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For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by
using a fermionic approach that the matrix element of the spin operator S−

j (S−
j S+

j ′ ) between two eigenstates with
numbers of excitations n and n + 1 (n and n) can be expressed as the determinant of an appropriate (n + 1) ×
(n + 1) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model.
In the special case of a homogeneous periodic XX chain, the matrix element of S−

j reduces to a variant of the
Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact
representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response
of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between
eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small
to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model
consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum
calculation up to N � 16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic
occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between
the number of excitations and the total number of spins. Our results can find useful applications in various
“system-bath” systems, with the system part inhomogeneously coupled to an interacting XX chain.
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I. INTRODUCTION

The study of quantum spin chains has a long history
dating back to Bethe’s exact solution of the one-dimensional
Heisenberg model in the early 1930s [1]. With the intention
of finding system that bears reasonably close resemblance to
the Heisenberg model, Lieb, Schultz, and Mattis [2] intro-
duced the one-dimensional XY model and solved it exactly
using the Jordan-Wigner transformation, which changes spin
operators into fermions. Later, the authors of Ref. [2] applied
a similar second-quantization formalism for fermions to the
exact solution of the two-dimensional Ising model [3]. Over
the past several decades, the fermionic approach has found
wide applications in dealing with many-body systems of spin
degrees of freedom. Recently, Iorgov et al. derived a factorized
formula for spin-operator matrix elements between general
eigenstates of the transverse Ising model by using the fermionic
technique [4].

In this work, we will consider a simpler but frequently
used quantity, i.e., the spin-operator matrix element (SOME)
between two eigenstates of the XX spin chain, which can
be calculated by using similar techniques to that in Ref. [4].
In spite of its simple form, the XX model not only models
the physics of spins arranged in a row, but it can also
describe many other quantum phenomena, such as the re-
pulsive Bose-Hubbard model in the strong interaction limit
[5], quantum state transfer [6], coherent excitation transfer in
light-harvesting [7] and Rydberg systems [8], and the dynamics
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of molecular aggregates [9,10], among others. These SOMEs
naturally emerge in a generic class of composite systems con-
sisting of an XX chain (the “spin bath”) with each spin coupled
to the other common quantum system (the “system”), e.g., a
single bosonic mode [10] or a central spin [11,12]. Note that
the number of excitations (e.g., the number of spins pointing
upward) of the XX chain is conserved. We will focus on two
types of SOMEs, both of which are relevant in the study of
static or dynamical properties of these hybrid system-spin-bath
systems. The first operator we consider is the spin-lowering
operator S−

j of spin-j , which connects an eigenstate with
(n + 1) excitations to the other eigenstate with n excitations.
The other type of operator we are interested in is the product
of the spin-lowering and spin-raising operators on two (not
necessarily different) sites j and j ′, namely S−

j S+
j ′ , which does

not induce spin-flip and connects two eigenstates with the
same number of excitations. These kinds of matrix elements
might first appear in the study of nonlinear response [9] and
superradiance [10] of one-dimensional molecular aggregates,
where the Frenkel-exciton model description of the aggregates
resembles an XX chain. Recently, Wu et al. [12] studied the
decoherence dynamics of a single qubit in an extended Gaudin
model with an interacting spin bath modeled by the XX ring,
where linear combinations of the matrix elements of S−

j emerge
as coefficients in the equation of motion of the system.

Though the aforementioned matrix elements are important
in various physical systems involving the XX chain, their
evaluation is not straightforward since the eigenstates of
the XX chain generally do not admit simple forms in the
spin configuration space, but rather they are filled by the
Jordan-Wigner fermions. For example, in the context of a
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one-dimensional molecular aggregate, the matrix elements of
the excitonic transition dipole moment, which is proportional
to
∑

j (eik·rj S+
j + H.c.) (with k the wave vector of the light

field and rj the position of the j th monomer, respectively), was
shown [9] to have a form similar to Eq. (20) (see below) that
involves a multisummation over all configurations of the spatial
indices with a fixed number. Meanwhile, it was recognized
that these sums are usually difficult to evaluate [9]. When the
spatial dimension of the aggregate is much smaller than the
optical wavelength, so that the phase factors in the transition
dipole moment do not depend on the molecular position rj ,
the authors of Ref. [10] have been able to evaluate the sums
through “some tedious calculation.” Actually, they obtained
a factorized formula [see Eq. (21) below] for the matrix
element of the collective spin operator S− =∑j S−

j , which
was recently used in the study of enhanced photon capture
in ringlike optical emitter systems [13]. There were some
attempts to derive this factorized expression through evaluating
the multisums by using the properties of matrix determinants
[14]; however, to the best of our knowledge, an explicit proof
of Eq. (21) is still absent from the literature.

In this work, we employ a similar fermionic technique de-
veloped in Ref. [4] to derive the matrix elements of both S−

j and
S−

j S+
j ′ between two relevant eigenstates of an inhomogeneous

XX chain with either periodic or open boundary conditions. We
show that both of them can be expressed as the determinant
of some (n + 1) × (n + 1) matrix whose entries involve the
coefficients of the canonical transformations diagonalizing
the model in its Jordan-Wigner fermion representation. For
the special case of the homogeneous periodic XX chain,
the determinant representation of the matrix elements of S−

j

turns out to be a variant the Cauchy determinant that can
be evaluated analytically, and hence leads to the factorized
formula discovered in Ref. [10].

We next apply the obtained results to two physical problems,
namely the nonlinear response of molecular aggregates and the
real-time dynamics of an interacting inhomogeneous Dicke
model consisting of a single bosonic mode coupled to an XX
chain. In the former case, the determinant representations of the
SOMEs provide a convenient way to calculate the aggregate
transition dipole matrix elements, which are essential for
obtaining the nonlinear optical response functions. The advan-
tages of the present method become more apparent when either
the aggregate sizes are large compared with the optical wave-
length, or higher-order nonlinear responses are considered, for
which the transition dipole matrix elements do not admit closed
forms anymore and the determinant representations offer an
almost unique tool for efficient evaluation of these matrix
elements. In the latter case, the proposed hybrid model can
properly describe a linear molecular aggregate located in a
single-mode cavity [15]. In the absence of the nearest-neighbor
coupling within the chain, the model reduces to the ordinary
inhomogeneous Dicke model that has been studied thoroughly
in quantum optical systems [16–19]. By writing the spin-boson
interaction in the eigenbasis of the XX chain and the free
boson using the obtained SOMEs, we perform full quantum
calculation of the system dynamics. In the noninteracting
limit with inhomogeneous excitonic energies and a uniform
spin-boson coupling, we find that the decay of the reduced

bosonic occupation number starting with a pure boson number
state shows an initial oscillatory decay and approaches a finite
plateau value in the long-time limit. These plateaus are found to
increase monotonically with the ratio between the initial boson
number and the total number of spins. In the interacting case,
we find that the exciton coupling between nearest-neighboring
monomers has a significant effect on the photon generation
from the excitonic ground state.

The rest of the paper is organized as follows. In Sec. II,
we will briefly review the diagonalization procedure of the
inhomogeneous XX chain with periodic/open boundary con-
ditions, and we introduce the definition of the two types of
SOMEs. In Sec. III, we will derive the determinant formulas
for the SOMEs using the fermionic technique. Section IV will
be devoted to the application of the formalism to the nonlinear
optical response of molecular aggregates and to the dynamics
of the interacting inhomogeneous Dicke model. Conclusions
are drawn in Sec. V.

II. THE XX SPIN CHAIN AND SPIN-OPERATOR
MATRIX ELEMENTS

A. The XX spin chain

The XX spin chain in an inhomogeneous transverse mag-
netic field consists of a chain of N spins 1/2 with nearest-
neighbor XX-type interactions, and is given by the Hamilto-
nian

HXX =
N∑

j=1

Jj

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

)− N∑
j=1

hj

(
Sz

j + 1

2

)
, (1)

where Sα
j (α = x,y,z) are the spin-1/2 operators, Jj is the (in-

homogeneous) isotropic nearest-neighbor coupling between
spin-j and spin-(j + 1), and hj is the magnetic field imposed
on spin-j . We assume periodic boundary condition Sα

N+1 = Sα
1

when JN �= 0. The usual homogeneous periodic (open) XX
chain described by HPBC(h,J ) [HOBC(h,J )] can be obtained by
setting Jj = J,∀j [Jj = J (j �= N ); JN = 0] and hj = h,∀j .
In the noninteracting limit Jj = 0,∀j , HXX reduces to the
atomic model Hatom({hj }) used by Dicke in the discussion of
the superradiance phenomenon [20].

To introduce the notations used later for the illustration
of our problem, we first briefly review the diagonalization
procedures of the Hamiltonian (1). The first step is to perform
the Jordan-Wigner transformation (with S±

j = Sx
j ± iS

y

j )

S+
j = c

†
j Tj , S−

j = cjTj , Sz
j = c

†
j cj − 1

2 , (2)

where c
†
j creates a spinless fermion at site j , and Tj =∏j−1

l=1 (1 − 2c
†
l cl) are the Jordan-Wigner strings, which include

TN+1 = eiπ
∑N

l=1 c
†
l cl as the fermion parity operator. It can be

easily checked that the following relations hold:

TjclTj =
{
cl, j � l,

−cl, j > l.
(3)
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After the Jordan-Wigner transformation, HXX is mapped into
a noninteracting spinless fermion model,

HXX = 1

2

N−1∑
j=1

Jj (c†j cj+1 + c
†
j+1cj ) −

N∑
j=1

hjc
†
j cj

−1

2
JN (c†Nc1 + c

†
1cN )TN+1, (4)

where we have separated out the bulk and boundary parts of
the hopping terms.

For JN = 0, we have an open XX chain that can be brought
into a diagonal form,

H
(o)
XX =

N∑
η=1

Eηξ
†
ηξη, (5)

by further performing a canonical transformation of the
fermions,

cj =
N∑

η=1

Uηjξη, ξη =
N∑

j=1

U ∗
ηj cj , (6)

where U is an N × N unitary matrix satisfying
∑

j UηjU
∗
η′j =

δηη′ . In the special case of a homogeneous open XX chain
described by HOBC(h,J ), the canonical transformation is of
the form

Uηj =
√

2

N + 1
sin Kηj with Kη = ηπ

N + 1
. (7)

The corresponding single-particle dispersion is Eη =
J cos Kη − h.

For JN �= 0, since the fermion parity TN+1 is conserved, one
can separately diagonalize HXX in the two subspaces with an
even (TN+1 = 1) and odd (TN+1 = −1) number of fermions.
This can be achieved by two individual sets of canonical
transformations,

cj =
N∑

η=1

U
(σ )
ηj ξη,σ , ξη,σ =

N∑
j=1

U
(σ )∗
ηj cj , (8)

which gives the diagonal form

H
(p)
XX =

∑
σ=±

1 + σTN+1

2
H (p)

σ

1 + σTN+1

2
,

H (p)
σ =

N∑
η=1

Eη,σ ξ †
η,σ ξη,σ , (9)

where σ = 1 (−1) indicates the even (odd) subspace. In the
special case of a homogeneous periodic XX chain described by
HPBC(h,J ), the canonical transformation is of the form (N =
even)

U
(σ )
ηj = 1√

N
eiK (σ )

η j , (10)

where

K (σ )
η = −π +

(
2η + σ − 3

2

)
π

N
, η = 1,2, . . . ,N (11)

are the allowed wave numbers that give the periodic (σ = −1)
or antiperiodic (σ = +1) boundary conditions in the c-fermion
representation.

For notational convenience, we define vectors made up
of spatial and mode indices �jm ≡ (j1,j2, . . . ,jm) and �ηm ≡
(η1,η2, . . . ,ηm), with the convention 1 � j1 < j2 < · · · <

jm � N and 1 � η1 < η2 < · · · < ηm � N . Thus, any eigen-
state of H

(p)
XX can be written as |�η(p)

m 〉 =∏m
l=1 ξ †

ηl ,σm
|0〉, where

|0〉 is the vacuum state of the c fermions, and σm = + (−) if m is
even (odd). The eigenstate |�η(p)

m 〉 is related to the real-space state
| �jm〉 =∏m

l=1 c
†
jl
|0〉 filled by m fermions on sites j1,j2, . . . ,jm

via ∣∣�η(p)
m

〉 =∑
�jm

S�ηm; �jm
| �jm〉, (12)

where the function

S�ηm; �jm
= det

⎛
⎜⎜⎜⎜⎝

U
(σm)
η1,j1

U
(σm)
η1,j2

· · · U
(σm)
η1,jm

U
(σm)
η2,j1

U
(σm)
η2,j2

· · · U
(σm)
η2,jm

· · · · · · · · · · · ·
U

(σm)
ηm,j1

U
(σm)
ηm,j2

· · · U
(σm)
ηm,jm

⎞
⎟⎟⎟⎟⎠ (13)

is the Slater determinant made up of the transformation
coefficients. A similar expression to Eq. (12) holds for the
eigenstate |�η(o)

m 〉 =∏m
l=1 ξ †

ηl
|0〉 of H

(o)
XX. It is useful to observe

that the fermion occupation state | �jm〉 is consistent with the
real-space Ising configuration

∏m
l=1 S+

jl
| ↓ · · · ↓〉 in the spin

representation:

| �jm〉 =
m∏

l=1

S+
jl
| ↓ · · · ↓〉. (14)

In the atomic limit described by Hatom({hj }), we simply
have |�ηm〉 = | �jm〉. For a uniform magnetic field h, all the Cm

N

states {|�ηm〉} are degenerate and process a common energy
εm = −hm. The fully symmetric Dicke ladder states [20] are
then given by the symmetric linear superpositions of these
states, ∣∣∣∣N2 ,m − N

2

〉
= 1√

Cm
N

∑
�ηm

|�ηm〉, (15)

where Cm
N = N!

m!(N−m)! is the binomial coefficient.

B. The spin-operator matrix element: Some known results

In this work, we are interested in the following SOME:

F
(p/o)
j ;�ηn+1, �χn

≡ 〈 �χ (p/o)
n

∣∣S−
j

∣∣�η(p/o)
n+1

〉
(16)

between two eigenstates |�η(p)
n+1〉 and | �χ (p)

n 〉 (|�η(o)
n+1〉 and | �χ (o)

n 〉)
of H

(p)
XX (H (o)

XX) that differ by a single excitation, where S−
j is

the lowering operator of spin-j . We also define the collective
SOME,

F
(p/o)
�ηn+1, �χn

({gj }) ≡ 〈 �χ (p/o)
n

∣∣ N∑
j=1

gjS
−
j

∣∣�η(p/o)
n+1

〉

=
N∑

j=1

gjF
(p/o)
j ;�ηn+1, �χn

, (17)
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which is associated with a distribution of some variables, {gj }
(j = 1,2, . . . ,N ), e.g., a nonuniform system-bath coupling
configuration [12].

The other type of SOMEs we will consider involve two
spin operators and two eigenstates | �χ (p/o)

n 〉 and | �χ ′(p/o)
n 〉 with

the same number of excitations,

F̄
(p/o)
l,l′; �χn, �χ ′

n
= F̄

(p/o)∗
l′,l; �χ ′

n, �χn
≡ 〈 �χ (p/o)

n

∣∣S−
l′ S

+
l

∣∣ �χ ′(p/o)
n

〉
, (18)

which is relevant to, for example, the superradiance master
equation describing linear molecular aggregates interacting
with a light field [10]. In the atomic limit, the energy basis
{| �χ (p/o)

n 〉} reduces to the Ising configurations {| �jn〉}, so that
F̄

(p/o)

l,l′; �jn, �j ′
n

gives the matrix element of the XY -type spin interac-

tion Sx
l Sx

l′ + S
y

l S
y

l′ in real space (for l �= l′),

〈 �jn|Sx
l Sx

l′ + S
y

l S
y

l′ | �j ′
n〉 = 1

2

(
F̄

(p/o)

l,l′; �jn, �j ′
n

+ F̄
(p/o)

l′,l; �jn, �j ′
n

)
. (19)

At first glance, it seems difficult to calculate F
(p/o)
j ;�ηn+1, �χn

or

F̄
(p/o)
l,l′; �χn, �χ ′

n
due to the Jordan-Wigner string involved in the spin

operators. A naive attempt is to write the eigenstates |�η(p/o)
n+1 〉

in terms of the real-space fermion states through Eq. (12) and
rearrange the operators using fermion commutation rules. As
shown in Refs. [9,10] for a uniform distribution gj = g (and
independently in Refs. [11,12] for a nonuniform distribution
{gj }), the matrix element F

(p)
�ηn+1, �χn

({gj }) for the periodic (not
necessarily homogeneous) XX chain can indeed be expressed
in terms of the Slater determinants as

F
(p)
�ηn+1, �χn

({gj }) =
∑
�jn+1

S�ηn+1; �jn+1

n+1∑
l=1

gjl
S∗

�χn; �j (l)
n+1

, (20)

where the vector �j (l)
n+1 = (j1, . . . ,jl−1,jl+1, . . . ,jn+1) is a string

of length n with the element jl being removed from the (n + 1)
string �jn+1. For the sake of completeness, in Appendix A we
give some details of the derivation of Eq. (20) under periodic
boundary conditions (similar expressions hold for the open
boundary conditions).

However, Eq. (20) still looks cumbersome to calculate
[9,12] due to the multisums over the n + 1 site indices
j1 < j2 < · · · < jn+1. For the simpler case with a uniform
distribution g = gj , as well as a periodic homogeneous XX

chain described by HPBC, the matrix elements F
(PBC)
�ηn+1, �χn

(g) do
admit closed forms [10],

F
(PBC)
�ηn+1, �χn

(g) = g2nN
1
2 −nδ

⎛
⎝n+1∑

j=1

K (σn+1)
ηj

,

n∑
i=1

K (σn)
χi

⎞
⎠h�ηn+1; �χn

,

(21)

where the Kronecker delta function δ(x,y) is 1 when x = y +
2πm (m ∈ Z), and 0 otherwise, and h�ηn+1; �χn

is a factorized
function of the momentum configurations:

h�ηn+1; �χn

=
∏

i>i ′
(
e
−iK (σn )

χi − e
−iK (σn )

χ
i′
)∏

j>j ′
(
e
iK

(σn+1)
ηj − e

iK
(σn+1)
η
j ′
)

∏n
i=1

∏n+1
j=1

(
1 − e

−i(K
(σn+1)
ηj

−K
(σn )
χi

)) .

(22)

As claimed by the authors of Ref. [10], Eq. (21) can be
obtained after “some tedious calculation” [21]. In spite of some
attempts to derive Eq. (21) directly by using the properties
of determinants (see, e.g., Ref. [14]), efficient evaluation of
F

(p)
�ηn+1, �χn

({gj }) beyond Eq. (20) is still absent.

III. EVALUATION OF THE SPIN-OPERATOR MATRIX
ELEMENTS: FERMIONIC APPROACH

Instead of calculating F
(p)
�ηn+1, �χn

({gj }) directly from Eq. (20),
in this section we follow a different strategy by starting with
the definition of the SOMEs, Eqs. (16) and (18), and we derive
simple expressions of them by employing a fermionic approach
developed in the work of Iorgov et al. [4] in the derivation of
factorized expressions for the SOMEs in the quantum Ising
chain. We will show that either F

(p/o)
j ;�ηn+1, �χn

or F̄
(p/o)
l,l′; �χn, �χ ′

n
can

be expressed as the determinant of some (n + 1) × (n + 1)
square matrix involving the coefficients of the corresponding
canonical transformations. In turn, Eq. (21) is shown to be a
direct consequence of the application of the obtained general
formulas to a homogeneous periodic XX chain with uniform
system-bath coupling. In the following, we will focus on the
periodic XX chain since similar results hold for the open XX
chain.

A. Calculation of F(p)
j ;�ηn+1, �χn

We first start with the complex conjugate of Eq. (16),

F
(p)∗
j ;�ηn+1, �χn

≡ 〈�η(p)
n+1

∣∣S+
j

∣∣ �χ (p)
n

〉 = 〈0|ξηn+1,σ̄n
· · · ξη1,σ̄n

Tj c
†
j ξ

†
χ1,σn

· · · ξ †
χn,σn

|0〉

=
N∑

χ=1

U
(σn)∗
χ,j 〈0|ξηn+1,σ̄n

· · · ξη1,σ̄n
Tj ξ

†
χ,σn

ξ †
χ1,σn

· · · ξ †
χn,σn

|0〉, (23)

where σ̄ = −σ and we have used S+
j = Tjc

†
j and shifted to the energy representation. We emphasize that the mode index χ is

not necessarily less than χ1 in Eq. (23). Let us focus on the expectation value in the last line of Eq. (23),

D(j )
η1,...,ηn+1;χ,χ1,...,χn

≡ 〈0|ξηn+1,σ̄n
· · · ξη1,σ̄n

Tj ξ
†
χ,σn

ξ †
χ1,σn

· · · ξ †
χn,σn

|0〉. (24)
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The trick is to insert the identity TjTj = 1 between ξη2,σ̄n
and ξη1,σ̄n

in Eq. (24):

D(j )
η1,...,ηn+1;χ,χ1,...,χn

= 〈0|ξηn+1,σ̄n
· · · ξη2,σ̄n

Tj (Tjξη1,σ̄n
Tj )ξ †

χ,σn
ξ †
χ1,σn

· · · ξ †
χn,σn

|0〉

=
N∑

n′=1

U
(σn+1)∗
η1,n′ 〈0|ξηn+1,σ̄n

· · · ξη2,σ̄n
Tj (Tjcn′Tj )ξ †

χ,σn
ξ †
χ1,σn

· · · ξ †
χn,σn

|0〉

=
N∑

χ ′=1

A
(j ),(σn)
η1,χ ′ 〈0|ξηn+1,σ̄n

· · · ξη2,σ̄n
Tj ξχ ′,σn

ξ †
χ,σn

ξ †
χ1,σn

· · · ξ †
χn,σn

|0〉, (25)

where the coefficients A
(j ),(n)
η,σ are given by

A(j ),(σ )
η,χ = A(j ),(σ̄ )∗

χ,η ≡
(

N∑
l=1

−2
j−1∑
l=1

)
U

(σ̄ )∗
η,l U

(σ )
χ,l , (26)

and we have used Eq. (3) in the derivation of the last line of Eq. (25). It can be easily checked that

N∑
χ=1

A(j ),(σ )∗
η,χ U

(σ )
χ,j ′ =

{
sgn(j ′ − j )U (σ̄ )

η,j ′ , j ′ �= j,

U
(σ̄ )
η,j , j = j ′.

(27)

The A
(j ),(σ )
η,χ ’s can be combined to form

Ā
(j,j ′),(σ )
η,η′ ≡

N∑
χ=1

A(j ),(σ )
η,χ A

(j ′),(σ )∗
η′,χ =

N∑
χ=1

A(j ),(σ̄ )∗
χ,η A

(j ′),(σ̄ )
χ,η′ = δη,η′ − 2

jmax−1∑
l=jmin

U
(σ̄ )∗
η,l U

(σ̄ )
η′,l , (28)

where jmin = min{j,j ′} and jmax = max{j,j ′}, respectively. Equation (28) will be used below to derive the expression for F̄
(p)
l,l′; �χn, �χ ′

n
.

Note that

Ā
(j,j ′),(σ )
η,η′ = Ā

(j ′,j ),(σ )
η,η′ = Ā

(j,j ′),(σ )∗
η′,η . (29)

Let us now come back to Eq. (25) and note that only χ ′ = χ,χ1, . . . ,χn contributes in its last line, we hence have

D(j )
η1,...,ηn+1;χ,χ1,...,χn

= A(j ),(σn)
η1,χ

D(j )
η2,...,ηn+1;χ1,...,χn

+
n∑

m=1

(−1)mA(j ),(σn)
η1,χm

D(j )
η2,...,ηn+1;χ,χ1,...,χm−1,χm+1,...,χn

, (30)

where the factor (−1)m arises from moving ξχ ′,σn
to the right to pass by the m creation operators ξ †

χ,σn
, ξ †

χ1,σn
, . . . , and ξ †

χm−1,σn
. The

expansion on the right-hand side of Eq. (30) reminds us of the Laplace expansion of a determinant. By noting that 〈0|Tj |0〉 = 1,
we thus obtain

D(j )
η1,...,ηn+1;χ,χ1,...,χn

= det

⎛
⎜⎜⎜⎜⎜⎜⎝

A
(j ),(σn)
η1,χ A

(j ),(σn)
η1,χ1 A

(j ),(σn)
η1,χ2 · · · A

(j ),(σn)
η1,χn

A
(j ),(σn)
η2,χ A

(j ),(σn)
η2,χ1 A

(j ),(σn)
η2,χ2 · · · A

(j ),(σn)
η2,χn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

A
(j ),(σn)
ηn+1,χ A

(j ),(σn)
ηn+1,χ1 A

(j ),(σn)
ηn+1,χ2 · · · A

(j ),(σn)
ηn+1,χn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (31)

Substituting this equation into Eq. (23), and using Eq. (27), we finally have

F
(p)
j ;�ηn+1, �χn

= det

⎛
⎜⎜⎜⎜⎜⎜⎝

U
(σ̄n)
η1,j

A
(j ),(σn)∗
η1,χ1 A

(j ),(σn)∗
η1,χ2 · · · A

(j ),(σn)∗
η1,χn

U
(σ̄n)
η2,j

A
(j ),(σn)∗
η2,χ1 A

(j ),(σn)∗
η2,χ2 · · · A

(j ),(σn)∗
η2,χn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

U
(σ̄n)
ηn+1,j

A
(j ),(σn)∗
ηn+1,χ1 A

(j ),(σn)∗
ηn+1,χ2 · · · A

(j ),(σn)∗
ηn+1,χn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

Equation (32) is one of the main results of this paper, and it provides an easy way to numerically calculate the SOMEs of S−
j

for an inhomogeneous XX chain by evaluating a single determinant. Since there are no general formulas to evaluate the sum
of determinants, calculating the Cn

NCn+1
N collective SOMEs F�ηn+1, �χn

given by Eq. (17) requires calculation of all the NCn
NCn+1

N

SOMEs Fj ;�ηn+1, �χn
, which costs N times the memory needed for the former. Note that Eqs. (24)–(32) also hold for the open XX chain,

with the indices σ ’s removed from the corresponding expressions. In the atomic limit, it is easy to show that Eq. (32) reduces

014301-5



NING WU PHYSICAL REVIEW B 97, 014301 (2018)

to F
(p)

j ;�ln+1,�l′n
=∑n+1

m=1 δlm,j δ�l(m)
n+1,

�l′n for two Ising configurations |�ln+1〉 and |�l′n〉, which is consistent with the definition F
(p)

j ;�ln+1,�l′n
=

〈�l′n|S−
j |�ln+1〉.

B. The homogeneous XX chains

For a homogeneous open XX chain described by HOBC, we have (with sin αx/ sin x = α when x = 0)

A(j )
η,χ = δη,χ − 1

N + 1

[
sin
(
j − 1

2

)
(Kη − Kχ )

sin 1
2 (Kη − Kχ )

− sin
(
j − 1

2

)
(Kη + Kχ )

sin 1
2 (Kη + Kχ )

]
, (33)

and hence

F
(OBC)
j ;�ηn+1, �χn

=
√

2

N + 1
det

⎛
⎜⎜⎜⎜⎜⎜⎝

sin Kη1j A
(j )
η1,χ1 A

(j )
η1,χ2 · · · A

(j )
η1,χn

sin Kη2j A
(j )
η2,χ1 A

(j )
η2,χ2 · · · A

(j )
η2,χn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

sin Kηn+1j A
(j )
ηn+1,χ1 A

(j )
ηn+1,χ2 · · · A

(j )
ηn+1,χn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (34)

The corresponding collective SOMEs are then calculated by using Eq. (17).
For the homogeneous periodic XX chain considered in Refs. [10–12], it is easy to check that

A(j ),(σn)
η,χ = 2

N

ei(K (σn )
χ −K (σ̄n )

η )j eiK (σ̄n )
η

eiK
(σ̄n )
η − eiK

(σn )
χ

. (35)

Combining the above equation with Eqs. (10) and (32), we have

F
(PBC)∗
j ;�ηn+1, �χn

= 1√
N

(
2

N

)n

e−i
�ηn+1 , �χn j det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1

1−e
−i(K(σ̄n )

η1 −K
(σn )
χ1 )

· · · 1

1−e
−i(K(σ̄n )

η1 −K
(σn )
χn )

1 1

1−e
−i(K(σ̄n )

η2 −K
(σn )
χ1 )

· · · 1

1−e
−i(K(σ̄n )

η2 −K
(σn )
χn )

· · · · · · · · · · · ·
1 1

1−e
−i(K(σ̄n )

ηn+1 −K
(σn)
χ1 )

· · · 1

1−e
−i(K(σ̄n )

ηn+1 −K
(σn )
χn )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (36)

where we introduced the momentum transfer between the two states |�η(p)
n+1〉 and | �χ (p)

n 〉,


�ηn+1, �χn
≡

n+1∑
j=1

K (σn+1)
ηj

−
n∑

i=1

K (σn)
χi

, (37)

which clearly lies in the set {K (−)
η }.

Equation (36) can be simplified further by noting that the determinant appearing in Eq. (36) can be evaluated analytically. In

fact, if we set xj = e
−iK

(σn+1)
ηj (j = 1,2, . . . ,n + 1), yi = e

iK (σn )
χi (i = 1,2, . . . ,n), and y0 = 0, then the determinant has the form

of a variant of the Cauchy determinant,

det
1

1 − xjyi

=
∏

j>j ′ (xj − xj ′ )
∏

i>i ′ (yi − yi ′ )∏
i

∏
j (1 − xiyj )

, (38)

which after some manipulation leads to

F
(PBC)∗
j ;�ηn+1, �χn

= 1√
N

(
2

N

)n

ei(n−j )
�ηn+1 , �χn h∗
�ηn+1; �χn

, (39)

where h�ηn+1; �χn
is given by Eq. (22).

The corresponding collective SOMEs for an inhomogeneous distribution {gj } can be readily calculated by introducing the
Fourier transform of {gj },

gj = 1

N

∑
q

e−iqj g̃q , g̃q = g̃∗
−q =

∑
j

eiqj gj ,q ∈ {K (−)
η }, (40)

which results in

F
(PBC)
�ηn+1, �χn

({gj }) = g̃
�ηn+1, �χn
e−in
�ηn+1 , �χn

√
N

(
2

N

)n

h�ηn+1, �χn
. (41)
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The above equation states that for two eigenstates |�η(p)
n+1〉 and | �χ (p)

n 〉 of the homogeneous periodic XX chain with momentum
difference 
�ηn+1, �χn

, the matrix element of the operator
∑

j gjS
−
j between the two is simply proportional to the Fourier transform g̃q

of the distribution {gj } in the mode q = 
�ηn+1, �χn
. For a uniform distribution gj = g, we simply have g̃
�ηn+1, �χn

= gNδ(
�ηn+1, �χn
,0),

so that Eq. (21) is recovered.
We point out that in Ref. [12] the inhomogeneous collective SOMEs F

(PBC)
�ηn+1, �χn

({gj }) were numerically computed by directly

using Eq. (20), which is numerically expensive and memory-demanding due to the multisums over the spatial indices �jn+1. The
factorized expression Eq. (41) derived in this work provides an easy way to calculate F

(PBC)
�ηn+1, �χn

({gj }). In addition, the evaluation of

F
(PBC)
�ηn+1, �χn

({gj }) does not involve the calculation of the NCn
NCn+1

N SOMEs F
(PBC)
j ;�ηn+1, �χn

, thus the computational memory and time can
be further saved.

C. Calculation of F̄(p)
l,l ′; �χn, �χ ′

n

We now turn to the SOME F̄
(p)
l,l′; �χn, �χ ′

n
, which can also be evaluated by using a similar fermionic approach. For the sake of

simplicity, we outline in Appendix B details of the derivation of F̄
(p)
l,l′; �χn, �χ ′

n
, which actually closely follow the method used in

Sec. III A.
It turns out that F̄

(p)
l,l′; �χn, �χ ′

n
is given by

F̄
(p)
l,l′; �χn, �χ ′

n
= (−1)1+δl,l′ det

⎛
⎜⎜⎜⎜⎜⎜⎝

δl,l′ U
(σn)∗
χ1,l

U
(σn)∗
χ2,l

· · · U
(σn)∗
χn,l

U
(σn)
χ ′

1,l
′ Ā

(l,l′),(σ̄n)
χ1,χ

′
1

Ā
(l,l′),(σ̄n)
χ2,χ

′
1

· · · Ā
(l,l′),(σ̄n)
χn,χ

′
1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

U
(σn)
χ ′

n,l
′ Ā

(l,l′),(σ̄n)
χ1,χ ′

n
Ā

(l,l′),(σ̄n)
χ2,χ ′

n
· · · Ā

(l,l′),(σ̄n)
χn,χ ′

n

⎞
⎟⎟⎟⎟⎟⎟⎠

. (42)

Equation (42) states that F̄
(p)
l,l′; �χn, �χ ′

n
can also be expressed as the determinant of a single (n + 1) × (n + 1) matrix. It is worth men-

tioning that another, more natural way of calculating F̄
(p)
l,l′ ; �χn, �χ ′

n
is to insert the completeness relation

∑N−1
m=0

∑
�ηm+1

|�η(p)
m+1〉〈�η(p)

m+1| = 1

between S−
l′ and S+

l in the definition given by Eq. (18), and we observe that only those states with n + 1 excitations contribute
[22]. It is shown in Appendix C that a combination of the obtained results for F

(p)
j ;�ηn+1, �χn

[Eq. (32)] with the Cauchy-Binet formula
can also yield Eq. (42).

Let us now look into the case of l = l′ a little bit further. In this case,

F̄
(p)
l,l; �χn, �χ ′

n
= det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 U
(σn)∗
χ1,l

U
(σn)∗
χ2,l

· · · U
(σn)∗
χn,l

U
(σn)
χ ′

1,l
δχ1,χ

′
1

δχ2,χ
′
1

· · · δχn,χ
′
1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

U
(σn)
χ ′

n,l
δχ1,χ ′

n
δχ2,χ ′

n
· · · δχn,χ ′

n

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

In physically relevant cases with n � 2, if the set { �χn} ≡ {χ1, · · · ,χn} contains more than one element, for example χα1 , χα2 , · · ·
not being equal to any element in the set { �χ ′

n} = {χ ′
1, . . . ,χ

′
n}, then it is obvious that F̄

(p)
l,l; �χn, �χ ′

n
vanishes since the (α1 + 1)th,(α2 +

1)th, . . . columns of the matrix in the above equation have their last n elements being zero. Thus, the necessary condition for
F̄

(p)
l,l; �χn, �χ ′

n
being finite is that the two sets { �χn} and { �χ ′

n} share either n or n − 1 elements. Actually, by performing a Laplace
expansion of the determinant in Eq. (43) along the first row, we arrive at

F̄
(p)
l,l; �χn, �χ ′

n
= δ �χn, �χ ′

n
−

n∑
α=1

n∑
α′=1

(−1)α+α′
U

(σn)∗
χα,l U

(σn)
χ ′

α′ ,l
δ �χ (α)

n , �χ ′(α′ )
n

. (44)

In the double summation on the right-hand side of the above equation, it is easy to see that χα �= χ ′
γ ′ when γ ′ �= α′, and χ ′

α′ �= χγ

when γ �= α. Thus, χα = χ ′
α′ corresponds to the case of �χn = �χ ′

n, and χα �= χ ′
α′ corresponds to the case in which { �χn} and { �χ ′

n}
share exactly n − 1 elements, i.e.,

(χ1, . . . ,χα−1,χα+1, . . . ,χn) = (χ ′
1, . . . ,χ

′
α′−1,χ

′
α′+1, . . . ,χ

′
n), (45)

with χα /∈ { �χ ′
n} and χ ′

α′ /∈ { �χn}, respectively.
For �χn = �χ ′

n, we have

F̄
(p)
l,l; �χn, �χn

= 1 −
n∑

α=1

U
(σn)
χα,lU

(σn)∗
χα,l . (46)
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In the latter case, one can show that, among the totally Cn
N (Cn

N − 1)/2 pairs of ( �χn, �χ ′
n) with �χn and �χ ′

n distinct (regardless of the
order of the two), there are actually Cn

NN (N − n)/2 such pairs in which �χn and �χ ′
n share exactly n − 1 elements. For a given pair

(�ηn,�η′
n) having this property, assuming that it is ηβ (η′

β ′) that does not appear in the given set {�η′
n} ({�ηn}), then from Eq. (44) we

have

F̄
(p)
l,l;�ηn,�η′

n
= (−1)β+β ′+1U

(σn)∗
ηβ ,l U

(σn)
η′

β′ ,l
. (47)

The case of l = l′ considered above is interesting since F̄
(p)
l,l; �χn, �χ ′

n
can give the matrix elements of operators such as Sz

j , Sz
jS

z
j+1,

etc., which are relevant to the central spin model, the Heisenberg spin chain, and so on. Actually, from the relation S−
l S+

l = 1
2 − Sz

l ,
we can define

G
(p)
l; �χn, �χ ′

n
≡ 〈 �χ (p)

n

∣∣Sz
l

∣∣ �χ ′(p)
n

〉 = 1
2δ �χn, �χ ′

n
− F̄

(p)
l,l; �χn, �χ ′

n
, (48)

which also vanishes for { �χn} and { �χ ′
n} sharing fewer than n − 1 elements, as well as

Ḡ
(p)
l,l′; �χn, �χ ′

n
≡ 〈 �χ (p)

n

∣∣Sz
l S

z
l′
∣∣ �χ ′(p)

n

〉 =∑
�ηn

G
(p)
l; �χn,�ηn

G
(p)
l′;�ηn, �χ ′

n
, (49)

where the set of summation indices {�ηn} in the above equation has n or n − 1 common elements with both �χn and �χ ′
n, so that the

two sets { �χn} and { �χ ′
n} have at most two distinct elements. One can also show that there are Cn

NC2
NC2

N−n/2 such pairs of ( �χn, �χ ′
n)

in which the two have exactly n − 2 common elements. When N and n are relatively large, we have Cn
N  C2

NC2
N−n, and hence

the total number of matrix elements to be considered can be greatly reduced.
Combining Eq. (44) with Eq. (48), the collective matrix elements of

∑N
j=1 g′

j S
z
j for some distribution {g′

j } can be calculated
as

G
(p)
�χn, �χ ′

n
({g′

j }) ≡ 〈 �χ (p)
n

∣∣ N∑
j=1

g′
j S

z
j

∣∣ �χ ′(p)
n

〉

= −1

2
δ �χn, �χ ′

n

⎛
⎝ N∑

j=1

g′
j

⎞
⎠+

n∑
α=1

n∑
α′=1

(−1)α+α′

⎛
⎝ N∑

j=1

g′
jU

(σn)∗
χα,j U

(σn)
χ ′

α′ ,j

⎞
⎠δ �χ (α)

n , �χ ′(α′ )
n

. (50)

It can be shown that G
(p)
�χn, �χ ′

n
({g′

j }) can also be written as [12]

G
(p)
�χn, �χ ′

n
({g′

j }) = −1

2
δ �χn, �χ ′

n

⎛
⎝ N∑

j=1

g′
j

⎞
⎠

+
∑

�jn

S �χ ′
n,

�jn
S∗

�χn, �jn

(
n∑

l=1

g′
jl

)
. (51)

For a uniform distribution g′
j = g′, it can be seen from either

Eq. (50) or Eq. (51) that

G
(p)
�χn, �χ ′

n
(g′) = g′

(
n − N

2

)
δ �χ ′

n, �χn
. (52)

In the atomic limit, the transformation matrix U (σ ) reduces
to the identity matrix and the eigenbasis reduces to the Ising
configurations in real space. It is shown in Appendix D that the
matrix representation of the real-space matrix element F̄ (p)

l,l′; �jn, �j ′
n

given by Eq. (42) survives only for two Ising configurations
satisfying �j (m)

n = �j ′(m′)
n for some m and m′, where l = jm /∈

{ �j ′
n} and l′ = j ′

m′ /∈ { �jn} are the two distinct elements that are
not shared by the two sets. This is consistent with the definition
F̄

(p)

l,l′; �jn, �j ′
n

= 〈�jn|S+
l S−

l′ | �j ′
n〉 that is often used in conventional

diagonalization of spin models, where l and l′ correspond to
the two sites that are connected by S+

l S−
l′ . Thus, Eq. (42) also

provides a compact way to calculate real-space matrix elements
of the XY-type spin-spin interaction in interacting spin chains.

For the Heisenberg model described by HHeisenberg = HXX +
HIsing, where HIsing =∑N

j=1 J ′
j S

z
jS

z
j+1, it is interesting to note

that HXX is diagonal in the eigenbasis {| �χn〉}, while HIsing is
diagonal in the real basis {| �jn〉}.

IV. APPLICATIONS

In this section, we apply the results obtained in the preceding
section to two physical systems, namely the nonlinear optical
response of a one-dimensional molecular aggregate studied in
Ref. [9], and the real-time dynamics of an interacting Dicke
model. Whereas the latter problem can in principle also be
dealt with by other numerical methods, the nonlinear response
of molecular aggregates requires essentially the information of
matrix elements of the transition dipole operator in the energy
basis of the aggregates.

A. Nonlinear optical response of one-dimensional
molecular aggregates

As mentioned in the Introduction, the one-dimensional
XX spin chain described by Eq. (1) can model a linear
molecular aggregate consisting of an array of coupled two-level
molecules, with Jj and hj being the nearest-neighbor dipole-
dipole coupling and the optical two-level transition frequency
of the j th molecule, respectively. Taking advantage of the fact
that the fundamental electronic excitations in such a system are
in fact fermions, Spano proposed a simplified way to calculate
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the third-order hyperpolarizability for an aggregate with site
disorder [9]. The third-order response requires knowledge of
the one- and two-exciton eigenstates and eigenenergies, for
which the obtained determinant representation of the transition
dipole matrix elements can be directly used.

To calculate the nonlinear optical response, the matrix
elements of the transition dipole operator (with μ the transition
dipole moment between the ground and excited state of the
two-level molecule)

μ̂ = μ

N∑
j=1

(S†
j + S−

j ) (53)

are needed, where we assumed that the dimension of the ag-
gregate is small enough compared with the optical wavelength.
In particular, the third-order aggregate hyperpolarizability
γ (−ω; ω,ω, − ω) is related to the matrix elements [9],

μ0,η ≡ 〈0|μ̂ξ †
η |0〉, η = 1,2, . . . ,N,

μη,χ1χ2 ≡ 〈0|ξημ̂ξ †
χ1

ξ †
χ2

|0〉, 1 � χ1 < χ2 � N,

which connect the vacuum state |0〉 to the N one-exciton
states |η〉, and connect the latter to the C2

N two-exciton states
|χ1,χ2〉, respectively. We recognize that μ0,η (μη,χ1χ2 ) is just
the collective SOME defined in Eq. (17) with n = 0 (n = 1),

μ0,η = μFη,0({gj = 1}), (54)

μη,χ1χ2 = μFχ1χ2,η({gj = 1}). (55)

For a homogeneous molecular chain with periodic boundary
conditions, these matrix elements are given by the factorized
expression in Eq. (21) (for N = even molecules):

μ
(p)
0,η = μ

√
Nδη, N

2 +1, (56)

μ(p)
η,χ1χ2

= μ
2√
N

δ
(
K (+1)

χ1
+ K (+1)

χ2
− K (−1)

η

)

× e
iK (+1)

χ2 − e
iK (+1)

χ1[
1 − e−i(K (+1)

χ1 −K
(−1)
η )
][

1 − e−i(K (+1)
χ2 −K

(−1)
η )
] . (57)

We see that μ
(p)
0,η vanishes unless K (−1)

η = 0, and μ
(p)
η,χ1χ2 is

nonzero only if K (+1)
χ1

+ K (+1)
χ2

− K (−1)
η = 0 or ±2π , imply-

ing the momentum conservation of excitons in the optical
response.

For a homogeneous molecular chain with free ends studied
in Ref. [9], the corresponding μ

(o)
0,η and μ(o)

η,χ1χ2
can also be

calculated analytically from Eqs. (33) and (34),

μ
(o)
0,η = μ

√
2

N + 2

1 − (−1)η

2
cot

Kη

2
, (58)

μ(o)
η,χ1χ2

= μ

√
1

2(N + 1)
cot

Kχ1

2
[−(δχ1+η,χ2 + δχ1+χ2,η)

+ (δχ1,χ2+η + δχ1+χ2+η,2(N+1))] − (χ1 ↔ χ2) (59)
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FIG. 1. The ratio of the excitonic absorption peaks occurring
at the first peak ω = E1 to that at the second peak ω = E3,
i.e., Im[γ (−ω; ω,ω, − ω)]|E1/Im[γ (−ω; ω,ω, − ω)]|E3 , for homo-
geneous aggregates of different sizes [see Ref. [9] for an ex-
plicit expression of the third-order aggregate hyperpolarizability
γ (−ω; ω,ω, − ω)]. Open boundary conditions are assumed for the
molecular aggregates. Other parameters are set the same as those in
Ref. [9].

for η �= χ1 and η �= χ2. For η = χ1(and hence η �= χ2 since
χ1 �= χ2), we have

μ(o)
χ1,χ1χ2

= −μ

√
1

2(N + 1)
[1 − (−1)χ2−1] cot

Kχ2

2

−μ

√
1

2(N + 1)

(
cot

Kχ1

2
+ cot Kχ1

)

× (δ2χ1,χ2 − δχ2+2χ1,2(N+1)). (60)

Similarly, when η = χ2 (and hence η �= χ1), μ(o)
χ2,χ1χ2

can be
obtained from μ(o)

χ1,χ1χ2
by swapping χ1 and χ2 and noting that

μ(o)
χ2,χ1χ2

= −μ(o)
χ2,χ2χ1

. We see from the above expressions that

μ
(o)
0,η is nonzero only if η is odd [9], while μ(o)

η,χ1χ2
vanishes

unless η and χ1 + χ2 have the same parity [23].
For a homogeneous aggregate with free ends, the sat-

urated excitonic absorption spectra show peaks at ω =
E1,E3,E5, . . . [9]. Figure 1 shows the evolution of the ratio of
the imaginary parts of the hyperpolarizability γ (−ω; ω,ω, −
ω) (see Ref. [9] for an explicit expression) at the first
peak ω = E1 to that at the second peak ω = E3 with the
number of molecules N in the aggregate. It can be seen
that the ratio Im[γ (−E1; E1,E1,−E1)]/Im[γ (−E3; E3,E3, −
E3)] drops quickly as N is increased from small N , and it
keeps decreasing more moderately as N increases further up
to several tens, which is consistent with Ref. [9].

There may be cases in which the aggregates sizes are
comparable with the optical wavelength [24]. As a result,
the transition dipole operator can generally no longer be
written as a collective form given by Eq. (53), but rather as
μ̂ = μ

∑N
j=1(eik·rj S

†
j + H.c.), where k and rj are the wave

vector of the light and the position of the j th molecule,
respectively. In turn, the matrix elements for the transi-
tion dipole operator do not admit closed forms such as
Eqs. (54)–(60) and must be evaluated through Eq. (17) by
calculating all the NCn

NCn+1
N individual matrix elements

Fj ;�ηn+1, �χn
. Thanks to the determinant form of Fj ;�ηn+1, �χn

obtained
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in Eq. (32), the lengthy sums over the site indices in Eq. (20)
[9] are avoided. We note that if periodic boundary conditions
are imposed on the molecular aggregates, the transition dipole
matrix elements can be obtained most simply through the
factorized expression given by Eq. (41). The advantages of
the present method become more apparent when higher-order
nonlinear optical properties are involved [25], for which multi-
exciton states with more than two excitons need to be taken into
account. The formalism developed above provides a conve-
nient method to calculate these higher-order nonlinear optical
responses.

B. The interacting Dicke model and its dynamics

As the second application of the developed formalism for
the SOMEs, we now turn to the study of real-time dynamics of
the interacting Dicke model. Specifically, we consider a model
consisting of a periodic XX spin chain coupled to a single
bosonic mode:

Hint = Hint,0 + Hint,1,

Hint,0 =
N∑

j=1

ωj

(
Sz

j + 1

2

)

+ J

N∑
j=1

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

)+ ωa†a,

Hint,1 =
N∑

j=1

gj (S+
j a + S−

j a†), (61)

where a is the boson annihilation operator for the single-
mode photon with frequency ω. In the Frenkel-exciton model
description of molecular aggregates located in a single-mode
cavity, {ωj } and {gj } are the (inhomogeneous) excitonic
excitation energies and the exciton-photon coupling constants,
respectively. J is the uniform nearest-neighbor exciton cou-
pling between adjacent monomers arranged in a line [10,15].
It is easily seen that Hint conserves the total number of
excitations M = a†a +∑j (Sz

j + 1/2), implying that Hint can
be diagonalized in subspaces with fixed M’s.

The usual inhomogeneous Dicke model HDicke that de-
scribes a set of N two-level atoms interacting with a single-
photon mode [16,17] can be obtained by setting J = 0 in Hint.
In the special case of a uniform light-atom interaction gj = g,
HDicke(g) is integrable and can be solved by using the Bethe
ansatz [19,26]. The dynamics of the inhomogeneous Dicke
model has been studied in detail in Refs. [16,17,19]. Note that
Hint is no longer integrable, and hence the Bethe ansatz ceases
to be applicable.

To obtain universal short-dynamics for different numbers
of spins, we define the collective Rabi frequency [12,15]

gR =
√√√√ N∑

j=1

g2
j , (62)

which will be used as an energy unit below. The Hilbert space
in the M sector is spanned by the DN,M =∑min{M,N}

m=0 Cm
N basis

states {|�ηm; M − m〉} in which Hint,0 is diagonal, where m

counts the total number of excitations in the XX chain. So

any state in the M sector can be written

|ψM〉 =
min{M,N}∑

m=0

∑
�ηm

A
(m)
�ηm

|�ηm; M − m〉. (63)

The matrix element of Hint between any two basis states
|�ηm; M − m〉 and |�η′

m′ ; M − m′〉 reads

〈�η′
m′ ; M − m′|Hint|�ηm; M − m〉

= δm,m′

m∏
l=1

δη′
l ,ηl

[E�ηm
+ ω(M − m)]

+ δm′,m+1F
∗
�η′
m+1,�ηm

({gj })
√

M − m

+ δm′,m−1F�ηm,�η′
m−1

({gj })
√

M − m + 1, (64)

where E�ηm
=∑m

l=1 Eηl
is the total energy of the m fermions

occupying the set of modes {�ηm}.
In the following numerical simulation, we use Eqs. (17)

and (32) to compute the collective matrix elements F�ηn+1,�ηn

appearing in Eq. (64). Once the block Hamiltonian in the
M sector is constructed, the time-evolved state |ψ(t)〉 =
e−iH t |ψ0〉 from an initial state |ψ0〉 is then calculated by
numerically integrating the Schrödinger equation i∂t |ψ(t)〉 =
H |ψ(t)〉. We also consider numbers of excitations no larger
than the total number of spins, i.e., M � N . We emphasize
that the dynamics of the same model can in principle also
be treated in the real-space basis of the XX chain. However,
Eq. (64) offers us a compact expression for evaluating the
matrix elements of the Hamiltonian provided the SOMEs
F�ηn+1,�η′

n
({gj }) are obtained.

1. Noninteracting chain, homogeneous coupling

Using a combination of mean-field analysis and algebraic
Bethe ansatz, the authors of Ref. [19] studied the decay
of the bosonic occupation number Na(t) = 〈ψ(t)|a†a|ψ(t)〉
in the integrable model described by HDicke(g), with uni-
formly distributed spin excitation energies ωj = (j − 1) 


N−1
between zero and the bandwidth 
. It was pointed out in
Ref. [19] that neither the mean-field approach nor the Bethe
ansatz solution, which requires a truncation of the Hilbert
space, can capture the real-time dynamics of the system
accurately in the intermediate-coupling regime with 
/N <

gR = g
√

N < 
 due to the significant mixture between the
spins and the bosonic mode. Therefore, a full quantum
treatment is needed in this regime, which limits the num-
ber of spins considered up to only N � 16. For exam-
ple, for N = 16 spins and M = 6 excitations, the dimen-
sion of the Hilbert space in this M sector already reaches
D16,6 = 14 893.

As in Ref. [19], we are interested in the time evolution of
the reduced bosonic occupation number Na(t)/M starting with
the initial state |ψ0〉 = | ↓ · · · ↓; M〉. Figure 2 shows Na(t)/M
for different combinations of (N,M). The ratio between the
excitonic bandwidth and the collective Rabi frequency is set
as a constant 
/gR = 10/3 for different numbers of spins, so
that the system lies in the intermediate-coupling regime. The
photon energy is always set to be half of the bandwidth, i.e.,
ω/
 = 0.5. In Fig. 1(a), we show the evolution of Na(t)/M for
N = 16 spins. For small numbers of excitations with M = 1
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FIG. 2. Real-time evolution of the reduced bosonic occupation number Na(t)/M for J = 0, 
/gR = 10/3, and ω/gR = 5/3. The initial
state is a boson number state |ψ0〉 = | ↓ · · · ↓; M〉 occupied by M bosons. (a) The number of spins is N = 16, and the numbers of excitations
are M = 1, 3, 5, and 6; (b) the number of excitations is M = 10, and the numbers of spins are N = 10, 11, 12, 13, and 14; (c) the ratio between
N and M is fixed: N/M = 1 (solid curves) and N/M = 2 (dashed curves).

and 3, we observe revivals of Na(t)/M at later times gRt ≈ 30
and ≈60, which are mainly due to the finite-size effect for small
M . As M increases, the revival behavior disappears gradually,
and plateaus are developed at intermediate and long times due
to a rapid increase of the dimension of the Hilbert space. In
addition, the plateau value tends to increase with increasing
M , which is consistent with the observation that an increase
of M tends to suppress the decay of Na(t)/M at short times
[19]. However, our results go beyond the short-time dynamics
obtained in Ref. [19] to reach the steady long-time regime.
Furthermore, even though in the framework of Bethe ansatz
solutions one can perform a full quantum calculation as well,
the nasty double sum over all the eigenstates cannot be avoided
[19].

Figure 1(b) shows the evolution of Na(t)/M for a fixed
excitation number M = 10, but with different numbers of
spins. In contrast to the case of varying M and keeping N

fixed, increasing N with M fixed can actually pull the profile
of Na(t)/M down, implying that it might be the ratio M/N

that qualitatively determines the overall profile of Na(t)/M .
This is confirmed in Fig. 1(c) for M/N = 1/2 and 1. In both
cases, some slight oscillations appear in the plateau regime for
small M . However, the curves become closer to each other as
M is increased, and they are expected to converge to a single
curve in the limit M,N → ∞.

2. Homogeneous chain, inhomogeneous coupling

We now go beyond the atomic limit to include finite dipole-
dipole interaction between nearest-neighbor monomers. For
simplicity, we impose periodic boundary conditions on the
chain and assume uniform on-site energies for the monomers,
i.e., ωj = ωA,∀j . Thus, the noninteracting Hint,0 becomes

Hint,0 = ωM + HPBC(−
AC,J ), (65)

with single-particle dispersion Eη,σ = 
AC + 2J cos K (σ )
η in

the sector with fermion parity σ , where 
AC = ωA − ω is the
exciton-cavity detuning. For J < 0 (J > 0), the Hamiltonian
Hint,0 describes a linear J -aggregate (H -aggregate) [27]. With
the bosonic mode describing a single-mode cavity coupled to
the aggregate, the exciton-cavity coupling is assumed to be
of the form

gj = gd sin
πj

2N
, (66)

where gd measures the coupling strength and is related to the
dipole moment of the exciton, and the sinusoidal part is due
to different positions of the monomers in the cavity [18]. The
inhomogeneous coupling constants {gj } are thus distributed
nonuniformly between g1 = gd sin π

2N
and gN = gd . For the

resonant case with 
AC = 0, the ratio between the collective
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FIG. 3. Real-time evolution of the reduced photon number Na(t)/M in the resonant case ω = ωA for N = 12 monomers. (a) J > 0,
(b) J < 0. The initial state is chosen as the ground state of the excitons with M = 6 excitations, where the occupied excitonic modes are
indicated as solid blue circles in the corresponding insets.

Rabi frequency and the exciton bandwidth gR/2|J | provides a
measure of the exciton-cavity coupling strength.

In this subsection, we consider initial states with all excess
energy contained in the excitonic part. In particular, we
consider the following initial state in the M sector:

|ψ0〉 = |G〉M ⊗ |0〉c, (67)

which is a product state of the excitonic ground state |G〉M
with M excitons and the vacuum state |0〉c of the cavity
photons. Depending on the sign of J , the ground state is
filled by M fermions with their wave numbers distributed at
the middle (edges) of the Brillouin zone (−π,π ) for J < 0
(J > 0). In Fig. 3, we present the dynamics of Na(t)/M
for a molecular chain with N = 12 monomers and M = 6
excitations, so that the ground state of the molecular chain is
|G〉6 = ξ

†
4ξ

†
5 · · · ξ †

9 |0〉 and |G〉6 = ξ
†
1ξ

†
2ξ

†
3ξ

†
10ξ

†
11ξ

†
12|0〉 for J <

0 and J > 0, respectively (Fig. 3, insets).
For J > 0, we observe a nonmonotonic dependence of the

photon generation on the exciton coupling J [Fig. 3(a)]. In
the strong exciton-cavity coupling regime with J/gR � 1,
the photon generation from the half-filled exciton ground
state is suppressed since the exciton-cavity coupling is strong
enough to excite |G〉6 into a large number of excitonic excited
states due to the narrow exciton bandwidth. As the exciton
coupling J increases, the energy differences between different
eigenenergies of the molecular chain also increase. If the

exciton-cavity coupling can efficiently excite higher occupied
excitonic modes into the cavity mode, and at the same time
excitations to the unoccupied excitonic modes are effectively
suppressed, then the photon generation is mostly enhanced.
When J is increased further, so that even the smallest excitation
energy exceeds the largest exciton-cavity coupling gN , then the
photon generation is again suppressed.

For J < 0, the excitonic ground state |G〉6 has a different
nature from that of J > 0, which leads to an oscillatory decay
of Na(t)/M . Though in this case there is no clear indicator of
the photon generation behavior, it seems that the mean value of
Na(t)/M shows a similar nonmonotonic dependence on |J |.
For large enough |J |, we again observe a suppression of the
photon generation. These behaviors of the photon generation
are similar to the decoherence properties previously observed
in an interacting central spin model [12].

V. CONCLUSIONS

In this work, we derived compact expressions for the spin-
operator matrix elements (SOMEs) of spin operators S−

j and
S−

j S+
j ′ between too relevant eigenstates of an inhomogeneous

periodic/open XX spin chain. Using a fermionic approach
that has been applied to the calculation of SOMEs in the
quantum Ising model, we show that these matrix elements can
simply be expressed as determinants of some square matrices
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that involve the coefficients of the canonical transformations
diagonalizing the chain. For a homogeneous XX chain with
periodic boundary conditions, the SOME of S−

j happens to be
proportional to a variant of the Cauchy determinant that can be
evaluated analytically, which recovers a known but unproven
result discovered in Ref. [10]. Using the results for the
SOMEs of S−

j S+
j ′ in the case of j = j ′, we also derived useful

expressions for the SOMEs of Sz
l and Sz

l S
z
l′ , which are relevant

to the central spin model and the Heisenberg spin chain, etc.
We then applied the obtained formalism to the study of

third-order optical response of molecular aggregates with free
ends. Since the transition dipole matrix elements between
eigenstates of an aggregate are essential for the calculation
of the nonlinear optical responses, our results thus provide
a suitable framework for this purpose, especially when the
molecule sizes are comparable with the optical wavelength, or
when higher-order responses need to be considered. We next
studied the real dynamics of an interacting Dicke model that
describes a set of interacting spins 1/2 coupled to a single
bosonic model. In the noninteracting case, we obtain results
that are consistent with the literature, and we find that it is the
ratio between the number of excitations and the total number of
spins that determines the overall profile of the reduce bosonic
occupation number. In the interacting case that is relevant to
a one-dimensional molecular chain located in a single-mode
cavity, we find that the exciton coupling between nearest-
neighboring monomers has a significant effect on the photon
generation from a half-filled excitonic ground state. We believe
the results obtained in this work can find useful applications in
a variety of composite “system-environment” systems, e.g.,
low-dimensional molecular aggregates, optical emitters in
photocell systems, interacting central spin models, and so on.
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APPENDIX A: DERIVATION OF EQ. (20)

From Eqs. (12) and (17), F
(p)
�ηn+1, �χn

({gj }) can be written as

F
(p)
�ηn+1, �χn

({gj }) = 〈 �χ (p)
n

∣∣∑
�jn+1

N∑
j=1

gjS�ηn+1; �jn+1
Tjcj | �jn+1〉. (A1)

Since cj |0〉 = 0, the summation index j in the above equation
should be chosen from the set { �jn+1} = {j1,j2, . . . ,jn+1},
yielding

F
(p)
�ηn+1, �χn

({gj }) = 〈 �χ (p)
n

∣∣∑
�jn+1

n+1∑
l=1

gjl
S�ηn+1; �jn+1

Tjl
cjl

n+1∏
m=1

c
†
jm

|0〉.

(A2)

By using Eq. (3) to move Tjl
cjl

across the creations operators
c
†
j1
, . . . ,c

†
jl−1

, and noting that Tjl
|0〉 = |0〉, we have

F
(p)
�ηn+1, �χn

({gj }) = 〈 �χ (p)
n

∣∣∑
�jn+1

n+1∑
l=1

gjl
S�ηn+1; �jn+1

l−1∏
m=1

c
†
jm

n+1∏
m=l+1

c
†
jm

|0〉

= 〈 �χ (p)
n

∣∣∑
�jn+1

n+1∑
l=1

gjl
S�ηn+1; �jn+1

∑
�χ ′
n

S∗
�χ ′
n; �j (l)

n+1

∣∣ �χ ′(p)
n

〉

=
∑
�jn+1

n+1∑
l=1

gjl
S�ηn+1; �jn+1

S∗
�χn; �j (l)

n+1
, (A3)

where we have used the inverse transformation of Eq. (12) in
the second to last line.

APPENDIX B: DERIVATION OF EQ. (42) USING THE FERMIONIC APPROACH

In this appendix, we closely follow the method used in Sec. III A of deriving F
(p)
j ;�ηn+1, �χn

to derive a determinant representation

for F̄
(p)
l,l′; �χn, �χ ′

n
.

We again switch to the fermion representation by writing

F̄
(p)
l,l′; �χn, �χ ′

n
= 〈0|ξχn,σn

· · · ξχ1,σn
cl′Tl′Tlc

†
l ξ

†
χ ′

1,σn
· · · ξ †

χ ′
n,σn

|0〉 =
N∑

χ=1

N∑
χ ′=1

U
(σn)
χ,l′ U

(σn)∗
χ ′,l D̄

(l,l′)
χ,χ1,...,χn;χ ′,χ ′

1,...,χ
′
n
, (B1)

where

D̄
(l,l′)
χ,χ1,...,χn;χ ′,χ ′

1,...,χ
′
n
≡ 〈0|ξχn,σn

· · · ξχ1,σn
ξχ,σn

Tl′Tlξ
†
χ ′,σn

ξ
†
χ ′

1,σn
· · · ξ †

χ ′
n,σn

|0〉. (B2)

Inserting the identity (Tl′Tl)(Tl′Tl) = 1 between ξη1,σn
and ξχ,σn

in the preceding equation, we have

D̄
(l,l′)
χ,χ1,...,χn;χ ′,χ ′

1,...,χ
′
n

=
N∑

n′=1

U
(σn)∗
χ,n′ 〈0|ξχn,σn

· · · ξχ1,σn
(Tl′Tl)(Tl′Tlcn′Tl′Tl)ξ

†
χ ′,σn

ξ
†
χ ′

1,σn
· · · ξ †

χ ′
n,σn

|0〉

=
N∑

ρ=1

[
−

lmax−1∑
n′=lmin

+
lmin−1∑
n′=1

+
N∑

n′=lmax

]
U

(σn)∗
χ,n′ U

(σn)
ρ,n′ 〈0|ξχn,σn

· · · ξχ1,σn
Tl′Tlξρ,σn

ξ
†
χ ′,σn

ξ
†
χ ′

1,σn
· · · ξ †

χ ′
n,σn

|0〉

=
N∑

ρ=1

Ā(l,l′),(σ̄n)
χ,ρ 〈0|ξχn,σn

· · · ξχ1,σn
Tl′Tlξρ,σn

ξ
†
χ ′,σn

ξ
†
χ ′

1,σn
· · · ξ †

χ ′
n,σn

|0〉, (B3)
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where Ā(l,l′),(σ )
χ,ρ is given by Eq. (28). Note that only ρ = χ ′,χ ′

1, . . . ,χn contributes to the last line of Eq. (B3), hence we have

D̄
(l,l′)
χ,χ1,...,χn;χ ′,χ ′

1,...,χ
′
n

= Ā
(l,l′),(σ̄n)
χ,χ ′ D̄

(l,l′)
χ1,...,χn;χ ′

1,...,χ
′
n
+

n∑
m=1

(−1)mĀ
(l,l′),(σ̄n)
χ,χ ′

m
D̄

(l,l′)
χ1,...,χn;χ ′,...,χ ′

m−1,χ
′
m+1,...χ

′
n

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ā
(l,l′),(σ̄n)
χ,χ ′ Ā

(l,l′),(σ̄n)
χ1,χ ′ Ā

(l,l′),(σ̄n)
χ2,χ ′ · · · Ā

(l,l′),(σ̄n)
χn,χ ′

Ā
(l,l′),(σ̄n)
χ,χ ′

1
Ā

(l,l′),(σ̄n)
χ1,χ

′
1

Ā
(l,l′),(σ̄n)
χ2,χ

′
1

· · · Ā
(l,l′),(σ̄n)
χn,χ

′
1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

Ā
(l,l′),(σ̄n)
χ,χ ′

n
Ā

(l,l′),(σ̄n)
χ1,χ ′

n
Ā

(l,l′),(σ̄n)
χ2,χ ′

n
· · · Ā

(l,l′),(σ̄n)
χn,χ ′

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

Substituting this equation into Eq. (B1) and using the relations

N∑
χ=1

Ā
(l,l′),(σ )
χ ′,χ U

(σ̄ )∗
χl′ =

{
sgn(l′ − l)U (σ̄ )∗

χ ′,l′ , l �= l′,

U
(σ̄ )∗
χ ′,l , l = l′,

(B5)

N∑
χ ′=1

Ā
(l,l′),(σ )
χ ′,χ U

(σ̄ )
χ ′l =

{
sgn(l − l′)U (σ̄ )

χ,l , l �= l′,

U
(σ̄ )
χ,l , l = l′,

(B6)

and
N∑

χ=1

N∑
χ ′=1

U
(σ̄ )∗
χ ′l′ Ā

(l,l′),(σ )
χ,χ ′ U

(σ̄ )
χl = δll′ , (B7)

we finally obtain the determinant representation given by Eq. (42).

APPENDIX C: ALTERNATIVE DERIVATION OF EQ. (42) USING THE CAUCHY-BINET FORMULA

In this appendix, we will use the obtained formula of F
(p)
j ;�ηn+1, �χn

[Eq. (32)] to derive Eq. (42). We insert the completeness relation∑N−1
m=0

∑
�ηm+1

|�η(p)
m+1〉〈�η(p)

m+1| = 1 between S−
l′ and S+

l appearing in F̄
(p)
l,l′; �χn, �χ ′

n
:

F̄
(p)
l,l′; �χn, �χ ′

n
=
∑
�ηn+1

〈 �χ (p)
n

∣∣S−
l′
∣∣�η(p)

n+1

〉 〈�η(p)
n+1

∣∣S+
l

∣∣ �χ (p)′
n

〉

=
∑
�ηn+1

F
(p)∗
l;�ηn+1, �χ ′

n
F

(p)
l′;�ηn+1, �χn

=
∑
�ηn+1

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
(σ̄n)∗
η1,l

U
(σ̄n)∗
η2,l

· · · · · · U
(σ̄n)∗
ηn+1,l

A
(l),(σn)
η1,χ

′
1

A
(l),(σn)
η2,χ

′
1

· · · · · · A
(l),(σn)
ηn+1,χ

′
1

A
(l),(σn)
η1,χ

′
2

A
(l),(σn)
η2,χ

′
2

· · · · · · A
(l),(σn)
ηn+1,χ

′
2

· · · · · · · · · · · · · · ·
A

(l),(σn)
η1,χ ′

n
A

(l),(σn)
η2,χ ′

n
· · · · · · A

(l),(σn)
ηn+1,χ ′

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U
(σ̄n)
η1,l′ A(l′),(σn)∗

η1,χ1
A(l′),(σn)∗

η1,χ2
· · · A(l′),(σn)∗

η1,χn

U
(σ̄n)
η2,l′ A(l′),(σn)∗

η2,χ1
A(l′),(σn)∗

η2,χ2
· · · A(l′),(σn)∗

η2,χn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

U
(σ̄n)
ηn+1,l′ A(l′),(σn)∗

ηn+1,χ1
A(l′),(σn)∗

ηn+1,χ2
· · · A(l′),(σn)∗

ηn+1,χn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

Now we invoke the Cauchy-Binet formula for an (n + 1) × N matrix A and an N × (n + 1) matrix B:

det(AB) =
∑
�ηn+1

det[A(�ηn+1)] det[B(�ηn+1)], (C2)

where A(�ηn+1) [B(�ηn+1)] denote the matrix formed from A (B) using columns (rows) (η1,η2, . . . ,ηn+1). We see that the two
matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U
(σ̄n)∗
1,l U

(σ̄n)∗
2,l · · · · · · U

(σ̄n)∗
N,l

A
(l),(σn)
1,χ ′

1
A

(l),(σn)
2,χ ′

1
· · · · · · A

(l),(σn)
N,χ ′

1

A
(l),(σn)
1,χ ′

2
A

(l),(σn)
2,χ ′

2
· · · · · · A

(l),(σn)
N,χ ′

2

· · · · · · · · · · · · · · ·
A

(l),(σn)
1,χ ′

n
A

(l),(σn)
2,χ ′

n
· · · · · · A

(l),(σn)
N,χ ′

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(C3)
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and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U
(σ̄n)
1,l′ A

(l′),(σn)∗
1,χ1

A
(l′),(σn)∗
1,χ2

· · · A
(l′),(σn)∗
1,χn

U
(σ̄n)
2,l′ A

(l′),(σn)∗
2,χ1

A
(l′),(σn)∗
2,χ2

· · · A
(l′),(σn)∗
2,χn

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

U
(σ̄n)
N,l′ A

(l′),(σn)∗
N,χ1

A
(l′),(σn)∗
N,χ2

· · · A
(l′),(σn)∗
N,χn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(C4)

fit into Eq. (C1) and give

F̄
(p)
l,l′; �χn, �χ ′

n
= det(AB), (C5)

which is exactly Eq. (42) after using Eq. (27).

APPENDIX D: PROOF OF F̄(p)

l,l ′; �jn, �j ′n
= 〈 �jn|S+

l S−
l ′ | �j ′

n〉
We only consider l < l′ as the case of l > l′ can be proved

similarly. In the atomic limit, the eigenbasis is consistent with
the position basis spanned by the Ising configurations, i.e.,
�χn = �jn and �χ ′

n = �j ′
n. From Eq. (28), we have Ā

(j,j ′),(σ )
η,η′ =

δη,η′ (1 − 2
∑jmax−1

l=jmin
δη′,l). After performing a Laplace expan-

sion of the determinant in Eq. (42) along the first row, we
arrive at

F̄
(p)

l,l′; �jn, �j ′
n

=
n∑

m=1

n∑
m′=1

(−1)m+m′
δjm,lδj ′

m′ ,l′δ �j (m)
n , �j ′(m′ )

n

×
n∏

m′′=1,( �=m′)

(
1 − 2

l′−1∑
l′′=l

δj ′
m′′ ,l′′

)
. (D1)

We first observe that the product
∏n

m′′=1,( �=m′) in the last line

of the above equation can be replaced by
∏m′−1

m′′=1 because
j ′
m′′ > j ′

m′ = l′ for m′′ � m′ + 1. We then argue that only terms
with m � m′ contribute to the double summation in Eq. (D1).
Actually, if m > m′, then from �j (m)

n = �j ′(m′)
n we have jm′−1 =

j ′
m′−1 and jm′ = j ′

m′+1, so that l′ = j ′
m′ < j ′

m′+1 = jm′ < jm =
l, in contradiction to the assumption that l < l′. Thus, for l < l′

we have

F̄
(p)

l,l′; �jn, �j ′
n

=
n∑

m�m′
(−1)m+m′

δjm,lδj ′
m′ ,l′δ �j (m)

n , �j ′(m′ )
n

×
m′−1∏
m′′=1

(
1 − 2

l′−1∑
l′′=l

δj ′
m′′ ,l′′

)
. (D2)

For m = m′, we have jm′′ = j ′
m′′ for m′′ � m′ − 1, so that

j ′
m′′ = jm′′ < jm = l, and hence

∏m′−1
m′′=1 (1 − 2

∑l′−1
l′′=l δj ′

m′′ ,l′′ ) =
1; while for m < m′, we have jm′′ = j ′

m′′ for m′′ �
m − 1, and jm+1 = j ′

m, . . . ,jm′ = j ′
m′−1, so that l =

jm < jm+1 = j ′
m < · · · � j ′

m′−1 � l′ − 1, and hence∏m′−1
m′′=1 (1 − 2

∑l′−1
l′′=l δj ′

m′′ ,l′′ ) =∏m′−1
m′′=m (1 − 2

∑l′−1
l′′=l δj ′

m′′ ,l′′ ) =
(−1)m

′−m. We therefore always have

F̄
(p)

l,l′; �jn, �j ′
n

=
n∑

m�m′
δjm,lδj ′

m′ ,l′δ �j (m)
n , �j ′(m′ )

n
, (D3)

which states that for two Ising configurations | �jn〉 and | �j ′
n〉

that satisfy jm /∈ { �j ′
n} and j ′

m /∈ { �jn}, as well as �j (m)
n = �j ′(m′)

n ,
the matrix element F̄

(p)

l,l′; �jn, �j ′
n

is just unity, consistent with the

definition F̄
(p)

l,l′; �jn, �j ′
n

= 〈�jn|S+
l S−

l′ | �j ′
n〉.
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