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Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing
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This paper builds on the recent demonstration of three-wave mixing based phononic frequency comb. Here, in
this process, an intrinsic coupling between the drive and resonant frequency leads to a frequency comb of spacing
corresponding to the separation between drive and resonant frequency. In this paper, through the coupling with
other identical devices, we demonstrate the emergence of two different frequency comb regimes using a single
tone external drive signal. Several interesting features for coupled frequency combs are identified, including the
following: (1) the spacing of the component frequency combs are controlled by two different resonant frequencies,
each associated with two different modes; (2) the nonlinear drive level dependence is different for the component
frequency combs; (3) mutually exclusive well-bounded regimes for each component frequency comb exist, and
such regimes are not merely described by well-known parametric resonance thresholds.
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This paper builds upon the recent experimental demonstra-
tion of the phononic counterpart of optical frequency combs
in a micromechanical vibratory device [1]. The generation of
these phononic frequency combs is described by a nonlinear
three-wave mixing process, as theoretically outlined in Ref. [2].
Through this pathway, a single drive tone results in the
generation of equidistant and phase-coherent spectral lines
corresponding to the frequency comb. The spacing between
these spectral lines corresponds to the separation between the
drive and resonant frequency of a primary eigenmode. While
this phenomenon displays some similarity to the well-known
parametric resonance [3–11] in terms of the self-excitation of
modes, properties exist that are unique to phononic frequency
combs viz. (1) an array of equidistant spectral lines are
generated for a single tone drive excitation; (2) a very specific
range of drive frequencies is required for their excitation; and
(3) the comb spacing is controlled by an eigenmode’s natural
frequency.

In addition to the intriguing traits of phononic frequency
combs, it should be noted that the effects are evidenced in an
accessible experimental testbed (a well-established free-free
beam mechanical device [12–17]) under ambient conditions,
facilitating the ease of further experimental studies and
practical application. Building on the initial demonstration
[1], this paper demonstrates that it is possible to engineer
devices operating in multiple frequency comb regimes by
coupling multiple free-free beam structures together. In such
a configuration, closely spaced eigenmodes with similar
characteristics can be driven by the same external drive tone.
When the frequency of this drive tone is in the vicinity of
the natural frequencies of multiple eigenmodes, the resulting
response is dominated by a specific eigenmode, depending
on the drive frequency. As a result, multiple frequency combs
with spacing determined by the difference in the frequency
of the drive tone and the predominantly driven eigenmode
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can be expected. The resulting richness in dynamical
behavior, evidenced by coupling, explored in this paper is
notionally analogous to previous studies exploring coupling
in nonlinear micromechanical and nanomechanical resonators
and oscillators to illustrate emergent effects (see, e.g., in Fig.
4 of Ref. [18] and Fig. 8 of Ref. [19], among others [20–32]).

For this experimental study, a system of two-coupled
Si-based micromechanical free-free beam structures of di-
mensions 1100 μm × 350 μm × 11 μm is considered. The
mechanical coupler is a beam of dimensions 20 μm × 2 μm ×
11 μm and links the two free-free beam structures at the
midpoint [Fig. 1(a)]. The device also consists of the 0.5-μm-
thick AlN and 1-μm-thick Al layers deposited on the Si surface
for piezoelectric actuation. To preserve the uniformity, the
AlN and Al patterns of the two free-free beam microstructures
are identical. The length extensional modes associated with
this resonant device are driven by an external drive signal,
following from previous experimental results where phononic
frequency combs are generated by driving length-extensional
modes [1,33–36]. However, since this paper utilizes a system
of two-coupled free-free beams, there are correspondingly two
fundamental length-extensional mode solutions (Supplemental
Material Figs. S1-D and S1-E [37]), one of which represents
the out-of-phase motion (Supplemental Material Fig. S1-D
[37]) of two beams and the other represents the in-phase
case (Supplemental Material Fig. S1-E [37]). To drive these
modes, the signal derived from Agilent 335ARB1U is applied
to Al electrodes patterned on both the beams, and the resulting
electrical response corresponding to the mechanical motion of
the device is probed using Agilent Infiniium 54830B DSO. For
the independent validation, the out-of-plane component of the
resonant motion of the device is also monitored using a laser
Doppler vibrometer (LDV).

Figure 1(b) shows the output spectrum when an electrical
signal of Sin(fd = 3.86 MHz) = 23 dBm is applied. In this
figure, two thick spectral features closer to fd and fd

2 exist. The
zoomed-in views indicate the correspondence of these features
to the frequency combs. To explore these frequency combs
further, the experiments were carried out at wide-ranging drive
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FIG. 1. Observation of coupled phononic frequency combs via two-mode three-wave mixing. (a) An electrical signal Sin(fd = 3.86 MHz)
is applied on a mechanically coupled free-free beam microstructure. (b) The frequency spectrum of the vibrational response for
Sin(fd = 3.86 MHz) = 23 dBm (measured using laser Doppler vibrometer). Top: The zoomed-in view of the spectrum around fd/2. Middle:
The zoomed-out view. Bottom: The zoomed-in view of the spectrum around fd . (c) The spectral maps of the output electrical signal Sout for
different drive conditions Sin(fd = 3.86 MHz) = −10 to 23.5 dBm (measured using electrical spectrum analyser).

power levels for the same drive frequency fd = 3.86 MHz.
The electrical spectra Sout for Sin(fd = 3.86 MHz), ranging
from −10 dBm to 23.5 dBm, are presented in the condensed
Fig. 1(c). For drive levels below 10 dBm, only the drive
tone is observed. However, further increase in Sin leads to
a frequency comb. It is now surprising to note the drastic
shift in the spacing of the frequency comb above the critical
S∗

in = 16.5 dBm. In order to conclude whether this observed
shift corresponds to an auxiliary nonlinear pathway associated
with the generation of the same frequency comb 1 or results
from the transition to a different frequency comb altogether,
the nature of the frequency combs around the parametrically
excited subharmonic tone is investigated.

At a low drive level of −5 dBm, parametric resonance is
absent. Hence, only the drive tone is observed [Fig. 2(a)].
However, when the drive level is further increased to 5 dBm,
in addition to the drive tone, there is also an excitation of a
subharmonic tone corresponding to the parametric resonance
[Fig. 2(b)]. Despite parametric excitation, frequency combs
are not formed at this drive condition. However, for the
drive levels 15 dBm and 23 dBm, both the frequency combs
and parametric resonance are observed [Figs. 2(c) and 2(d)].
The different drive power level thresholds associated with
the parametric resonance and frequency combs indicate that
parametric resonance is only a necessary but not sufficient
condition for frequency comb formation. Figures 2(c) and 2(d)
also present interesting qualitative differences in the frequency
combs formed at the drive levels 15 dBm and 23 dBm. While
the tone fd

2 is observed in the frequency combs at 15 dBm, such
a tone is absent at 23 dBm. Hence, in addition to the increased
frequency spacing of combs at 23 dBm, as compared to those at
15 dBm, there is also a fundamental difference in the nature of
these combs. So, the observed drastic frequency shift above the
critical S∗

in = 16.5 in Fig. 1(c) cannot simply be due to an addi-
tional nonlinear process associated with the generation of the

same frequency comb. However, it has to be explained by the
transition from one class of frequency combs to another. Such
classes of frequency combs can be qualitatively described by
fd ± n(fd − f̃1); fd

2 ± n(fd − f̃1) and fd ± n(fd − f̃2); f̃2

2 ±
n(fd − f̃2), respectively. Here, f̃1 and f̃2 correspond to the
two different re-normalized resonant frequencies.

To understand these experimental observations in the con-
text of previous demonstration of frequency comb in Ref. [1],
the following dynamical model is considered:

Q̈i = −ω2
i Qi − 2ζiωiQ̇i +

2∑

τ1=1

2∑

τ2=1

ατ1τ2Qτ1Qτ2

+
2∑

τ1=1

2∑

τ2=1

2∑

τ3=1

βτ1τ2τ3Qτ1Qτ2Qτ3

+P cos (ωdt), (1)

where P is the drive level, α and β are quadratic coupling
coefficients, and ωi=1,2 and ζi=1,2 are natural frequencies and
damping coefficients of modes i = 1, 2 respectively.

Here, when this coupled system of two modes is driven
closer to ω1, mode 1 dominates the response. With an increased
power level P , the modal displacement Q1 may also get high
enough to trigger parametric excitation of mode 2 through
the Q1Q2 nonlinearity. Such parametrically excited tone is
expected to have a frequency ωd

2 and is closer to the resonant
frequency of mode 2: ω2. However, the recent experiments on
the two-mode three-wave mixing based frequency comb [1]
have indicated the possibility for ω1

2 excitation instead of ωd

2 .
This particularly occurred when ωd is set outside the dispersion
band, i.e., |ωd − ω1| > δ. Once the parametric excitation of ω1

2
is introduced, the frequency combs ωd ± n(ωd − ω1); ω1

2 ±
n(ωd − ω1) are generated through the high-order nonlinear
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FIG. 2. Observation of coupled phononic frequency combs via two-mode three-wave mixing. (a)–(d) The frequency spectra of the vibrational
response for Sin(fd = 3.86 MHz) = −5, 5, 15, and 23 dBm, respectively (measured using laser Doppler vibrometry). (b1), (c1), and (d1) The
zoomed-in views of the spectra (b), (c), and (d) around fd/2, respectively. (b2), (c2), and (d2) The zoomed-in views of the spectra (b), (c), and
(d) around fd , respectively.

mixing processes.

Q̈i = −ω2
i Qi − 2ζiωiQ̇i +

3∑

τ1=1

3∑

τ2=1

ατ1τ2Qτ1Qτ2

+
3∑

τ1=1

3∑

τ2=1

3∑

τ3=1

βτ1τ2τ3Qτ1Qτ2Qτ3

+P cos (ωdt); i = 1,2,3. (2)

Now, we turn to a system of three coupled modes, and the
modified dynamics is presented in Eq. (2). Let us consider
the case where the drive frequency ωd is simultaneously
closer to the resonant frequencies of two modes: ω1 and ω2

(Supplemental Material Fig. S1 [37]). Further, ωd is also
closer to twice the resonant frequency of a third mode ω3.
In this case, modes 1 and 2 are directly excited at first. For
high drive power levels of P , the modal displacements Q1

and Q2 may also achieve sufficiently high values to also
independently parametrically excite mode 3 through Q1Q3

and Q2Q3 nonlinearities. Based on the current understanding,
the frequency of this tone is expected to be ωd

2 . However, due
to the nonlinear three-wave mixing processes, deviations from
this frequency may also be encountered similar to the case
presented before. While such deviations are possible through
the dynamical Eq. (2), as demonstrated numerically in Ref. [2],
the analytics describing them as a function of the various
system parameters are not yet well defined. Qualitatively, since
ωd is closer to both ω1 and ω2, the parametric excitation of
tones at either ω1

2 or ω2
2 or even ωd

2 may be possible. Following
the excitation of ω1

2 or ω2
2 , the high-order mixing may result

in the frequency combs ωd ± n(ωd − ω1); ω1
2 ± n(ωd − ω1) or

ωd ± n(ωd − ω2); ω2
2 ± n(ωd − ω2), respectively. In contrast,

when ωd

2 is excited, we may not expect a frequency comb based
on our current understanding of frequency comb; however, our
experiments show otherwise. That is, the frequency combs
ωd ± n(ωd − ω2); ωd

2 ± n(ωd − ω2) are observed at certain
drive conditions [Fig. 2(b)]. To explain the emergence of
such frequency combs, we sketch an underpinning pathway
as follows. The parametrically excited subharmonic tone ωd

2
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FIG. 3. Regimes of phononic frequency combs. (a) The regimes of phononic frequency combs for a range of drive frequencies fd =
3.8544−3.8626 MHz and drive power levels Sin = −10 to 23.5 dBm; (b): (b1)–(b7) The drive power level dependent output spectra Sout for
different drive frequencies fd = 3.856, 3.857, 3.858, 3.859, 3.86, 3.861, and 3.862 MHz.

may excite ω2 through parametric back action. This back
action is related to the dynamical coupling of the driven and
self-excited modes. While such parametric back action can be
evidenced only through the differing drive level dependences
of driven and self-excited tones (cf. Fig. 2 of Ref. [8]); a
direct observation of such an effect can be obtained through
the excitation of frequency combs. Also, the frequencies ω1

or ω2 may also be drive power level dependent. Hence, we
replace ω1 and ω2 by the re-normalized frequencies ω̃1 and ω̃2,
respectively. We have thus qualitatively argued the possibility
for the multiple classes of frequency combs in the context
of the Eq. (2). Now, we experimentally map the regimes
specific to these classes of frequency combs at different drive
conditions.

For a drive frequency fd = ωd

2π
= 3.86 MHz, we had already

mapped the nature of resonances for a range of power levels
−10 to 23.5 dBm [Fig. 1(b)]. This revealed the transition from
ωd (no parametric resonance; no frequency comb) to ωd and ωd

2
(no frequency comb) to ωd ± n(ωd − ω̃1); ωd

2 ± n(ωd − ω̃1)
(frequency comb 1) to ωd ± n(ωd − ω̃2); ω̃2

2 ± n(ωd − ω̃2)
(frequency comb 2). Now, we chart such regimes for different
drive frequencies and power levels. As shown in Fig. 3, the
regimes specific to the excitation of frequency comb 1 and

2 are nonstandard and are not merely characterized by a
mere parametric resonance threshold. For instance, for the
drive frequencies 3.86 MHz < fd < 3.863 MHz, the comb
and parametric excitation thresholds are not the same (Fig. 3).
Hence, regimes exist in which the parametric excitation takes
place without the frequency comb formation. However, the
most intriguing feature of Fig. 3 is the fact that the fre-
quency comb 2 transitions into parametric resonance at high-
drive levels for 3.855 MHz < fd < 3.857 MHz [Figs. 3(b1)
and 3(b2)]. Furthermore, in previous observations of Refs. [1]
and [35], the frequency combs were observed only outside
the dispersion band. In contrast, the current experiments show
the possibility for comb generation even within the dispersion
band. Despite these variations, in general, the drive conditions
for the excitation of frequency combs 1 and 2 are well
bounded.

As briefly mentioned before, the frequency comb spacing
is drive level dependent, and Fig. 4 presents this dependence.
While the spacing increases with the drive power level, it is
nearly constant with the drive frequency at a specific drive
power level [Figs. 4(a) and 4(c)]. This is similar to the case
presented in the previous work (cf. Fig. 3 in Ref. [1]). However,
the difference is the nature of drive level dependence. In
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FIG. 4. Spacing of phononic frequency combs. (a), (c) The spacing of frequency combs 1 and 2 for a range of drive frequencies fd =
3.8544 to 3.8626 MHz and drive power levels Sin = −10 to 23.5 dBm. The absence of color indicates the absence of the respective frequency
comb. (b) The drive power level dependent spacing of frequency comb 1 for different drive frequencies fd = 3.8604, 3.861, and 3.8616 MHz.
(d) The drive power level dependent spacing of frequency comb 2 for different drive frequencies fd = 3.857, 3.858, and 3.859 MHz.

contrast to the linear increase with the drive power level (cf.
Fig. 3 in Ref. [1]), the dependences in the current experiments
are quadratic [Fig. 4(b)] and cubic [Fig. 4(d)]. While the linear
dependence of resonance frequency with drive level can be
related to the cubic nonlinearity inherent to Duffing oscillation,
the quadrative and cubic dependences [Figs. 4(b) and 4(d)]
may emerge from higher order nonlinearities for instance,
fifth-order [38], or a combination of high-order nonlinearities.
While the modulation of resonant responses via high-order
nonlinearities [38] can be interesting in its own, the interplay
of such effects with the frequency comb generation process, as
in Fig. 3 in Ref. [1] and Figs. 4(b) and 4(d), provides avenues
for further research studies on the underlying dynamics.

In summary, the excitation of two coupled frequency
combs using two-mode parametric three-wave mixing has been
observed in a specific system of two mechanically coupled
micromechanical resonators. The fundamental nature of the

component frequency combs is different. While the tone at
half the drive frequency fd

2 is observed in one frequency comb,
it is absent in the other. Also, the spacing and its nonlinear
drive level dependence are different for such frequency combs.
Mutually exclusive well-bounded regimes for each compo-
nent frequency combs also exist, and such regimes are not
merely described by the parametric resonance threshold. In
the future, multiple experiments with the advanced designs
of micromechanical resonator are warranted to attain new
insights into the nonlinear physics and also to arrive at the
rigorous analytical descriptions modeling the precise nature
of frequency combs. Such studies will also enable practical
applications, for example, the use of phononic frequency
combs for resonant frequency tracking [39].
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