,0,−1] and y′ = z′ × x′ = [−1,2,−1], it was written

H′
D1

= − D1√
2

∑
Rj =Ri+a(x−z)

y′ · (Si × Sj ), (6)

where Ri and Rj are next-nearest neighbors of the pseudocubic
unit cell that lie on the same hexagonal layer hi . This earlier
version of the “canonical” Hamiltonian H′ implicitly assumed
that the anisotropy is so high that the domain wave vector q is
restricted to one of the threefold axis. Because the wavelength
of the cycloid is so long, H′ has the same static and dynamical
properties as H provided that H is applied to the domain
specified by H′

D1
.
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Why replace H′ with H? Unlike H′, H can be used to study
any domain with qk along a threefold axis. As shown below, H
also describes the general case where q differs from a threefold
axis. While H′

D1
involves the sum over next-nearest neighbors,

HD1 involves the sum over nearest neighbors, which should
dominate the DM interaction. Most importantly, the general
form of HD1 given above was obtained from first-principles
calculations [33].

To construct the local reference frame of a cycloid with
wave vector q = Q − Q0, we take

q = 2
√

2πδ

a|n| (nx,ny,nz) = 2π

λ
x′, (7)

where ni are integers with no common factors. Then, the unit
vector along q is x′ = (nx,ny,nz)/|n| and y′ = z′ × x′ = (nz −
ny,nx − nz,ny − nx)/(

√
3|n|). With the local reference frame

of a cycloid defined by the unit vectors {x′,y′,z′}, the spin at
site Ri = (l,m,o)a is indexed by the integer r = n · Ri/a =
nxl + nym + nzo. Assuming that the spins S(j )

r on alternate
layers j = 1 or 2 are identical functions of r , then r ranges
from 1 to M = |n|/√2δ = λ|n|/a in the magnetic unit cell.

It is straightforward to show that

1

N
HD1 = D1

2
√

3M

M∑
r=1

× {
x · [

S(1)
r × (

S(2)
r+nz

− S(2)
r−nz

− S(2)
r+ny

+ S(2)
r+ny

)]
+ y · [

S(1)
r × (

S(2)
r+nx

− S(2)
r−nx

− S(2)
r+nz

+ S(2)
r+nz

)]
+ z · [

S(1)
r × (

S(2)
r+ny

− S(2)
r−ny

− S(2)
r+nx

+ S(2)
r+nx

)]}
.

(8)

Since S(j )
r+M = S(j )

r , the index r + nα can be taken mod M to
lie between 1 and M . Because λ/a = M/|n| � 1, |ni | � M

and

S(2)
r+ni

− S(2)
r−ni

≈ ni

(
S(2)

r+1 − S(2)
r−1

)
, (9)

with corrections of order δ3 ∼ 10−7. This leads to the simpler
form [34]

1

N
HD1 = D1|n|

2M
y′ ·

M∑
r=1

{
S(1)

r × (
S(2)

r+1 − S(2)
r−1

)}
. (10)

Hence, the first DM interaction produces a cycloid in the x′-z′
plane for any wave vector q ‖ x′.

The second DM interaction can be similarly written
as [28,33]

1

N
HD2 = 3D2

M
z′ ·

M∑
r=1

(
S(1)

r × S(2)
r

)
, (11)

which rotates alternate layers of spins about the z′ axis and tilts
the cycloid out of the x′-z′ plane.

Neither of these DM interactions fixes the orientation of q
along a threefold axis in zero field! By replacing H′ with H in
order to set the domain wave vectors q free from the threefold
axis, we have eliminated all sources of anisotropy within the
hexagonal plane. To remedy that deficiency, we must add an
additional term to the Hamiltonian that breaks the threefold
symmetry in the hexagonal plane perpendicular to z′.

TABLE I. Reference frames of BiFeO3.

Unit vectors Description and values

{x,y,z} Pseudocubic unit vectors
x = [1,0,0], y = [0,1,0], z = [0,0,1]

{x′,y′,z′} Rotating reference frame of cycloid
x′ ‖ q, z′ = [1,1,1], y′ = z′ × x′

{X,Y,Z} Fixed reference frame of hexagonal plane
X = [1,0,−1], Y = [−1,2,−1], Z = [1,1,1]

III. ANISOTROPY ENERGIES

Because {x′,y′,z′} already provides the reference frame
for the cycloid, which can rotate in the plane perpendicular
to z′, we define X = [1,0,−1] and Y = [−1,2,−1] as fixed
axis in the hexagonal plane. Of course, Z = X × Y = [1,1,1]
coincides with z′ and lies along P. The three reference frames
are summarized in Table I.

The lowest-order anisotropy energy of BiFeO3 was included
in the “canonical” model:

HK1 = −K1

∑
i

S2
iZ. (12)

The two next-order anisotropy terms consistent with the
rhombohedral symmetry [35] of BiFeO3 are

HK2 = −1

2
K2

∑
i

SiZ

×{(SiX + iSiY )3 + (SiX − iSiY )3}, (13)

HK3 = −1

2
K3

∑
i

{(SiX + iSiY )6 + (SiX − iSiY )6}. (14)

Whereas K1 is of order l2 |J1| in terms of the dimensionless
spin-orbit coupling constant l, K2 and K3 are of order l3 |J1|
and l4 |J1|, respectively [36,37]. These three terms have clas-
sical energies

EK1 = 〈HK1〉 = −S2K1

∑
i

cos2 θi, (15)

EK2 = 〈HK2〉 = −S4K2

∑
i

cos θi sin3 θi cos 3φi, (16)

EK3 = 〈HK3〉 = −S6K3

∑
i

sin6 θi cos 6φi, (17)

where the spin

〈Si〉 = S{cos φi sin θi X + sin φi sin θi Y + cos θi Z} (18)

is given in the fixed reference frame defined above.
Other anisotropy energies S2K ′

1

∑
i sin2 θi cos 2φi and

S4K ′
2

∑
i sin4 θi cos 4φi vanish for the R3c crystal structure

of BiFeO3 [35,38].
For the distorted cycloid of the “canonical” model, both EK1

and EK3 are nonzero. Because the cycloid is mirror symmetric
about Z = 0, the summation in EK2 vanishes. Therefore,
EK2 will distort the cycloid to reduce the energy by order
−(K2)2/|J1|. Since EK2/EK3 ∼ l2 � 1, EK2 can be neglected
as a source of threefold symmetry breaking compared to EK3 .
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IV. MAGNETIC FIELDS

In this section and the next, we neglect the effects of
domain pinning. The behavior of the domain wave vectors in
an external field is then completely determined by the model
developed above. The effects of pinning will be examined in
Sec. V.

For K3 > 0, EK3 favors spins that lie along one of the
three threefold axes φi = 0 and ±2π/3. With this additional
anisotropy, the wave vectors qk rotate away from the threefold
axis with increasing field when the field does not itself lie
perpendicular to a threefold axis.

A. Field along a threefold axis or m = X

First take the field along a threefold axis such as X in
Fig. 1. Assuming that the system has been cooled from high
temperature in zero field, all three domains with wave vectors
qk will be equally occupied. But, in large field, we expect that
the stable domain will have wave vector q′ parallel to Y and
perpendicular to m. For K3 = 10−6 meV, the energy E = 〈H〉
is evaluated for several different wave vectors at each field.
Defining E0 as the energy for K3 = 0 and B = 0, results for
�E = E − E0 are presented in Fig. 2.

At zero field,�E is minimized when x′ lies along a threefold
axis. Since m = X is itself a threefold axis, minima appear
when |m · x′| = 1 or 1

2 . With increasing field, the minimum at
|m · x′| = 1 (x′ ‖ m) increases in energy so that this solution is
only metastable. The stable solutions rotate from |m · x′| = 1

2
towards 0.

In addition to the critical field marking the transition into
the CAF phase, we identify two lower critical fields. Below
Bc1 ≈ 4.6 T, the minima at |m · x′| = 1 survive so that the
domain with wave vector along m remains metastable. Above
Bc1, that metastable domain disappears. As the field increases,
the wave vectors of the stable domains rotate towards the
orientation Y ⊥ m. In the absence of domain pinning, that
rotation is complete at Bc2 ≈ 5.5 T.

For each field, the dependence of energy on m · x′ can be
described by a sixth-order polynomial with even terms only.
Based on the polynomial fits given by the solid curves in Fig. 2,
we obtain the minimum energy solutions for |m · x′| at each
field. We plot |m · x′|min versus field in Fig. 3. Above Bc2 ≈
5.5 T, q lies perpendicular to m and |m · x′|min = 0.

The critical fields are plotted against the threefold
anisotropy K3 [39] in Fig. 4(a). Both critical fields Bc1 and Bc2

and their difference Bc2 − Bc1 increase quite rapidly ∼√
K3

for small K3. We schematically sketch the dependence of the
satellite peaks on magnetic field and their energies in the insets
to Fig. 4.

B. Field perpendicular to a threefold axis or m = Y

When the field lies along Y, the orientation of the stable
domain does not change with field, i.e., domain 2 with x′ =
[1,0,−1] ⊥ m or m · x′ = 0 is always stable. But as seen in
Fig. 5, domains 1 and 3 with x′ = [0,1,−1] and [1,−1,0] or
|m · x′| = √

3/2 are metastable for small fields and become
unstable at high fields.

As in the previous subsection, �E/N can be fit by a
sixth-order polynomial in m · x′ (even terms only). WhenK3 =

FIG. 2. The energy �E/N versus wave vector |m · x′| for K3 =
10−6 meV and field ranging from 0 to 6 T along X. Solid curves are
fits to a sixth-order polynomial in |m · x′|.

10−6 meV, domains 1 and 3 are metastable below Bc1 ≈ 3.1 T.
With increasing field, the orientations x′ of the metastable do-
mains rotate slightly towards the threefold axis perpendicular
to m, as seen in the top curve of Fig. 3. At Bc1, |m · x′| = √

2/2
so that the domain wave vectors q have rotated from θ = ±π/6
away from Y at zero field to ±π/4 away from Y at Bc1 (al-
though pinning will change this conclusion). Because the wave
vector for domain 2 is already perpendicular to m at zero field,
Bc2 = 0.

The dependence of Bc1 on K3 is shown in Fig. 4(b) [39].
Once again, Bc1 scales like

√
K3 for small K3.
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FIG. 3. The wave vector |m · x′|min for stable (m = X, squares)
and metastable (m = Y, circles) domains versus field with K3 =
10−6 meV.

V. PINNING

The effects of pinning are essential to understand the
behavior of the cycloidal domains in a magnetic field. Evidence
for pinning was provided by recent SANS measurements [25].
For m = X, the wave vectors of the stable x′ = [1,−1,0]
and [0,−1,1] domains remain unchanged up to about 5.5 T,
above which they rotate towards Y ⊥ m. For m = Y, the wave

FIG. 4. (a) The critical fields Bc1 and Bc2 versus threefold
anisotropy K3 for m = X. (b) The critical field Bc1 versus K3 for
m = Y. Insets schematically show the dependence of the satellites on
field and their energies.

FIG. 5. The energy �E/N versus wave vector |m · x′| for K3 =
10−6 meV and field ranging from 0 to 4 T along Y. Solid curves are
fits to a sixth-order polynomial in m · x′.

vectors of the metastable x′ = [1,−1,0] and [0,−1,1] domains
rotate towards X ⊥ m above about 5 T.

In a ferromagnet, domain pinning is caused by struc-
tural defects that locally change the exchange interactions
and anisotropies, creating a complex energy landscape with
barriers between different orientations of the magnetization
M = 2μB〈Si〉 [40]. No doubt, these effects are also impor-
tant in cycloidal spin systems. But, the charge redistribution
determined by the cycloidal wave vector q may be even
more important. Due to the strong magnetoelastic coupling
in BiFeO3 [32,41], this charge redistribution is pinned by
nonmagnetic impurities. Although the total magnetoelastic
energy is independent of q (see Appendix), the distortions
εxx , εyy , and εzz of the rhombohedral structure separately
depend on the wave-vector orientation. In order to rotate q,
the magnetic field must drag this lattice distortion, pinned by
nonmagnetic impurities, through the crystal. Of course, this
charge redistribution is absent in a collinear AF.

The susceptibility χ⊥ for B ‖ y′ or perpendicular to the
plane of the cycloid is much larger than the susceptibility
χ‖ for B within the cycloidal plane [19]. So, the induced
magnetization can be approximated by M = χ⊥B⊥ where B⊥
is the component of B along y′. The external field B = B⊥ + B‖
plays two roles: B⊥ produces the perpendicular magnetization
M and B‖ exerts a torque τ = M × B on M.

A. Microscopic model

To connect these considerations with our microscopic
model, Fig. 6 replots �E/N versus ψ = cos−1(m · x′) while
setting �E/N = 0 at m · x′ = 0 or ψ = π/2. Using the angle

014405-5



RANDY S. FISHMAN PHYSICAL REVIEW B 97, 014405 (2018)

FIG. 6. The energy �E/N versus angle ψ = cos−1(m · x′) with
�E set to zero at m · x′ = 0 or ψ = π/2 for (a) m = X and
(b) m = Y, both with K3 = 10−6 meV. Dashed vertical lines are at
ψ = π/3 and π/6, respectively. Insets plot the derivative ε versus ψ .
The dashed-dotted curve in (a) is a fit of the energy �E/N to second
order in m · x′ = cos ψ .

definitions in Fig. 7, note that ψ = θ for m = X and ψ =
φ = π/2 − θ for m = Y. We propose that a domain is pinned
until the downward slope ε = −d(�E/N)/dψ exceeds the
threshold εpin > 0. For m = X, ε decreases with ψ in the
neighborhood of ψ = π/3, as seen in the inset to Fig. 6(a). As
ψ increases, larger fields are required to fulfill the condition
ε > εpin. A similar result is found for m = Y near ψ = π/6,

FIG. 7. The magnetization and the cycloidal x′ and y′ axes for
domain 3 with (a) m = X and (b) m = Y. Also shown are angles θ

and φ = π/2 − θ .

as seen in Fig. 6(b). In both cases, ψ satisfies the depinning
condition ε = εpin as the field increases.

In the limit of strong pinning, the condition ε = εpin can
be solved exactly. For large fields, the anisotropy can be
ignored and �E/N = −MB sin ψ . To linear order in the
field, M = χ⊥B sin ψ so that �E/N = −χ⊥B2 sin2 ψ and
ε = χ⊥B2 sin 2ψ .

For m = X, the energy�E/N is fairly well described by the
form given above ∝ sin2 ψ at high fields, as seen by the dashed-
dotted curve in Fig. 6(a) for 6 T. This agreement improves with
increasing field. Consequently, ε ∝ sin 2ψ is close to the form
in the inset to Fig. 6(a) near ψ = θ = π/3 or φ = π/6. So for
strong pinning, φ satisfies the condition

sin 2φ =
√

3

2

(
Bpin

B

)2

, (19)

where the pinning field Bpin
2 = 2εpin/

√
3χ⊥ is defined so that

φ = π/6 when B = Bpin.
For m = Y, the expression ε ∝ sin 2ψ is not satisfied until

fields far above Bc1. Hence, the simplified expression of
Eq. (19) cannot be applied when m = Y and ψ = φ = π/6.
Consequently, the depinning condition ε = εpin must be solved
numerically.

Nonetheless, we can still draw some qualitative conclu-
sions. The inset to Fig. 6(b) indicates that domains 1 and 3
become unstable when ε > 0 for ψ = φ = π/4. So, in the
absence of pinning, ψ will grow from π/6 in zero field to π/4
at Bc1, in agreement with Fig. 3. Taking pinning into account,
there are two possible ways for domains 1 and 3 to evolve with
field. If Bpin > Bc1, then the domains will disappear only after
becoming depinned at Bpin with ψ = π/6. If Bpin < Bc1, then
ψ will start rotating from π/6 towards π/4 above Bpin and stop
rotating at Bc1 with ψ < π/4. The rotation towards π/4 is not
then completed.

B. Landau-Lifshitz equation

Another way to approach pinning is through the Landau-
Lifshitz (LL) equation [42] for the time dependence of the
magnetization:

∂M
∂t

= −2μBτ + 2αμBM × τ , (20)

where τ = M × Beff is the torque and Beff is an effective field
that includes the effect of anisotropy. The first term in the
LL equation produces the precession of M about Beff and
the second term gives the damping of M as it approaches
equilibrium. The dimensionless parameter α is proportional
to the inverse of the relaxation time of the spins.

In the strong-pinning limit (see the discussion at the end
of this section), we can neglect anisotropy and set Beff = B.
Since M rotates within the X-Y plane, it can be written
M = M(cos ϕ X + sin ϕ Y) so that

τ = M × B = M{BZ(sin ϕ X − cos ϕ Y)

+ (BY cos ϕ − BX sin ϕ)Z}. (21)

The LL equation then gives

dϕ

dt
= −2μBBZ − 2αμBM(BY cos ϕ − BX sin ϕ)

= −2μBBZ − 2αμBτZ. (22)
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FIG. 8. With m = X, the evolution of the rotation angle φ for
domains 1 and 3 with field B normalized by Bpin. The solid curve is
for increasing field, the dashed lines are for decreasing or increasing
field. Inset shows that �E/N would have to rise with decreasing field
to keep its downward slope ε unchanged. For increasing field, �E/N

drops.

When m = X, ϕ = −φ, M = χ⊥B cos φ and

τZ = χ⊥B2

2
sin 2φ = ε

2
. (23)

Hence, the torque along Z and the energy derivative ε are sim-
ply related in the strong-pinning limit. Ignoring the precession
of M about Z induced by BZ , the relaxation of φ towards
equilibrium within the X-Y plane is determined by τZ = ε/2.

Pinning in a ferromagnet is described by an effective field
[26,27] that opposes the applied field, both along M. In the
strong-pinning limit of a cycloidal spin system, the external
torque τ along Z is opposed by a pinning torque with maximum
magnitude τpin. The conditions τZ = τpin and ε = εpin are then
equivalent. In terms of τpin, the pinning field is given by Bpin

2 =
4τpin/

√
3χ⊥.

For m = X, Eq. (19) is solved for φ as a function of B/Bpin

in Fig. 8. As shown in the next section, Eq. (19) can be refined
by expanding χ⊥ in powers of B2 cos2 φ. Since φ never reaches
0, Bc2 = ∞.

Because the charge redistribution evaluated in the Appendix
only depends on the direction of q, τZ does not depend on
the interior details of the cycloid such as its period or higher
harmonics, but only on the magnetization M induced by B⊥.

For m = X, experiments [25] observe pinning when B is
lowered from Bpin but not as it is raised. This can be easily
explained based on our model. For a fixed slope ε = εpin,
�E/N ∝ cos2 θ/ sin 2θ decreases with increasing θ � π/3,
as shown in the inset to Fig. 8. So, when B is raised from Bpin,
φ = π/2 − θ relaxes to a smaller value with lower energy.
But, when B is lowered from Bpin, φ would have to take a
larger value with higher energy to satisfy the condition ε = εpin

or τZ = τpin. This process is energetically prohibited at low
temperatures. The pinning of domains with decreasing field is
shown by the dashed lines in Fig. 8. When the field is ramped
up again with this value of φ, q will only start rotating towards
smaller values of φ when the condition given by Eq. (19) is
reached at the solid curve.

FIG. 9. A comparison of model predictions with experimental
data [25]. The angle φ does not change until B exceeds 5.6 T. We
set Bpin = 5.6 T and γ = 0 (solid line), 0.2 (long dashed line), or 0.4
(short dashed line).

VI. RESULTS

Let us use these ideas to examine the experimental results
for BiFeO3. We separately discuss the two cases for field along
X or Y examined in Sec. IV.

First, take m = X as in Sec. IV A. Since domain 2 with
q2 ‖ m becomes unstable when B > Bc1 ≈ 7 T [25], the
dependence of Bc1 on K3 from Fig. 4 implies that K3 ≈
3.65 × 10−6 meV. The pinning field Bpin ≈ 5.6 T for domains
1 and 3 is estimated by comparing experimental results with
Eq. (19) plotted in the solid curve of Fig. 9. Experimental data
points are averaged over the four rotating satellites associated
with domains 1 and 3. Measurements by Bordacs et al. [25]
confirm that the wave vectors of domains 1 and 3 never become
fully perpendicular to m = X but that φ → 0 or θ → π/2 with
increasing field.

This model can be further refined by expanding χ⊥ in
powers of B2 cos2 φ. With b = B/Bpin,

χ⊥(b) = χ0 + χ2b
2 cos2 φ, (24)

where χ2 is the nonlinear susceptibility. This nonlinear term
includes the effects of higher harmonics [43] on the induced
magnetization. Defining γ = χ2/χ0, we numerically solve

b2{1 + γ b2 cos2 φ} sin 2φ =
√

3

8
(4 + 3γ ) (25)

with pinning field

Bpin
2 = 4√

3

τpin

χ0 + 3χ2/4
. (26)

The solutions to Eq. (25) with γ = 0.2 and 0.4 are plotted in the
dashed curves of Fig. 9. Evidently, a small value for γ further
improves agreement with the measurements. As mentioned
above, the dependence of φ on field given by Eq. (25) may
only be approached at large fields if the condition for the strong-
pinning limit is not met at Bpin.

Now, take m = Y as in Sec. IV B. Then, domain 2 with q2 ⊥
m is always stable. Unfortunately, the rotation of domains 1 and
3 cannot be treated in the strong-pinning limit. In particular,
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Bpin may differ from the earlier result for m = X. Experiments
with m = Y indicate that domains 1 and 3 rotate by about 9◦
before disappearing between 6 and 7 T. This implies that the
second scenario discussed above with Bc1 > Bpin is applicable.
As expected, ψ = φ has only increased to about 39◦ < 45◦ at
Bc1. But for K3 = 3.65 × 10−6 meV, Fig. 4(b) predicts that
Bc1 ≈ 5.6 T, which is below the range of observed values
where the domains disappear. This discrepancy can possibly
be explained by a slight misalignment of the field out of the
X-Y plane.

Since τpin depends on the concentration and distribution
of nonmagnetic impurities, it may also change in different
samples. Because the samples used in the spectroscopy [16]
and SANS measurements [25] come from different sources,
their pinning torques may be different as well. Based on the
relative purities of these two samples, Bpin may be larger
than indicated above for the sample used in the spectroscopy
measurements. The observed spread [25] in wave vectors q1

and q3 near Y for m = X also suggests that the pinning torque
τpin varies from one domain to another throughout the sample
used in the SANS measurements. Unlike τpin, Bc1 is determined
by the relative energies of different domain wave vectors q and
is independent of sample quality.

The “strong-pinning” limit is reached when the anisotropy
K3 makes a negligible contribution to the energy compared
to the pinning field Bpin. Considering the contributions of the
magnetic field and the anisotropy to the energy, the strong-
pinning limit requires that BpinM � 2S6K3 or

Bpin
2 � 2S6K3

χ⊥
. (27)

Using the definition of Bpin in terms of the pinning torque
τpin, the strong-pinning limit requires that τpin � √

3S6K3/2.
Taking K3 = 3.65 × 10−6 meV and χ⊥ from measurements
[3], these conditions require that Bpin � 2.5 T and τpin �
0.77 μeV.

Even for small Bpin, the strong-pinning limit can be reached
when the field is sufficiently large that it dominates the energy.
This condition is given by Eq. (27) with B replacing Bpin. So,
independent of Bpin, Eq. (19) for the dependence of φ on field
is approached when B � 2.5 T.

VII. DISCUSSION

This work resolves all of the discrepancies with earlier
measurements listed in the Introduction. Not too close to the
poles at ±z′, the critical field Bc3 > 16 T above which the
CAF phase becomes stable does not sensitively depend on the
azimuthal angle ζ because q is then nearly perpendicular to
m. This explains the earlier discrepancy with measurements
by Tokunaga et al. [23]. For any ζ , Ref. [22] then predicts that
Bc3 will increase monotonically as the polar angle ϑ decreases
from π/2 at the equator to zero at the poles.

Because it couples to the wave-vector orientation but not to
the individual spins, the strain does not directly affect the spin
dynamics. However, it may be necessary to slightly raise K1 to
compensate for the effect of K3, which favors the spins lying
in the X-Y plane [44]. Since the total magnetoelastic energy
is independent of q, it does not alter the relative energies of
different wave vectors in Figs. 2 and 5. Measurements of the

lattice strain in a magnetic field along a threefold axis like X
can test this hypothesis.

How does our estimate for K3 in BiFeO3 compare with
that in other materials? The constant K3 can be estimated
from the angular dependence of the basal-plane magne-
tization or the torque. For Co2Y (Y = Ba2Fe12O22) and
Co2Z (Z = Ba3Fe24O41), K̃3 ≡ S6K3/Vc ≈ 600 erg/cm3

and 1500 erg/cm3, respectively [45] (Vc is the volume for
one magnetic ion). For pure Co, K̃3 ≈ 1.2 × 105 erg/cm3 [46].
Anisotropy energies are much larger for the rare earths than for
transition-metal oxides [47]. While K̃3 ≈ 6300 erg/cm3 for
Gd, it is about 1000 times higher for the heavier rare earths Tb,
Dy, Ho, Er, and Tm. By comparison, K3 = 3.65 × 10−6 meV
for BiFeO3 corresponds to K̃3 = 2.4 × 104 erg/cm3, about
four times larger than for Gd but smaller than for pure Co.

Our discussion of domain pinning was motivated by previ-
ous results for ferromagnets. For a ferromagnet, thermally ac-
tivated creep [48] allows the domain walls to move even when
B < Bpin. It seems likely that a similar effect in BiFeO3 allows
the domains to rotate at nonzero temperature even when τZ <

τpin or ε < εpin. Another interesting question is how the domain
pinning depends on the rate of change of the magnetic field.

We conclude that the “canonical” model of BiFeO3 must
be augmented by threefold anisotropy and magnetoelastic
energies in order to explain the field evolution of a domain
when q is not perpendicular to m. Over the past decade,
our understanding of BiFeO3 has greatly expanded but so
have the number of new mysteries to be solved. At least at
low temperatures, we believe that the modified Hamiltonian
presented in this work can be used to study the manipulation
of multiferroic domains by magnetic and electric fields.
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APPENDIX: MAGNETOELASTIC COUPLING

This Appendix describes the effects of the magnetoelastic
coupling in BiFeO3. The magnetoelastic energy is given by

1

V
Hme = 1

2c11(εxx
2 + εyy

2 + εzz
2)

+ c12(εxxεyy + εyyεzz + εzzεxx)

+ g

N

∑
i

{εxxSix
2 + εyySiy

2 + εzzSiz
2}, (A1)
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where c11 and c12 are the elastic coupling constants, g is
the magnetoelastic coupling strength, and εii are the strain
components.

Minimizing this energy with respect to the strain compo-
nents yields

εxx = − g

F
{(c11 + c12)M2x − c12(M2y + M2z)}, (A2)

εyy = − g

F
{(c11 + c12)M2y − c12(M2x + M2z)}, (A3)

εzz = − g

F
{(c11 + c12)M2z − c12(M2x + M2y)}, (A4)

where

M2α = 1

N

∑
i

〈Siα
2〉 (A5)

and F = (c11 + 2c12)(c11 − c12). In terms of these variables,
the magnetoelastic energy Eme = 〈Hme〉 is given by

1

N
Eme = −g2 V

2N

c11 + c12

F
{M2x

2 + M2y
2 + M2z

2}

+ g2 V

N

c12

F
{M2xM2y + M2xM2z + M2yM2z}, (A6)

where V/N = a3.

Transforming M2α into the local reference frame of the
cycloid, we find

M2α = qα
2

|q|2 M2x ′ + 1

3
M2z′ , (A7)

which uses M2y ′ ≈ 0. For weak anisotropy, M2x ′ ≈ M2z′ =
S2/2 and

1

N
Eme = −g2S4

4F

V

N
(3c11 − 2c12), (A8)

which is independent of q.
However, the individual strain components

εαα = −gS2

2F

{
qα

2

|q|2 (c11 + 2c12) + 1

3
(c11 − 4c12)

}
(A9)

do depend on q. In fact, roughly 75% of the strain depends on
the wave-vector orientation. Impurities clamp this lattice strain
within the sample. Because the magnetic field must drag this
distortion while rotating the cycloidal wave vector q, impurities
pin the orientation of the wave vector at low fields. Note that
the volume change

�V

V
= εxx + εyy + εzz = − gS2

c11 + 2c12
(A10)

is independent of the wave-vector orientation.
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