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Quantization of band tilting in modulated phononic crystals
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A general theory of the tilting of dispersion bands in phononic crystals whose properties are being slowly and
periodically modulated in space and time is established. The ratio of tilt to modulation speed is calculated, for
the first time, in terms of Berry’s phase and curvature and is proven to be a robust integer-valued Chern number.
Derivations are based on a version of the adiabatic theorem for elastic waves demonstrated thanks to WKB
asymptotics. Findings are exemplified in the case of a 3-periodic discrete spring-mass lattice. Tilted dispersion
diagrams plotted using fully numerical simulations and semianalytical calculations based on a numerically gauge
invariant expression of Berry’s phase show perfect agreement. One-way blocking of waves due to the tilt, and
ultimately to the breaking of reciprocity, is illustrated numerically and shown to be highly significant across a
limited number of unit cells, suggesting the feasibility of experimental demonstrations. Finally, a version of the
bulk-edge correspondence principle relating the tilt of bulk bands to the number of one-way gapless edge states
is demonstrated.
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I. INTRODUCTION

The adiabatic theorem is a classical result of quantum
mechanics [1,2]. It applies to the Schrödinger equation and
states that in an infinitely slow evolution of the Hamiltonian, a
state, initially aligned with a given eigenstate, remains, at later
times, in the same eigenstate and evolves solely by acquiring
a phase factor. A careful analysis of the theorem carried by
Berry [3] led him to break the phase factor gained during the
adiabatic evolution into two parts, the second of which, later
termed “Berry’s phase,” turned out to be a concept with deep
implications in solid state physics [4].

It is perhaps only natural that the introduction of an adiabatic
theorem for elastic waves was delayed so far. In comparison to
electronic systems where changing the underlying potential
is common practice using electric or magnetic fields (see,
e.g., time-dependent perturbation theory and the working
principle of lasers [2]), a change in the constitutive properties
of an elastic medium such as its bulk modulus or mass
density does not seem to be easily obtained and controlled.
Recently, in conjunction with an increasing interest in breaking
reciprocity and time-reversal symmetry, several techniques
for dynamically changing the constitutive properties of an
elastic medium have been identified. For instance, a giant
and reversible light-induced softening was reported to occur
in photosensitive network glasses [5], suggesting a way of dy-
namically controlling their bulk modulus [6]. Further, changing
voltage boundary conditions and ambient magnetic fields were
exploited to control the effective elastic properties in piezo-
electric materials [7–9] and magnetorheological elastomers
[10], respectively. Other techniques are purely mechanical
and trigger changes following a small-on-large scheme: large
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deformations applied to a nonlinear medium effectively modify
the underlying linearized properties for small overlay signals.
Thus, changing the contact angles between cylinders confined
in an array effectively alters the Young’s modulus of the array
[11,12], whereas shock waves guided in soft materials produce
a moving front of high mass density [13,14].

When these changes are periodic in space and in time,
the resulting medium is referred to as a modulated phononic
crystal and displays interesting wave phenomena that have no
counterpart in standard media [15–17]. Of particular relevance
to the present paper is the demonstrated ability of a modulated
phononic crystal to block and reflect waves if incident in a given
direction while transmitting the same wave forms if incident
in the opposite direction [6,18]. As a matter of fact, the gaps of
a modulated phononic crystal seem to be “tilted” with respect
to their reference configuration in a nonmodulated medium.
This tilt breaks the parity symmetry of the dispersion diagram
and transforms a two-way gap into a couple of one-way
gaps (Fig. 1). Despite the existence of several case studies,
a fundamental unifying theory characterizing tilts in a general
context and with systematic tools is lacking. Such a theory,
presented here, helps reveal salient features of tilts, robustness
in particular, in a way that can guide future experimental and
technological efforts.

The main purpose of the present paper is to characterize
and quantify the modulation-induced tilt of dispersion bands.
Specifically, we prove that the ratio of tilt to modulation speed
is a robust topological quantized quantity: it does not depend
on the detail of the space-time profiles of the constitutive
parameters and only relies on a couple of well-defined qual-
itative properties. Indeed, from recent contributions [19–21],
it can be inferred that said ratio is universally equal to 1 for
a class of continuous phononic crystals and metamaterials
whose properties depend on continuous space x and time
t through the unique combination x − V t , where V is the
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FIG. 1. A space-time modulation of constitutive parameters (here,
the bulk modulus κ) at speed V transforms a two-way band gap (a)
into two one-way band gaps (b) by tilting the nth dispersion band by
an angle αn.

modulation speed. Here, by adapting the adiabatic theorem
and the concept of Berry’s phase to elasticity, a general theory
of band tilting in arbitrarily modulated continuous or discrete
media is presented, provided that the modulation is slow.

II. THE ADIABATIC THEOREM FOR ELASTIC MEDIA

Consider the motion equation

∂t (M∂tu) = −Ku, (1)

where, in the context of modulated phononic crystals, u is
a displacement field and the mass and stiffness operators,
respectively M and K , are both T -periodic functions of time.
StiffnessK further depends on the Floquet-Bloch wave number
q. Although relatively abstract, the above equation has the
advantage of modeling elastic wave propagation in discrete
as well as in continuous media. One way to see it is to notice
that, regardless of the geometry of the underlying medium, by
applying a proper discretization method, say the finite element
method, we always end up with an equation of this form.

Associated with Eq. (1) is a set of (q,t)-dependent snapshot
eigenstates (ω2

n,�n) satisfying

ω2
nM�n = K�n, 〈�n,M,�m〉 = δnm, (2)

with δnm being the Kronecker symbol and the brackets denoting
the underlying Hermitian inner product. Then, for a given q, the
adiabatic theorem states that the nth Floquet-Bloch eigenmode
of Eq. (1) is

u(t) = 1√
ωn(t)

exp

[
−i

∫ t

0
[ωn(s) + γ̇n(s)]ds

]
�n(t), (3)

with Berry’s connection γ̇n given by

γ̇n = Im〈�n,M,�̇n〉, (4)

provided that ω2
n remains a nondegenerate eigenvalue at all

instants in time and that the modulation frequency ν = 2π/T

is sufficiently small in the sense

ν � min
m�=n

|ωn − ωm|. (5)

In particular, if the nth band is separated by gaps from bands
n ± 1 at t = 0, then it will remain so at all subsequent times.
If not, scattering from one band to another will occur and will
invalidate the theorem [19–21].

The proof of the foregoing result is based on WKB asymp-
totics and is detailed in Appendix A. Inspecting Eq. (3), it is
seen that a wave initially coinciding with the eigenmode �n(0)
remains at later times in the eigenmode �n(t). It gains nonethe-
less two phase factors, one of which is the usual

∫ t

0 ωn(s)ds

that reduces to ωnt in the absence of modulation and the other
being at the origin of Berry’s phase. Further, the transient wave
changes its amplitude inversely proportionally to

√
ωn: the

higher the frequency gets, the smaller the oscillations become.
Although not fundamentally new per se, the adiabatic

theorem is included here as it cannot be found elsewhere for
elastic waves. Similar results already exist in other physical
contexts with an identical mathematical structure, e.g., the
harmonic Schrödinger equation of a particle moving through
a potential slowly varying in space [1,2,22].

III. TILT OF ELASTIC BANDS

The nth Floquet-Bloch eigenfrequency of the modulated
medium, called �n, can be extracted from (3) by factoring out
all T -periodic quantities, leaving

�n = 1

T

∫ T

0
ωn(t)dt + γn

T
, (6)

where

γn =
∫ T

0
Im〈�n,M,�̇n〉dt (7)

is the elastic counterpart to the quantum mechanical Berry’s
phase. Thus, the nth eigenfrequency is averaged over a period
and shifted by an amount equal to Berry’s phase. Note that, rep-
resenting an angle, Berry’s phase is only well-defined modulo
2π . Similarly, �n is only well-defined modulo the modulation
frequency ν, an ambiguity predicted by the Floquet-Bloch
theorem. On the other hand, the phase factors eiγn and ei�nT

are well defined and uniquely valued.
The tilting of dispersion bands caused by a slow modulation

in a one-dimensional periodic medium can now be quantified.
Indeed, the tilt of the nth band is given by the ratio

αn ≡ �n(π/L) − �n(−π/L)

2π/L
, (8)

where ±π/L denote the right and left end of the Brillouin zone,
respectively, and L is the length of a unit cell. Given that ωn is
a periodic function of q, it has no effect on αn, so that the tilt
becomes

αn = V
γn(π/L) − γn(−π/L)

2π
, (9)

where V ≡ L/T is the modulation speed.
Unlike Berry’s phase, the tilt αn represents a swept angle

and admits thus a unique value. Said value of αn can further
be proven to be an integer multiple of the modulation speed V .
As a matter of fact, both ends of the Brillouin zone correspond
to the same physical configuration; hence, �n(π/L) and
�n(−π/L) can only differ by an integer multiple of ν, implying
that αn/V is an integer. This argument should not be abused
however: since the two ends of the Brillouin zone are physically
identical, one might be eager to conclude that the tilt vanishes
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systematically. But this is not necessarily the case in the same
manner that eia = eib does not necessitate a = b.

The quantization of αn/V implies that this ratio is a robust
topological quantity: continuous, small or large, perturbations
in the underlying medium should induce continuous perturba-
tions in αn/V except that, being integer-valued, αn/V cannot
vary continuously other than by remaining constant. This
holds as long as our working hypothesis of no degeneracies
is respected. Conversely, a perturbation that leads to a change
in αn/V is one that cannot be completed while avoiding the
appearance of degeneracies.

IV. NUMERICAL GAUGE INVARIANCE

Evaluating the shifted eigenfrequencies through (6) whether
analytically or numerically is not a straightforward matter.
Indeed, expression (4), based on which �n is calculated, is
only valid if the plugged-in �n is smooth with respect to t .
Yet, determining a smooth single-valued expression for �n

over [0,T ] can be troublesome [3]. It is therefore of interest to
find an alternative expression of �n, and ultimately of Berry’s
phase, that can be evaluated with an arbitrary choice of �n,
be it smooth or not with respect to t . Such expressions are
qualified as “numerically gauge-invariant” in the sense that,
even when discretized, they remain insensitive to the choice of
�n. As such, numerically gauge-invariant expressions are well
suited for numerical evaluation.

Thus, following a method attributed to Resta [23], one is
encouraged to rewrite Berry’s phase as the limit

γn = lim
N→∞

arg
∏

r

〈�n(t r ),M(t r ),�n(t r+1)〉, (10)

where {t r , r = 1 . . . N} constitutes a discretization of [0,T ]
with a step of the order of T/N ; see Appendix B for a short
proof. Remarkably, the evaluation of the above expression is
insensitive to the smoothness of �n since substituting �n with
�ne

iβ , for arbitrary real-valued nonsmooth β, produces no net
effect.

For the same reasons, guided by the original work of Berry
[3], the expression of the tilt is transformed into

αn = V

2π

∫∫
T

Bndqdt, (11)

where T is the torus [−π/L,π/L] × [0,T ] and

Bn = 2 Im
∑
m�=n

〈�n,∂qK,�m〉〈�m,K̇ − ω2
n+ω2

m

2 Ṁ,�n

〉
(
ω2

n − ω2
m

)2 (12)

is Berry’s curvature. A derivation is detailed in Appendix C.
The above equation is a slight generalization of the one derived
by Berry [3] as it takes into account a nonidentity parameter-
dependent (here, time-dependent) mass operator. Further, as
the integral of a Berry’s curvature over a closed surface, the
ratio αn/V provides novel insight into how topological features
described by a Chern number can manifest [4,24,25]. When
the crystal has a finite number of bands, the sum of Berry’s
curvature over all bands is zero,

∑
n Bn = 0, implying the

remarkable result that the sum of all tilts vanishes identically.
In particular, in a discrete lattice, the sum of all tilts is

systematically null. For crystals with an infinite number of
bands, the sum need not vanish [19].

Last, the expression of the tilt in terms of Berry’s curvature
allows one to refine the result on robustness. For instance,
assuming ωn indefinitely approaches ωn+1, tilts αn and αn+1

are no longer well defined as Bn and Bn+1 become singular
and diverge. Nonetheless, Bn + Bn+1 remains nonsingular.
This generalizes immediately and implies that the sum of tilts∑

m<k�n αk/V of all bands between gaps number m and n is
invariant and immune to perturbations as long as these gaps
remain open even when intermediary gaps close.

V. EXAMPLE: 3-PERIODIC LATTICE

Consider the spring-mass lattice of Fig. 2 whose unit cell
contains three constant masses of values mi connected through
three springs of time-dependent T -periodic constants ki ≡
ki(t), i = 1, 2, and 3. Constancy of the masses is not required
but is assumed for simplicity, whereas the ki are taken to be
sine waves of the form

ki(t) = k + δk cos(νt + θi), δk > 0. (13)

The governing motion equation then takes the form (1) where
u is a 3 × 1 column vector composed of the displacements of
the masses within one unit cell and with

K =
⎡
⎣k3 + k1 −k1 −k3Q

∗
−k1 k1 + k2 −k2

−k3Q −k2 k2 + k3

⎤
⎦,

M =
⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦. (14)

Therein, Q = eiq is a phase factor function of the nondimen-
sional Floquet-Bloch wave number q ∈ [−π,π ].

The snapshot eigenstates (ω2
n,�n) can be calculated by

solving the now 3 × 3 eigenvalue problem (2) using standard
numerical routines. Shifts and tilts were calculated through
fully numerical transient simulations based on a space-time
finite difference method [19,20] as well as using the semi-
analytical numerically gauge-invariant formulas (11) and (6)
combined with (10). Results are plotted in Fig. 3(a) and
show perfect agreement. The parameters used are m1 = m2 =
m3 = m = 1 g; k = 5 × 105 N/m; δk = 0,5k; ω0 = √

k/m =
22,3 kHz; ν = 0,1 ω0; θ1 = π ; θ2 = π/2; and θ3 = 0. Due to
the modulation-induced tilt, a directional band gap is visible

FIG. 2. A modulated 3-periodic spring-mass lattice (a) and two
examples of time profiles of its spring constants: sinusoidal (b) and
triangular (c). A unit cell is framed in dashed lines.
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FIG. 3. On (a): Dispersion diagrams of a 3-periodic sinusoidally
modulated phononic crystal calculated numerically (blue level sets)
and semianalytically using Berry’s phase (red dashed lines). Band
tilting is visible in comparison to the average snapshot dispersion
diagram (solid black lines). Floquet-Bloch replicas are dismissed for
clarity. On (b): The second dispersion branch under a sinusoidal mod-
ulation (dashed line) compared to that under a triangular modulation
(solid line). Although different, both bands feature the same tilt.

around the frequency ω0. Transient simulations of the waves
emitted by a loading with a narrow band centered on that
frequency reveal a significant left/right bias. The waterfall plots
of Fig. 4 show that emitted waves travel to the left almost
exclusively.

FIG. 4. Waterfall plots of u1(t) in arbitrary units for every other
unit cell, indexed with #UC, generated by a narrow-band loading
applied at the center of a sample composed of 81 unit cells.

FIG. 5. Phase diagrams of model (13) illustrating the array of tilts
(α1/V,α2/V,α3/V ) as a function of phase delays (θ1,θ2,θ3) in panel
(a) and of masses (m1,m2,m3) in panel (b) interpreted as barycentric
coordinates in the planes {θ1 + θ2 + θ3 = 2π, m1 = m2 = m3 = m}
and {m1 + m2 + m3 = 3m, θ1 = 4π/3, θ2 = 2π/3, θ3 = 0}, respec-
tively. Three arrays are accessible, ±(1,−2,1) and (0,0,0). Tilts are
not defined over the dashed lines where degeneracies occur.

The array of tilts (α1/V,α2/V,α3/V ) realized in the above
example is (1,−2,1). In fact, in a discrete medium, for
which the number of bands is finite and the sum of all tilts
vanishes, it is impossible to impart the same nonzero tilt to
all bands. In contrast, a uniform tilt in the dispersion diagram
of a continuous medium can be obtained by modulating the
constitutive parameters in a translationlike manner [19]. That
is, the spatial profile of a given constitutive parameter at any
instant in time is identical to that at any other instant in time
up to a spatial translation. A discrete medium cannot support
such modulations.

Assuming a modulation of the form (13), only three
arrays of tilts, namely ±(1,−2,1) and (0,0,0), are accessible
depending on the relative values of the phase delays θi and
masses mi , i = 1, 2, and 3 [see Fig. 5 for the corresponding
phase diagrams]. The array (0,0,0) is also trivially accessible
by suppressing the modulation. Other tilts cannot be obtained
without modulating the masses as well. Figures 5(a) and 5(b)
further illustrate the robustness of the tilt: being constant across
large regions, the tilt is insensitive to uncertainty in the phase
delays and in the values of the masses except near critical
lines where phase transitions occur. This generalizes to other
forms of uncertainty. For instance, changing the sinusoidal
modulation into a triangular one [Figs. 2(b) and 2(c)], leaving
unchanged the other parameters, perturbs the dispersion dia-
gram but ultimately has zero influence on the tilts [Fig. 3(b)].

VI. BULK-EDGE CORRESPONDENCE

Other than band tilting, nonzero Chern numbers suggest
the existence of one-way edge modes in the space-frequency
plane of (n,ω) according to the principle of bulk-edge corre-
spondence [12,25–27]. Hereafter, the principle is exemplified,
then proven.

A. Example of bulk and edge snapshot spectra

Let us free a finite sample of the infinite 3-periodic
modulated medium investigated above. Under free boundary
conditions, snapshot eigenmode analysis reveals the existence
of edge states within the bulk band gaps at some instants
in time [see Fig. 6(a)]. The evolution of a snapshot edge
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FIG. 6. (a) Snapshot normalized eigenfrequencies of a finite slab of a 3-periodic modulated medium composed of 60 masses under free
boundary conditions. Two band gaps are visible and are traversed by the eigenfrequencies of edge states. The edge states within the first gap at
t = 0,7T and t = 0,8T are labeled b–e and their spatial profiles are plotted in panels (b)–(e), respectively, where n is the mass index and u is
displacement in arbitrary units. The oriented loop indicates the order in which the states appear with time. (f) The cycle b-e-d-c illustrated as a
one-way edge state in the (n,ω)-space.

eigenmode goes through four states that constitute a periodic
cycle illustrated in Figs. 6(b)-6(e). Starting with state b which
is localized at the left edge, the frequency shifts down and state
b transforms into state e. As the frequency decreases further
into the first passing band, state e relocalizes in the bulk and
then transforms into state d localized at the right edge. As the
frequency increases now, state d transforms into state c which,
by a similar mechanism, transforms into state b, and so on.

In the (n,ω)-space, the described cycle corresponds to a one-
way edge state moving anticlockwise (see Fig. 6). Therein, the
left and right boundaries correspond to the free boundaries of
the sample, whereas the top and bottom boundaries correspond
to the boundaries of the first bulk band gap. Note however that
the cycle b-e-d-c does not represent the transient propagation
of a physical signal; only b-e and d-c do. As a matter of fact, b-e
and d-c transitions are adiabatic, meaning that parameter t can
be identified with real time and snapshot states are identical
to transient states by the adiabatic theorem proven above.
On the other hand, transitions c-b and e-d are not adiabatic
since, according to Fig. 6(a), the gaps separating c and e from
the passing bands become vanishingly small, at which time
these states will be scattered into bulk modes. In that case,
parameter t no longer represents real time and snapshot states
and transient states will differ significantly.

In any case, the number of edge states moving anticlockwise
in the first gap, called s+

1 , is equal to α1/V = 1. As for the
second gap, there is a unique edge state moving clockwise (not
shown here): s−

2 = 1. Note also that α1/V + α2/V = −1. In
general, letting s±

n be the number of robust edge states going

anticlockwise (respectively, clockwise) in gap number n, it will
be proven that

s+
n − s−

n = 1

V

∑
k�n

αk. (15)

B. Number of robust edge states

Consider a band gap hosting �s ≡ s+
n − s−

n robust edge
states and imagine a continuous perturbation closing all gaps
except the one under consideration. Robustness means that
such a perturbation does not change �s. The resulting system
has a unique gap separating two bulk bands. Although not
necessary, it will be identified with a 2-periodic spring-mass
lattice which should allow one to gain deeper physical insight
[Fig. 7(a)]. Number �s can be counted by focusing on, say,
the right edge of a finite sample. But edge modes decay
exponentially so that, assuming the number of unit cells is
large enough, the sample can be considered infinite to the
left [Fig. 7(b)]. As for the boundary condition, it does not
influence �s by robustness. Thus, without loss of generality,
the boundary is fixed.

Calling m1,2 and k1,2 the masses and spring constants
within one unit cell, it is easy to check that a unique edge
mode exists when m1 = m2 and k1 < k2. Further, it has an
eigenvalue ω2 = (k1 + k2)/m2 and makes masses m2 oscillate
while all masses m1 remain at rest [Fig. 7(b)]. As m2 is
infinitesimally perturbed upwards, frequency decays, implying
that the edge mode is going clockwise, whereas if m2 is
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FIG. 7. Bulk-edge correspondence. (a) An example of a periodic modulation in a two-band system. In the region k1 < k2, m2 crosses m1

one time while increasing and zero times while decreasing so that N (m2 ↑ m1,k1 < k2) = 1, N (m2 ↓ m1,k1 < k2) = 0, and �s = −1. (b)
A semi-infinite sample with fixed boundary: an edge mode appears at t = t2 for which m1 = m2 and k1 < k2. Arrows and assigned values
correspond to normalized displacement magnitudes and show that every other mass is at rest. The decay rate is log(k1/k2) and the frequency is√

(k1 + k2)/m2. As m2 is increasing at t2, the frequency of the edge mode is decreasing. (c) The corresponding surface S : (q,t) �→ (X,Y,Z).
S wraps once around the origin covering a solid angle of −4π due to its orientation, meaning that α/V = −1.

perturbed downwards, frequency increases, implying that the
edge mode is going anticlockwise. In conclusion, counting the
number of times m2 decreases below m1 while k1 is smaller
than k2, denoted N (m2 ↓ m1,k1 < k2), and the number of times
m2 increases above m1 while k1 is smaller than k2, denoted
N (m2 ↑ m1,k1 < k2), one has

�s = N (m2 ↓ m1,k1 < k2) − N (m2 ↑ m1,k1 < k2). (16)

See Fig. 7(a) for an illustration. Next, the tilt of the acoustic
branch is calculated and proven to admit the same expression
as �s.

C. Tilt in a two-band system

The foregoing two-band model can be described by the
stiffness and mass matrices:

K =
[

k1 + k2 −k1 − k2Q
∗

−k1 − k2Q k1 + k2

]
, M =

[
m1 0
0 m2

]
.

(17)

Recall that m1,2 and k1,2 are T -periodic functions of time such
that the gap never closes. That is, k1 = k2 and m1 = m2 never
occur simultaneously. By a change of basis, � �→ √

M�, it is
possible to rewrite the stiffness and mass matrices as

K =
[
W + Z X − iY

X + iY W − Z

]
, M =

[
1 0
0 1

]
, (18)

with

W = k1 + k2

2

(
1

m1
+ 1

m2

)
, X = −k1 − k2 cos q√

m1m2
,

Y = k2 sin q√
m1m2

, Z = k1 + k2

2

(
1

m1
− 1

m2

)
.

Note that parameter W has no influence on the shape of the
eigenmodes and can be dropped with no loss of generality.
With these notations, thanks to the result of Berry [3], the tilt
of the acoustic branch α is equal to V/4π times the solid angle
of the surface S : (q,t) �→ (X,Y,Z) as seen from (0,0,0) in
the (X,Y,Z)-space [see Fig. 7(c)]. In other words, α/V = N ,

the number of times that S wraps around the origin. Surface
S being closed, α/V is quantized as expected and is invariant
upon rescaling (X,Y,Z) into

X = −k1

k2
− cos q, Y = sin q, Z = m2

m1
− 1. (19)

A cross section t = t0 of S is therefore a circle in a plane Z =
Z0 of center (−k1/k2,0), radius 1, and traversed clockwise.
Thus, it wraps around the origin once each time Z crosses 0
(or m1 crosses m2) while k1 < k2. Counting these occurrences
leads to the expression

α/V = N (m2 ↓ m1,k1 < k2) − N (m2 ↑ m1,k1 < k2). (20)

That is, α/V = �s.
In order to conclude, the perturbation reducing the original

system to a two-band system is undone. Meanwhile, the sum
of all tilts below gap number n remains invariant so that
α/V = ∑

k�n αk/V . This ends the proof of the bulk-edge
correspondence principle (15).

VII. CONCLUSION

The presented theory succeeds in providing three consistent
analytical expressions for the tilt in the dispersion diagram
of a modulated phononic crystal given the set of its snapshot
dispersion diagrams; the first as a Berry’s phase, the second as
a Chern number, and the third as the number of one-way edge
states. Band tilting accompanied by nonreciprocal phenomena
appears then as a novel consequence to bulk band topology.
Proven robustness, the parameters used in the simulations, and
the limited number of unit cells necessary for the observation
of the tilt-induced left/right radiation bias all lead us to believe
that an experimental demonstration of the phenomenon should
be within reach. Note last that topological aspects, although
qualitatively insightful, do not provide quantitative estimates
of the magnitude of the radiation bias, and further theoretical
efforts dealing with this issue are still needed.
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APPENDIX A: WKB ASYMPTOTICS

The motion equation in a linearly elastic solid takes the form

∂t (ρ∂tu) = ∇ · (C : ∇su). (A1)

Assuming spatial periodicity, applying the Floquet-Bloch
transformation yields

∂t (ρ∂tu) = (∇ + iq) · {C : [(∇ + iq)⊗u]}, (A2)

which can be put in the more condensed form (1). Given
that Eq. (1) holds as well for a discrete structure, it will be
taken as the starting point of the subsequent derivations which
are therefore valid for both continuous and discrete phononic
crystals.

First, recall that Eq. (1) admits a set of snapshot eigenstates
satisfying Eq. (2) so that the identity

〈∂t�n,M,�m〉 + 〈�n,∂tM,�m〉 + 〈�n,M,∂t�m〉 = 0 (A3)

holds by differentiation with respect to time.
Then, the motion equation is scaled into

∂t [M(εt)∂tu
ε(t)] = −K(εt)uε(t), (A4)

where focus is on the limit ε → 0 corresponding to an infinitely
slow evolution. Alternatively, upon the change of variables
t → t/ε, the above equation transforms into

ε2∂t [M(t)∂tu
ε(t)] = −K(t)uε(t). (A5)

The WKB ansatz

uε = Aεe−iφ/ε, Aε = A + εδA + · · · , (A6)

is known to be suitable for this type of equation and is used
hereafter [22]. In the new variables Aε and φ, the motion
equation becomes

KAε = − ε2[Ṁ(Ȧε − iφ̇Aε/ε) + M(Äε − 2iφ̇Ȧε/ε

− (φ̇)2Aε/ε2 − iφ̈Aε/ε)], (A7)

where ∂t is denoted as a superimposed dot to simplify reading.
Substituting (A6) into (A5) and keeping the leading order
terms, we get

KA = (φ̇)2MA. (A8)

Thus, [(φ̇)2,A] is a snapshot eigenstate (ω2
n,�n) for some n:

A ≡ An(t) ≡ an(t)�n(t), φ̇ ≡ φ̇n(t) = ±ωn(t). (A9)

Choosing φ(0) = 0 with no loss of generality, we obtain by
integration

φ ≡ φn(t) = ±
∫ t

0
ωn(t)dt. (A10)

Keeping first-order terms then gives

−
∑

φ̇m=φ̇n

KδAm =
∑

φ̇m=φ̇n

Ṁ(−iφ̇mAm)

+M(−2iφ̇mȦm − (φ̇m)2δAm − iφ̈mAm),

(A11)

where the summation is carried over all indices m yielding the
same eigenvalue φ̇n. When an eigenvalue is nondegenerate, the
sum contains a single term. Projecting onto the eigenvectors
�m, we obtain

ȧn = − φ̈n

2φ̇n

an +
∑

φ̇m=φ̇n

〈�̇n,M,�m〉 − 〈�n,M,�̇m〉
2

am,

(A12)

where we have used (A3) to get rid of terms containing Ṁ .
We need to point out here that in addition to the hypothesis
of slow evolution, a second implicit hypothesis is involved
in the foregoing derivation, which is that the multiplicity of
each eigenvalue is constant during the whole evolution. We
thus exclude crossings between eigenvalues: a situation where
ωn(t0) �= ωm(t0) and ωn(t1) = ωm(t1) is precluded.

Consider now a nondegenerate eigenvalue ωn, that is, an
eigenvalue that remains simple during the whole evolution.
Relation (A12) specifies into

ȧn = − φ̈n

2φ̇n

an + 〈�̇n,M,�n〉 − 〈�n,M,�̇n〉
2

an (A13)

and can be integrated, yielding

an(t) = an(0)

√
|φ̇n(0)|
|φ̇n(t)| exp

(
−i

∫ t

0
γ̇n(s)ds

)
, (A14)

with γ̇n given by (4)
Combining the foregoing results and dropping ε, the so-

lution u can be expressed, to leading order, according to (3),
concluding thus the proof of the adiabatic theorem.

APPENDIX B: RESTA’S FORMULA FOR BERRY’S PHASE

Following Resta [23], consider a discrete set of instants
in time t r covering [0,T ], say t r = rT /N , r = 1 . . . N . The
increment in Berry’s phase between t r and t r+1 is given by (4)
and reads

δr+1
r γn = Im〈�n(t r ),M(t r ),�n(t r+1) − �n(t r )〉. (B1)

Given that 〈�n(t r ),M(t r ),�n(t r )〉 = 1 is real, this becomes

δr+1
r γn = Im〈�n(t r ),M(t r ),�n(t r+1)〉, (B2)

which is further equal to

δr+1
r γn = Im〈�n(t r ),M(t r ),�n(t r+1)〉

|〈�n(t r ),M(t r ),�n(t r+1)〉| (B3)

to first order in T/N . The above ratio can be alternatively
written as

δr+1
r γn = arg〈�n(t r ),M(t r ),�n(t r+1)〉. (B4)
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Summing, we get

γn =
∑

r

δr+1
r γn =

∑
r

arg〈�n(t r ),M(t r ),�n(t r+1)〉, (B5)

which, in a product form and making explicit the underlying
limit, is equivalent to Eq. (10).

APPENDIX C: BERRY’S CURVATURE

Following the original work of Berry [3], let us denote

At
n = γ̇n = Im〈�n,M,�̇n〉. (C1)

Similarly, for reasons that will soon become clear, we define

Aq
n = Im〈�n,M,∂q�n〉. (C2)

Together, (Aq
n,At

n) form a vector called Berry’s connection.
The tilt then takes the form of a path integral,

αn = V
γn(π/L) − γn(−π/L)

2π
= V

2π

∮
C
Aq

ndq + At
ndt,

(C3)

where C is the oriented loop {π/L} × [0,T ] ∪ {−π/L} ×
[T ,0] in the (q,t) space (Fig. 8). Since C is also the boundary of
the torus T = [−π/L,π/L] × [0,T ], Stokes theorem yields

αn = V

2π

∫∫
T

(∂qAt
n − ∂tAq

n)dqdt

≡ V

2π

∫∫
T

Bndqdt, (C4)

where Bn is Berry’s curvature. Next, we derive an explicit
formula for Bn.

First, using the chain rule and that ∂qM = 0, we write Bn

as

Bn = 2 Im

{
〈∂q�n,M,�̇n〉 − 〈�n,Ṁ,∂q�n〉

2

}
. (C5)

FIG. 8. Stokes theorem: An integral over boundary C can be
transformed into an integral over domain T . Since t = 0,T and
q = ±π/L are physically identical, domain T can be identified with
a torus. Path C is then the boundary of torus T cut open along
q = ±π/L.

Then, expanding along the orthogonal eigenstates �m, we
obtain

Bn =
∑
m

2 Im{〈∂q�n,M,�m〉〈�m,M,�̇n〉

− 〈�n,Ṁ,�m〉〈�m,M,∂q�n〉/2}. (C6)

The terms with m = n can be omitted since they have no
imaginary part.

Now we calculate the term 〈�m,M,�̇n〉. Starting with
Eq. (2), applying ∂t yields

−2ωnω̇nM�n − ω2
nṀ�n − ω2

nM�̇n = −K̇�n − K�̇n.

(C7)

Projecting onto �m, we obtain

〈�m,M,�̇n〉 = 〈�m,K̇,�n〉
ω2

n − ω2
m

− ω2
n

ω2
n − ω2

m

〈�m,Ṁ,�n〉. (C8)

In the same manner, applying ∂q and projecting, we see that

〈�m,M,∂q�n〉 = 〈�m,∂qK,�n〉
ω2

n − ω2
m

. (C9)

Substituting these relations into the expression of Bn, we
conclude that Berry’s curvature admits expression (12).
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