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Disordered quantum spin chains with long-range antiferromagnetic interactions
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We investigate the magnetic susceptibility χ (T ) of quantum spin chains of N = 1280 spins with power-law
long-range antiferromagnetic couplings as a function of their spatial decay exponent α and cutoff length ξ . The
calculations are based on the strong disorder renormalization method which is used to obtain the temperature
dependence of χ (T ) and distribution functions of couplings at each renormalization step. For the case with only
algebraic decay (ξ = ∞) we find a crossover at α∗ = 1.066 between a phase with a divergent low-temperature
susceptibility χ (T → 0) for α > α∗ to a phase with a vanishing χ (T → 0) for α < α∗. For finite cutoff lengths ξ ,
this crossover occurs at a smaller α∗(ξ ). Additionally, we study the localization of spin excitations for ξ = ∞ by
evaluating the distribution function of excitation energies, and we find a delocalization transition that coincides
with the opening of the pseudogap at αc = α∗.
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I. INTRODUCTION

Long-range interactions between local quantum degrees of
freedom, such as spins, are ubiquitous in real materials, such
as metals with magnetic impurities, doped semiconductors,
and glassy systems. In particular, the magnetic susceptibility
of doped semiconductors such as P-doped Si is known to
diverge at low temperature with an anomalous power law
[1], which is evidence for local magnetic moments, formed
in localized states [2–5], that are positioned randomly, and
are coupled by exchange interactions [6–9], as illustrated in
Fig. 1. At low dopant density nD these magnetic moments
are coupled weakly by the antiferromagnetic exchange inter-
action J between the hydrogenlike dopant levels [9,10]. For
nD � 1/a3

B , where aB is the Bohr radius of the dopants, the
magnetic susceptibility is observed to follow the Curie law
χ ∼ nD/T of free magnetic moments [9,11,12]. However,
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as nD is increased, the magnetic susceptibility diverges as
χ ∼ T −αm with a decreasing anomalous power αm(nD) < 1.
This has been identified as being a consequence of a random
distribution of exchange couplings due to the random positions
of dopants [13,14]. In Ref. [6] it was argued that such random
antiferromagnetically coupled S = 1/2 spins form a ground
state of hierarchically coupled singlets, the random singlet
phase. The random distribution of excitation energies leads
to a temperature-dependent concentration of free magnetic
moments nFM(T ), resulting in an anomalous power αm < 1.

With increasing doping concentration, the density of mag-
netic moments nFM is observed to decrease. Both magnetic
susceptibility and specific heat measurements indicate a finite
density nFM at the metal-insulator transition and deep into the
metallic phase [1].

On the metallic side of the transition, the indirect exchange
interaction Jij between the magnetic moments becomes long
ranged, mediated by the itinerant electrons [15]. The typical
value of this Ruderman-Kittel-Kasuya-Yosida (RKKY) cou-
pling Jij decays with a power law with exponent α = d, oscil-
lating in sign with a period equal to the Fermi wavelength λF .
Its amplitude is widely, log-normally distributed [16]. Thus,
aiming to get a better understanding of the magnetic properties
of doped semiconductors, we consider the Hamiltonian of N
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FIG. 1. Left: Sketch of electronic orbitals at low doping concen-
tration nD. All states are localized and magnetic, as indicated by red
arrows. Right: At larger nD, states at Fermi energy are delocalized,
coexisting with localized magnetic states.

long-range interacting S = 1/2 spins,

H =
∑
i �=j

J x
ij

(
Sx

i Sx
j + S

y

i S
y

j

) + J z
ij S

z
i S

z
j , (1)

randomly placed on a periodic lattice of length L and lattice
spacing a using a uniform distribution. The couplings between
all pairs of sites i,j are taken to be antiferromagnetic, decaying
as

J
x,z
ij = J

x,z
0 |(ri − rj )/a|−α exp(−|ri − rj |/ξ ), (2)

cut off exponentially by length scale ξ , allowing us to tune
between the limit of short-ranged coupled spins for ξ →
L/N1/d , and long-range couplings as ξ → ∞ [17]. It is worth
noting that the initial probability distribution of J

x,z
ij depends

directly on α and ξ by virtue of Eq. (2), together with the fact
that the spin positions ri are random.

Based on Eq. (1), the situation in three-dimensional doped
semiconductors for experimentally accessible temperatures
has been at least semiquantitatively explained [6,9,18,19].
However, ferromagnetic bonds are created in three dimensions
at intermediate renormalization steps [6,20], leading to the
possibility of new fixed points, and making the asymptotic
low-energy and low-temperature behavior a challenging open
problem.

Here, we focus on the study of random spin chains with
long-range interactions modeled by Eq. (1). From a numerical
perspective, one-dimensional models offer the possibility of
exploring larger length scales, and therefore to get more accu-
rate asymptotic behavior. From a theoretical perspective, one-
dimensional models with power-law hopping [21,22], as well
as power-law correlated disorder [23,24], are interesting since
they exhibit an Anderson localization-delocalization transition
for noninteracting electrons, which has critical properties quite
similar to the ones observed in three-dimensional Anderson
models [25,26]. Thus, we can expect a delocalization transition
in random spin chains with long-range interactions at a critical
power αc [27].

II. MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility at low temperatures is deter-
mined by the concentration of free paramagnetic moments
nFM(T ) (we set kB = 1) [6],

χ (T ) ∝ nFM(T )

T
= nM

T

∫ T

0
dε ρ(ε), (3)

where nM is the total density of magnetic moments in the
chain, and ρ(ε) the density of states of spin excitations with
energy ε.

In order to compute nFM(T ) numerically, we apply the
strong-disorder renormalization group (SDRG) procedure
[6,28,29], choosing the pair with largest coupling (l,m) which
in its ground state forms a singlet. Taking the expectation
value of the Hamiltonian in that singlet state and performing
second-order perturbation theory in the coupling between all
spins and the spins of that singlet pair [6,20,28–32], we obtain
renormalized couplings between spins (i,j ) [27],

(
J x

ij

)′ = J x
ij −

(
J x

il − J x
im

)(
J x

lj − J x
mj

)
J x

lm + J z
lm

,

(4)(
J z

ij

)′ = J z
ij −

(
J z

il − J z
im

)(
J z

lj − J z
mj

)
2J x

lm

.

We implement the SDRG [31] by iterating these RG rules
for each realization of bare coupling parameters until the
system has reached the energy � = T . We then record the
number of remaining spins which have not yet formed a singlet,
obtaining the density nFM(T ) [6]. We resort to numerical
iteration with a large number (∼20 000) of random realizations
needed for reliable statistics. Two important aspects were
checked during the numerical calculations to ensure that the
RG flow dictated by Eq. (4) was consistent throughout. First,
we monitored that no ferromagnetic couplings were decimated
in any of the realizations computed, a possibility that cannot be
easily discarded just by looking at the functional form of the
RG rules, which include two differences between couplings
in the numerator. Second, we verified that the energy scale
�, corresponding to the biggest coupling at each RG step,
consistently decreased during the RG procedure, signaling that
the RG flow is not breaking down due to the inclusion of all
the other couplings beyond nearest neighbor.

In Fig. 2 we show numerical results for the susceptibility of
the long-ranged, ξ = ∞, XX-spin chain. Note that the lowest-
temperature scale that can be reached for the finite system size
L is of the order of Tmin = Jmin/kB = J0(L/2a)−α , which is
why the data for different values of α terminate at different
values of T/J0. At low temperatures, we can see a power-law
behavior, which appears linear on a double-logarithmic scale,
consistent with a finite dynamical exponent z. We note that
in each RG step, a fraction dnFM/nFM(�) of the remaining
spins at renormalization energy � = max(J ) are taken away.
Since this is due to the formation of a singlet with coupling
J = �, this fraction should equal 2P (J = �,�)d�, leading
to the differential equation

dnFM

d�
= 2 P (J = �,�) nFM(�), (5)

where P (J,�) is the probability distribution of couplings
J at a given renormalization energy � [29]. At the infinite
randomness fixed point (IRFP) this distribution is known to be
given by

P (J,�) = (J/�)1/	−1/(	�), (6)

with 	 = ln(�0/�) for initial renormalization energy �0.
Then, the solution of Eq. (5) is nFM(�) = 1/ ln2(�0/�), which
yields the IRFP magnetic susceptibility χ (T ) ∼ 1/[T ln2(T )]
via Eq. (3) [29]. However, if 	 is finite and fixed, the solution
of Eq. (5) gives nFM(T ) ∼ T 2/	 = T 1/z, with the dynamical
exponent z = 	/2 [33]. In conjunction with Eq. (3), this
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FIG. 2. Magnetic susceptibility, normalized by χ0 ≡ χ (T = J0),
for an XX chain with N = 1280 randomly placed spins, interacting
via antiferromagnetic long-range couplings, Eq. (2), chain length
L/a = 100N , and α = 0.6, . . . ,2.0. The cutoff length is set to
ξ = ∞. Continuous lines: Fits to χ ∼ T 1/z−1 with finite z at low
temperatures. Inset: Susceptibility for α = 10.0 along with the power
law with z = 9.36 (green line) and the IRFP result (red line).

gives rise to a power-law behavior for the low-temperature
susceptibility of the form

χ (T ) ∼ T 1/z−1, (7)

consistent with our numerical results shown in Fig. 2 for
z = z(α), a monotonically increasing function of α that can
be extracted by linear regression fits of the susceptibility in
a logarithmic scale (continuous lines). If z > 1, the magnetic
susceptibility diverges as T → 0, with an anomalous power
αm = 1 − 1/z < 1 that also grows with α. In the region z < 1,
this power becomes negative and we have a vanishing sus-
ceptibility at zero temperature, consistent with the formation
of a pseudogap in the density of states. A similar behavior
has been observed previously in Refs. [6,34]. The crossover
value z = 1, where the susceptibility saturates to a constant,
occurs at a given α = α∗, which from Fig. 2 can be concluded
to be somewhere between 1.0 and 1.2. Assuming a linear
dependence on α of the form

z = 1 − b

α∗ α + b, (8)

we find this crossover value to be α∗ = 1.066 ± 0.002 by a
linear regression fit of z(α), as shown in Fig. 3 (dashed black
line), where the error only includes the fitting uncertainty.
All values of z used for the fit are found by fitting the low-
temperature susceptibility curves to Eq. (7) as it is done in
Fig. 2 for α = 1.2, 1.6, and 2.0.

The inset in Fig. 2 displays the susceptibility for α = 10.0,
along with the curve given by Eq. (7) with the value z =
9.36 predicted by Eq. (8), together with the IRFP magnetic
susceptibility. We can see clearly a better agreement of the

FIG. 3. Dynamical exponent z extracted by fitting the low-
temperature susceptibility in Fig. 2 to Eq. (7) as a function of the
power α (squares). These numerical results are then fit to Eq. (8)
(dashed line), which allows us to extract the crossover value α∗ =
1.066 ± 0.002.

numerical results with the finite z curve, indicating the flow
to a finite z fixed point and not to the IRFP, as it occurs for
nearest-neighbor interactions.

We note that at very large α � 10 we find a finite number
of free moments even at the smallest renormalization energies
which are accessible in the finite spin chain. In our model,
spins are randomly placed in a very diluted lattice, a situation
in which nearest-neighbor distances bigger than one lattice
spacing a are highly probable. Therefore, at very large values
of α, given the power-law nature of the coupling strengths, one
starts with an initial distribution P (J ) heavily weighted near
J = 0, which might explain the above-mentioned residual free
moments. A thorough exploration of this important α � 10
limit is left for future studies.

III. WIDTH OF COUPLING DISTRIBUTION FUNCTION

Another way to investigate whether or not there is at finite α

a strong disorder fixed point with a finite dynamical exponent
z(α) or a transition to the IRFP at a specific finite power αIR

is to numerically inspect the evolution of the width of the
coupling probability distribution with the RG flow. At the
IRFP, this distribution, according to Eq. (6), gets wider at
every RG step, i.e., W = [〈ln(J/�0)2〉 − 〈ln(J/�0)〉2]1/2 =
2z(�) = ln(�0/�), increasing monotonically as � is lowered
during the RG flow. However, as shown in Fig. 4, our system
does not follow this trend for α � 1 (see the inset). Instead,
the width is found to saturate to a constant value after a
nonmonotonic transient behavior, which is a strong indication
of a finite z fixed point. It is worth noting that given the
large number of couplings present in our system [N (N − 1)/2
before any renormalization is performed], we have only picked
the largest coupling to every spin J1 in order to calculate P (J ),
denoting the width of this approximate distribution by W1.
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FIG. 4. Width W1 of the distribution function of nearest-neighbor
couplings as a function of the fraction of remaining spins. The negative
logarithmic in base two is used to have an equally spaced horizontal
variable that grows as the number of spins decreases. All values have
been normalized by the width W 0

1 (α) of the initial distribution and the
parameters are kept as in Fig. 2. Inset: W1/W 0

1 for a simple nearest-
neighbor model with uniformly distributed couplings (crosses) known
to flow to the IRFP. The numerical results for α = 20.0 (black circles)
are included for comparison purposes.

IV. DISTRIBUTION FUNCTION OF EXCITATION
ENERGIES AND THE DELOCALIZATION TRANSITION

In a previous study of the ξ = ∞ limit, we found ev-
idence for a delocalization transition of spin excitations at
a critical power αc by examining the distribution function
of the lowest excitation energy from the ground state of
long-range coupled random spin chains (N = 128) [27]. At
α = αc, this gap distribution was observed to coincide with a
critical function, separating a phase with localized excitations
at large α > αc, where the distribution is Poissonian, from a
phase with extended excitations at small α < αc, where the
gap distribution follows the Wigner surmise [35]. Since in
our present study we find strong evidence in χ (T ) that the
density of states of spin excitations presents a pseudogap for
α < α∗, we revisit the gap distribution function to check if
the delocalization of spin excitations at αc coincides with α∗.
Following the procedure carried out in Ref. [27], we now place
spins randomly on the sites of a lattice with lattice constant a,
as done in the calculation of the susceptibility above, and study
the distribution of excitation energies.

Before proceeding, it is worthwhile to recall the results of
Refs. [36,37], where the distribution of excitation gaps ε1 from
the ground state was derived for the random transverse Ising
model. Since the probability to find a gap ε1 is proportional to
the number of remaining spins NFM = nFM(�)L, at RG energy
�, the distribution function of the lowest excitation energy ε1

equal to the energy scale of the last RG step was derived by a
scaling argument. Using the same argument for our model, we
obtain that the distribution of the excitation energies ε1 should
have the form of a Weibull function [37,38],

PW (ε1) = u
1/z

0 L

z
ε

1/z−1
1 exp[−(u0ε1)1/zL], (9)

FIG. 5. Distribution of the lowest excitation gap ε1 scaled by its
mean value, s = ε1/〈ε1〉, for ξ = ∞ and α = 0.6,0.8, . . . ,2.0. The
remaining parameters are as in Fig. 2.

where u0 is a constant. The average excitation energy scales
with system size L as 〈ε1〉 = 	(1+z)

u0
L−z. Since delocalization

causes level repulsion, Eq. (9) yields a delocalization transition
when z(α) < zc = 1. Thus, if this scaling scheme of the strong
disorder RG holds at the delocalization transitions, we con-
clude that zc = 1 = z∗, which means that the first appearance
of a pseudogap coincides with the delocalization transition. We
note that the eigenvalue statistics of critical random quantum
Ising systems with long-range ferromagnetic interactions has
recently been found in Refs. [39,40] to follow the Weibull
function with finite dynamical exponent z = α as well.

In Fig. 5 we show the distribution function of the low-
est excitation energy ε1 using the logarithmic variable x =
− ln (ε1/〈ε1〉) in the limit of long-range interaction, i.e., ξ =
∞. The continuous black curves correspond to fits to the
Weibull distribution in Eq. (9) multiplied by the cutoff function
introduced in Ref. [27], exp[c/(x − xmax)], which is included
in order to account for the fact that at finite size L with
periodic boundary conditions we have a maximum value
xmax = − ln[εmin/
(α)] arising from the minimal energy scale
εmin = (1/2)J0(L/6a)−α . Here, the factor 6 is included since
the numerical data is obtained in the third to last RG step as
an effort to minimize the effect of the sharp cutoff due to the
finite size of the system. We found c = 16 to work for all fits
independent of the value of α, while u0 was freely changed
for each curve. The fact that the values of z(α) obtained from
the susceptibility data used in conjunction with Eq. (9) can
represent fairly well the numerical data for the excitation
energy, should not be taken for granted. Equations (7) and (9)
are derived using different arguments, and it could well occur
that the values of z(α) shown in Fig. 3 would not fit properly
the numerical excitation gap distributions. Since they indeed
do, as can be seen in Fig. 5, we can conclude that for z < 1
the existence of the pseudogap in the density of states and
the level repulsion dictated by Eq. (9) occur simultaneously.
Therefore, we can reuse the results obtained via the analysis
of Fig. 3 and confidently claim that, indeed, the delocalization
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FIG. 6. Log-log plot of the magnetic susceptibility for α = d = 1
and ξ/L = 1,1/2, . . . ,1/64. The remaining parameters are kept as in
Fig. 2, and the susceptibility is rescaled in the same manner.

transition occurs at the same value at which the pseudogap
appears, i.e., αc = α∗ = 1.066 ± 0.002.

As the power α = d = 1 corresponds to the typical decay
of the RKKY coupling in a one-dimensional (1D) electron
system in the metallic regime, we may conclude from the
results in Fig. 2 that the magnetic susceptibility due to
the randomly coupled magnetic moments decays to zero
in the metallic regime.

V. EFFECT OF EXPONENTIAL CUTOFF

Turning on a finite cutoff ξ as caused by the finite electron
localization length when the magnetic moments are surrounded
by an electronic system, we see in Fig. 6 that the magnetic
susceptibility diverges for ξ < L/4. At low temperatures we
observe a power-law behavior indicating a finite z fixed point.
Increasing the cutoff to ξ > L/4, we observe in Fig. 6 a low-

FIG. 7. Logarithmic plot of the susceptibility for a fixed and finite
cutoff length ξ = L/32 and α = 0.6,0.8, . . . ,2.0. The remaining
parameters are kept as in Fig. 2.

temperature suppression of the magnetic susceptibility, clearly
demonstrating the opening of a pseudogap as the range of the
interaction increases.

For fixed small ξ = L/32, we observe in Fig. 7 that
at sufficiently low temperatures the magnetic susceptibility
recovers the power-law divergence consistent with finite z > 2,
after some transient behavior. As expected, due to the presence
of a finite ξ , this divergence is faster for every α when compared
to the pure power-law couplings model, i.e., z(α,ξ = L/32) >

z(α,ξ = ∞). In fact, for α = 0.6, 0.8, and 1.0, we still observe
for finite ξ a divergence in χ (T ), in contrast with the results
shown in Fig. 2 for ξ = ∞, where for these values of α we find
z(α) < 1 corresponding to a pseudogap.

VI. CONCLUSIONS

In conclusion, we derived the temperature dependence of
the magnetic susceptibility of quantum spin chains with power-
law long-range antiferromagnetic couplings as a function of the
exponent α and the cutoff length ξ . We identified a crossover
between a phase with a divergent low-temperature magnetic
susceptibility to a phase with a vanishing low-temperature
susceptibility at a critical α∗. For finite cutoff lengths ξ ,
this crossover occurs at smaller values α∗(ξ ) < α∗. We also
explored the localization of spin excitations in the limit ξ =
∞, by computing the distribution functions of renormalized
couplings and identified a delocalization transition at αc, which
turns out to coincide with α∗.

It is worth noting that the good agreement found between
numerical results and both Eqs. (7) and (9) demonstrates the
consistency of SDRG and indicates that it continues to be a
valid tool to study spin chains when long-range interactions are
included. The error induced by all couplings beyond nearest
neighbor must yet be quantified. This can be done by adding
corrections to the random singlet state generated by SDRG,
which is asymptotically exact when only nearest-neighbor
interactions are included. These corrections go beyond the
SDRG standard framework and we are currently working on
their implementation. We leave the findings on this matter for
a future publication.

In order to analyze experimental results in doped bulk
semiconductors, the study of higher-dimensional random spin
systems with long-range couplings is needed. However, in
higher dimensions it is known that even if the initial distribution
is purely antiferromagnetic, ferromagnetic couplings can be
generated upon renormalization [6,20]. This is expected to
modify strongly the temperature dependence of the magnetic
susceptibility. Furthermore, as the density of itinerant electrons
increases with the doping concentration, the indirect exchange
coupling competes with the Kondo effect, which screens the
local moments with the itinerant electron spins. Indeed, on
the metallic side of the transition in P:Si there are indications
of Kondo correlations in thermopower measurements [41].
It has been shown that the Kondo temperature TK is widely
distributed in the vicinity of the Anderson metal-insulator
transition (AMIT), which results in a power-law divergence
of the magnetic susceptibility [42–46]. Its power αm has
been related to multifractal correlations, yielding in d = 3
dimensions with the multifractality parameter α0, αm = 2 −
α0/3 = 0.651(0.652,0.650) [46], which happens to be close
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to the experimentally observed value [1,10–12]. It remains
a challenge to study the effect of the interplay of both the
long-range exchange couplings and the Kondo couplings on
the low-temperature magnetic properties.
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