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We investigate the quantum Hall problem in the lowest Landau level in two dimensions, in the presence of
an arbitrary number of δ-function potentials arranged in different geometric configurations. When the number
of δ functions Nδ is smaller than the number of flux quanta through the system (Nφ), there is a manifold of
(Nφ − Nδ) degenerate states at the original Landau-level energy. We prove that the total Chern number of this
set of states is +1 regardless of the number or position of the δ functions. Furthermore, we find numerically that,
upon the addition of disorder, this subspace includes a quantum Hall transition which is (in a well-defined sense)
quantitatively the same as that for the lowest Landau level without δ-function impurities, but with a reduced
number N ′

φ ≡ Nφ − Nδ of magnetic-flux quanta. We discuss the implications of these results for studies of the
integer plateau transitions, as well as for the many-body problem in the presence of electron-electron interactions.
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I. INTRODUCTION

A crucial part in the understanding of the integer quantum
Hall effect [1] was the realization that the Hall conductance
is robust to the presence of impurities. Before this robustness
was proved for general disorder [2] and connected to topology
[3], Prange [4] showed that if a single impurity represented by
a δ-function potential is placed in a quantum Hall system, the
Hall conductance does not change. Even though one electron’s
cyclotron orbit becomes bound to the impurity (as has recently
been shown [5] in spectacular scanning tunneling microscopy
(STM) images of surface states of Bi in a strong magnetic
field), the remaining electrons exactly compensate the loss of
conductance due to the presence of the bound state.

In this paper, we consider a generalized case in which an
arbitrary number Nδ of impurities represented by δ-function
potentials (which we call “δ impurities” in the following) is
placed in a two-dimensional (2D) electron gas pierced by Nφ

magnetic-flux quanta. We find that the same conclusion as
Prange’s single-impurity case applies: there is a set of states
which are not bound by the δ impurities, as was also predicted
by Brezin et al. [6], and these states carry the quantized Hall
current corresponding to the entire Landau level. In other
words, we show that the subspace of electron states which
avoid all δ impurities is characterized by a Chern number [7]
C = +1. We thus have a subspace of degenerate electron states
with C = 1, analogous to a Landau level of reduced dimension
N ′

φ ≡ Nφ − Nδ . As such, this “fraction” of a Landau level
should exhibit an integer quantum Hall transition. Projecting
onto this lower dimensional space, which can be arbitrarily
smaller than the original Landau-level subspace, would seem
to offer the possibility of studying quantum Hall transitions for
system sizes that are much larger than those possible for the
full Landau-level problem. Based on that hope, we have carried
out a study of Hall as well Thouless (longitudinal) conductance
for varying degrees of “dilution” of the Landau-level Hilbert
space and various geometric distributions of δ impurities.

With a lattice of δ impurities with identical or periodically
varying strength, in the regime Nδ < Nφ , one has, in addition
to the flat C = 1 band, one or more dispersive bands with
varying Chern character, depending on the nature of the lattice.
This allows one to create Chern insulator models of different
kinds, which have been of increasing interest in tight-binding
models; here they arise out of a single Landau level. Thus
this model may also offer a rich variety of phases upon
addition of electron-electron interactions, such as fractional
Chern insulators [8], as well as the possibility of many-body
localization, which appears to not be possible in a single
Landau level subject to a random (e.g., white-noise) potential
characterized by a single disorder strength [9,10].

Our paper is structured as follows. In Sec. II we present
general facts about δ-function potentials in the lowest Landau
level, including the existence of (Nφ − Nδ) degenerate states at
the original Landau-level energy. In Sec. III we discuss the total
Hall conductance of said subspace and show that its total Chern
number is +1. Section IV discusses δ-function potentials with
lattice symmetry and the structure of the subbands they give
rise to. In Sec. V we present numerical calculations of the Hall
and Thouless conductance in the presence of disorder, both
with and without δ impurities, and show that the quantum Hall
transition seems to only depend on the number of states left
at the Landau-level energy, while being completely unaffected
by the states localized by the δ impurities. Finally, we sum-
marize our results and discuss avenues for future research in
Sec. VI.

II. δ-FUNCTION POTENTIALS IN THE LOWEST
LANDAU LEVEL

We consider a two-dimensional electron system in a strong
magnetic field, so that the cyclotron gap is infinite for practical
purposes. We add a set of point impurities with δ-function
potentials, so that the Hamiltonian within the lowest Landau

2469-9950/2018/97(1)/014205(10) 014205-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.014205&domain=pdf&date_stamp=2018-01-22
https://doi.org/10.1103/PhysRevB.97.014205


MATTEO IPPOLITI, SCOTT D. GERAEDTS, AND R. N. BHATT PHYSICAL REVIEW B 97, 014205 (2018)

level is H = 1
2 h̄ωc + V (r), with

V (r) =
Nδ∑
i=1

λiδ(r − ri). (1)

Here {ri : i = 1, . . . Nδ} are the positions of the impurities
and {λi} denote the strength of each impurity. In the following
we discard the constant energy shift 1

2 h̄ωc and refer to the
Landau-level energy as “zero energy,” or E = 0, for simplicity.

Let {|ψn〉 : n = 1, . . . Nφ} be an orthonormal basis of states
in the lowest Landau level. The matrix element of V between
any two such basis states is

Vmn = 〈ψm|V (r)|ψn〉 =
∑

i

λiψ
∗
m(ri)ψn(ri). (2)

By defining the Nδ × Nφ matrix vin ≡ ψn(ri) and the Nδ × Nδ

diagonal matrix �ij ≡ λiδij , (2) can be rewritten in matrix
notation as

V = v†�v. (3)

Thus the kernel of V contains the kernel of v. The latter consists
of states that have vanishing amplitude on all impurities.
Indeed, consider one vector α in the kernel of v: this vector,
viewed as a list of coefficients in the {|ψn〉} basis, defines a
wave function ψ(r) such that

ψ(ri) =
∑

n

αnψn(ri) =
∑

n

vinαn = 0 ∀ i. (4)

There are Nφ − Nδ independent states with this property (pro-
vided Nφ � Nδ). Generically these are the only zero-energy
states present, i.e., for random values of the positions {ri} and
strengths {λi} of the δ impurities, all other eigenvalues are
nonzero with probability 1. An important special case which
we consider later in the paper is that of δ-impurity lattices; in
that case, it is possible to have zero-energy states even when
Nδ > Nφ , but only if the potential is not of a definite sign. If
V is, for example, positive-definite (i.e., if all δ impurities are
repulsive), then an eigenstate ψn that does not vanish on some
impurity i is such that

En = 〈ψn|V |ψn〉 � λi |ψn(ri)|2 > 0. (5)

Thus if the δ-function potential is positive definite, it has
(Nφ − Nδ) zero-energy states which have vanishing amplitude
on all impurities. The remaining Nδ states have E > 0 and
have nonzero amplitude on at least one impurity.

Throughout the rest of the paper, we use the notation
L(Nφ,Nδ) to denote the kernel of a positive-definite potential
with Nδ δ functions in the lowest Landau level of a system
with Nφ flux quanta. In particular, L(Nφ,0) denotes the whole
Hilbert space of a lowest Landau level with no impurities.
Based on the previous discussion, we have dimL(Nφ,Nδ) =
Nφ − Nδ .

III. HALL CONDUCTANCE OF LOWEST LANDAU
LEVEL WITH δ IMPURITIES

In this section we compute the Chern number [7] of the
completely filled L(Nφ,Nδ) subspace and show that it always
equals +1, regardless of the strength and position of the δ

impurities, provided Nφ > Nδ . For simplicity we consider a

rectangular torus with sides Lx , Ly , but this assumption is not
essential.

Consider the fully occupied lowest Landau level L(Nφ,0).
The corresponding many-electron wave function is obtained as
a Slater determinant from single-electron wave functions and
can be written in the Landau gauge as [11]

	({zi}) = e−(1/2)
∑

i y2
i Fcm(Z)

∏
i<j

f (zi − zj ), (6)

where f and Fcm are holomorphic functions of the complex
argument z = x + iy, f is odd, and Z = ∑

i zi is the “center-
of-mass” coordinate. Quasiperiodicity can be used to constrain
F and f , and eventually this wave function can be used to prove
the quantization of the Hall conductance for the ν = 1 integer
quantum Hall effect.

In a similar way, we introduce the wave function for the
completely filled L(Nφ,Nδ) subspace. This contains Nφ − Nδ

electrons which are constrained to avoid the impurity sites,
{ηi}. We require the ηi’s to be nondegenerate but make no
other assumptions about their spatial distribution. The most
general wave function for N ′

φ ≡ Nφ − Nδ electrons in the
lowest Landau level which vanishes on all impurities is given
by

	0({zi}) = exp

⎛
⎝−1

2

N ′
φ∑

i=1

y2
i

⎞
⎠Fcm(Z)

N ′
φ∏

i<j=1

f (zi − zj )

×
N ′

φ∏
i=1

Nδ∏
j=1

f (zi − ηj ). (7)

Following Ref. [11], we have that the most general form for f

is expressed in terms of Euler’s ϑ function

ϑ1(z|τ ) ≡ −
∑
n∈Z

eiπ(n+1/2)+iπτ (n+1/2)2+2πi(n+1/2)z

as f (z) = ϑ1(z/Lx |iLy/Lx). Similarly, for the center-of-mass
wave function we have

Fcm(Z) = eiKZϑ1

(
Z − Z0

Lx

∣∣∣∣i Ly

Lx

)
(8)

so that the only remaining degrees of freedom in the ansatz are
the quasimomentum K and the center-of-mass node Z0. By
imposing generalized periodic boundary conditions with twist
angles θx,θy , these are found to be

K = θx

Lx

− π

Lx

(2b + Nφ) (9)

and

Z0 = Lx

2

(
Nφ + θy

π
+ 2a

)
+ iNφK −

∑
i

ηi, (10)

where a,b are integers chosen so that Z0 is in the torus unit
cell −Lx

2 � x < Lx

2 , −Ly

2 � y <
Ly

2 .
It can be seen from Eq. (10) that the node of the center-of-

mass wave function, Z0, can be moved to an arbitrary position
on the torus by suitably adjusting the boundary twist angles
θx , θy . This is known to be a signature of a nonzero Chern
number [12]. However, we also prove that the C = +1 by a
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direct computation of the boundary integral

C = 1

2πi

∮
dθi〈	0(	θ)| ∂

∂θi

|	0(	θ )〉 (11)

in Appendix A. This result holds for any spatial distribution of
any number of δ impurities. A much simpler proof for lattices
of δ impurities is provided in the next section.

IV. δ-FUNCTION LATTICE POTENTIALS

In this section we discuss δ-function potentials with discrete
translational symmetry, i.e., when the δ impurities are arranged
on a lattice on the torus. We assume a Bravais lattice generated
by vectors a1, a2 (though it would be easy to generalize this to
a lattice with a basis). We further assume the torus has sides
L1 = N1a1, L2 = N2a2, so that there is a total of Nδ = N1N2 δ

impurities. The potential is then given in real space by

Vδ(r) = λ

N1∑
n1=1

N2∑
n2=1

δ(r − n1a1 − n2a2). (12)

Furthermore, we assume that the magnetic flux through each
unit cell is equal to p/q quanta of magnetic flux, where p and
q are coprime integers with p > q. In other words, we require
|a1 × a2| = 2π�2

Bp/q.
The lattice symmetry allows us to pick a basis of eigenstates

of Vδ which are also eigenstates of the magnetic translations
[13] τ̂ (qa1), τ̂ (a2) (the translations commute only if the
enclosed area contains an integer number of flux quanta). The
eigenvalues of magnetic translations define a quasimomentum
k, and the orbitals can be written in a quasi-Bloch form as

ψk,n(r) = eik·ruk,n(r), (13)

where n is a band index and the pseudo-Bloch wave function
u has the quasiperiodicity

uk,n(r + qa1) = e−2πi(qa1)×ruk,n(r),

uk,n(r + a2) = uk,n(r). (14)

The matrix Vδ is then block diagonalized into quasimomentum
sectors, with each block given by

[Vδ(k)]nn′ = 〈ψk,n|Vδ|ψk,n′ 〉. (15)

In Appendix B we discuss in detail the diagonalization of these
potentials, which we then apply to our numerical calculations
in Sec. V B.

We find that the Hamiltonian block (15) has the structure
Vδ(k) ∝ v†(k)v(k), where v(k) is a rectangular p × q matrix.
Therefore, each Hamiltonian block is a p × p matrix of rank
at most q, so (p − q) eigenvalues are guaranteed to be zero.
Thus we find that there are p subbands; of these, (p − q)
are degenerate, flat, zero-energy subbands. The spectrum of
a square lattice of δ impurities as a function of the magnetic
flux per unit cell p/q, showing the peculiar Hofstadter butterfly
[14] fractal pattern, is shown in Fig. 1.

The existence of this flat, zero-energy band is consistent
with the general theory of periodic potentials in the lowest
Landau level [3], with previous studies of δ-function lattices
in the presence of a magnetic field [15–18], and with the
discussion in the previous sections about general δ-function
potentials. Based on that discussion, we expect to have

FIG. 1. Spectrum of the δ-function square lattice potential as a
function of magnetic field. The ratio p/q equals the magnetic flux
per unit cell, in units of the magnetic-flux quantum. It is also equal to
(2π�2

Bnδ)−1, nδ being the spatial density of δ impurities. At small
p/q, the electrons cannot resolve the individual δ impurities and
see a nearly uniform potential of strength nδ ∼ q/p, explaining the
divergence of all energy levels. At p/q > 1, the zero-energy flat
subband is clearly visible. At large p/q, the δ impurities are so far
apart that hopping is exponentially suppressed, thus the bandwidth of
all E > 0 bands decays exponentially with 1/

√
nδ .

(Nφ − Nδ) zero-energy states, which is exactly the number of
states contained in (p − q) subbands (as each subband contains
Nφ/p states). Furthermore, based on the result of Sec. III, we
know these subbands must carry a total Chern number of +1.
This, too, is in agreement with known facts about periodic
potentials in the lowest Landau level [3], namely that the
lowest r subbands carry a total Chern number C that solves
the Diophantine equation

pC + qS = r, (16)

where S is another integer. Thus, the total Chern number of
the lowest p − q subbands, which in our case make up the
flat zero-energy band, obeys p(C − 1) + q(S + 1) = 0. The
value C = +1 is always compatible with this constraint. It
is possible to prove that C = +1 by considering the num-
ber of states present in the zero-energy band, (Nφ − Nδ);
the Chern number can be computed as a derivative of this
number with respect to Nφ , with the lattice potential held
constant [19]:

C = ∂(Nφ − Nδ)

∂Nφ

∣∣∣∣
Nδ

= +1. (17)

These features of the subband structure have several inter-
esting consequences. First of all, we see from Eq. (16) that, by
tuning p and q, one can engineer subbands with large Chern
numbers. In the presence of interactions, these high-Chern-
number subbands have the potential to host interesting strongly
correlated phases, such as the recently observed fractional
Chern insulator states [8].

Another interesting consequence is that, since the zero-
energy subbands take up the entire Chern character of the
Landau level, the remaining q subbands taken together must
have C = 0. The simplest instance of this occurs for q = 1,
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FIG. 2. Density of states of a typical sample with 384 magnetic
fluxes and 256 repulsive δ impurities arranged in a 16 × 16 square
lattice, in the lowest Landau level with the addition of weak disorder.
The singularity at E = 0 (given by wave functions which vanish on
all δ impurities) becomes a peak with finite width. States in that peak
have total Chern number C = +1 and thus display a quantum Hall
transition as the Fermi energy is tuned across the peak. The other
states sit above a gap of order O(λ) and have total Chern number
C = 0. In this case, p/q = 3/2, there are two dispersive subbands at
E > 0 and one flat subband at E = 0.

when there is only one dispersive subband with bandwidth
decreasing exponentially in p. This provides a setting to study
localization in quantum Hall systems without critical states
that are normally present due to the topological character.
Potentially, this could allow the electrons to exhibit many-body
localization [20].

V. NUMERICAL STUDY OF THE
PLATEAU TRANSITION

Since the electron states in L(Nφ,Nδ) carry a total Hall cur-
rent of e2/h, one can study the integer quantum Hall transition
in the disordered problem projected into that subspace. More

specifically, we consider the following Hamiltonian:

H = 1

2m

(
p − e

c
A

)2
+ Vn(r) + λVδ(r), (18)

where Vn(r) is a disordered potential (e.g., Gaussian white
noise [21,23]), Vδ(r) is a sum of repulsive δ function potentials,
and λ is a coefficient that determines the relative strength of the
δ impurities compared to the disorder. Once the Hamiltonian
(18) is projected into the lowest Landau level, the first term is
reduced to the lowest-Landau-level energy 1

2 h̄ωc, leaving

H = 1
2 h̄ωc + P(Vn + λVδ)P, (19)

P being the projector on the lowest Landau level. Taking λ to be
much larger than the disorder strength, but still much smaller
than the Landau-level gap h̄ωc so as to avoid Landau-level
mixing, the density of states looks like the one depicted in
Fig. 2: the δ-function potential singularity at E = 1

2 h̄ωc gets
broadened by the white noise to a narrow peak; the rest of the
states, with vanishing total Chern number, lie above a gap of
order λ.

It is not obvious a priori how having some fraction of the
wave-function nodes pinned down at specified locations should
affect various quantities, such as the Hall conductance σxy(EF )
and the diagonal conductance σxx(EF ) as a function of the
Fermi energy EF (which we take to be within the density of
states of the disordered potential). In particular, the localization
length critical exponent characterizing the finite-size scaling
behavior in the vicinity of the transition is a quantity of interest.

A. Exact diagonalization of entire Landau level

First, we consider the problem without δ impurities in the
presence of white noise. We assume a square geometry with
periodic boundary conditions. We consider systems with Nφ =
4n, n = 3,4,5,6. These values correspond to tori of linear size
L = 2n

√
h/eB. For each system size, we exactly diagonalize

a large number of disorder realizations (106 for Nφ = 64 and
256, 105 for Nφ = 1024, and 104 for Nφ = 4096) to obtain
the ensemble-averaged quantities. Each disorder realization is

FIG. 3. Left: disorder-averaged conductances for a Landau level with Nφ flux quanta, L(Nφ,0). From top to bottom: Hall conductance σxy

and Thouless number g, defined in Eq. (22), normalized to 1. Right: the same quantities plotted as a function of EL1/ν . σxy and g show scaling
collapse for ν ≈ 2.4, consistent with the existing literature on this problem [21,23].
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represented by a Gaussian white-noise potential Vn(r) of unit
strength, projected into the lowest Landau level [21]. For each
realization, we compute the Hall conductance via the Kubo
formula

σxy(E) = e2

h
ν(E) + �σxy(E), (20)

where ν(E) is the filling fraction when all states up to energy
E are occupied, and

�σxy(E)

e2/h
= − 2

Nφ

Im
∑

a<EF <b

〈a|∂xVn|b〉〈b|∂yVn|a〉
(Ea − Eb)2

. (21)

The notation a < EF < b is shorthand for a and b such that
Ea < EF < Eb. We also compute the Thouless number [22]:

g(E) = 〈|δE|〉E
〈�E〉E , (22)

where �E is the level spacing and δE is the change in energy of
an eigenstate under a change of boundary conditions (periodic
to antiperiodic) along one direction. 〈· · · 〉E denotes averaging
over eigenstates around energy E. The function g(E) is related
to the diagonal conductance σxx , and is a measure of how

localized a state is (low sensitivity to boundary condition
changes is a signal of localization).

The disorder-averaged curves forσxy andg, plotted in Fig. 3,
show scaling collapse if E is rescaled by L−1/ν , where the
localization critical exponent is ν = 2.4 ± 0.1, consistent with
known results [21–23] for these types of calculations. More
recent calculations [24,25] with transfer-matrix techniques on
Chalker-Coddington network models suggest a larger exponent
ν ≈ 2.6. However, such large exponents are not seen in the
continuum Landau-level problem even with larger sizes [26],
and recent work on disordered Chalker-Coddington network
models [27] suggests a possible reason for the discrepancy.

B. Projection onto kernel of δ-function
square lattice potential

We then add a square lattice of δ-function potentials. We
consider systems with two magnetic fluxes per δ function, i.e.,
p/q = 2, and five magnetic fluxes per four δ functions, i.e.,
p/q = 5/4. We fix Nφ − Nδ = 4n, so that the dimension of
L(Nφ,Nδ) is N ′

φ ≡ Nφ − Nδ = 4n, allowing for a straightfor-
ward comparison with the system sizes studied in the previous
case, without δ impurities. Lattice symmetry allows for an

FIG. 4. (a) Same plot as Fig. 3, but for a fraction of the lowest Landau level defined by Nφ flux quanta and Nδ = 1
2 Nφ δ impurities,

L(Nφ,Nφ/2). The choice of sizes is such that, for each curve, the truncated Hilbert space dimension (Nφ − Nδ) coincides with that of a curve
in Fig. 3. (b) Same plot, but with a larger truncation Nδ = 4

5 Nφ . In both cases, the curves show scaling collapse with localization length critical
exponent ν = 2.4 ± 0.1.
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FIG. 5. Comparison between the plateau transition of a Landau level with 4096 flux quanta, L(4096,0), and that of two “fractions” of
Landau levels L(Nφ,Nδ), obtained from a square lattice of δ impurities, with fixed Nφ − Nδ = 4096. Left: data for density of states ρ, Hall
conductance σxy , and Thouless number g as a function of energy E. Right: same data on a rescaled energy axis E/f that matches the density of
states in all three cases. The rescaling factor is f = 1 for L(4096,0), f = 0.77 for L(8192,4096), and f = 0.49 for L(20 480,16 384). Upon
rescaling the energy axis, σxy and g also coincide within numerical accuracy.

efficient diagonalization of this potential (see Appendix B),
and the resulting energy bands include one flat, zero-energy
band and a dispersive band lying above a gap.

For each size, we diagonalize Vδ and obtain the projector
P onto its kernel L(Nφ,Nδ), then generate a large number
of disorder samples (106 for Nδ � 256, 105 for Nδ = 1024,
104 for Nδ = 4096, and 2 × 103 for Nδ = 16 384). For each
sample, we project the white-noise potential Vn and obtain the
effective Hamiltonian Htrunc = PVnP . We diagonalize Htrunc

and compute σxy and g as in the previous case. While the com-
putation of the Thouless number translates straightforwardly,
in the Hall conductance one cannot simply replace Vn by the
projected PVnP in Eq. (21). Contributions coming from virtual
hopping of electrons to the high-energy band of Vδ must be
taken into account as well. Indeed, absent any extra terms, the
Hall conductance of the zero-energy band, based on Eq. (20),
would take the a value inconsistent with the Chern number. A
careful perturbative analysis (see Appendix C) shows that Vδ

induces terms in the Kubo formula which stay finite even in
the λ → ∞ limit of strong impurities.

The main benefit of using a lattice configuration of δ

functions is computational speed: lattice symmetry ensures
P has a sparse (block-diagonal) form, so that the additional
manipulations required to compute σxy are substantially faster
than they would be for a generic distribution of δ functions (for
which P is generally dense).

Numerical results are shown in Fig. 4. The data again exhibit
scaling collapse with a localization length critical exponent
ν = 2.4 ± 0.1. Moreover, the functional forms of the Hall and

Thouless conductances look the same as in the Landau-level
problem without δ impurities, Fig. 3. On the other hand, if
for each pair (Nφ,Nδ) we compare the data for L(Nφ,Nδ) and
L(Nφ − Nδ,0) from the two figures, we see that in the former
the slope of σxy(E) is steeper and the peak in g(E) is narrower.
This suggests the possibility that the observed behavior of
L(Nφ,Nδ) might capture some information about the plateau
transition in a larger Landau-level Hilbert space L(N eff

φ ,0),
with Nφ � N eff

φ � Nφ − Nδ . Following this hypothesis, by
matching the width of the scaling function features, we find
N eff

φ ≈ 1.7Nφ at p/q = 2 and N eff
φ ≈ 6.1Nφ at p/q = 5/4.

This is manifestly unphysical, as the size of the entire Landau
level, before projection, is only Nφ : no information about the
plateau transition in a Landau level of larger size is present in
our scheme.

There is another explanation of the observed behavior,
which arises more naturally by looking at the density of states.
In Fig. 5 we compare the scaling functions and density of
states for L(Nφ,Nδ), at the two ratios we considered, and
L(Nφ − Nδ,0). For clarity, we only show the largest size we
studied, Nφ − Nδ = 4096, as all other sizes yield analogous
results. We find that the presence of the δ impurities has a
significant effect: it reduces the effective noise strength, and
thus the width of the density of states. Upon rescaling the
energy axis to account for the change in effective disorder
strength, we observe that the scaling functions σxy and g

of L(Nφ,Nδ) overlap with those of the whole Landau level
without δ impurities, L(Nφ − Nδ,0). This holds all the sizes
we studied.
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The renormalization of the noise strength can be understood
heuristically as follows. Localized orbitals are sensitive to the
random potential averaged over a surface area ∼�2

B ,

V̄n(�B) = �−2
B

∫
r<�B

d2rVn(r). (23)

Assuming uncorrelated Gaussian white noise, such that
〈Vn(r1)Vn(r2)〉 = (aV0)2δ(r1 − r2), the variance of the locally
averaged potential scales like �−2

B :

〈V̄n(�B)2〉 = �−4
B

∫
r1,r2<�B

d2r1d
2r2〈Vn(r1)Vn(r2)〉

∼ �−4
B

∫
r1<�B

d2r1(aV0)2 = (aV0/�B)2. (24)

The pinned nodes of the wave functions act as magnetic-flux
tubes which let a fraction q/p of the total magnetic field
B through the sample. The remaining field B(1 − q/p) sets
an effective magnetic length �∗

B = (1 − q/p)−1/2�B . Thus
localized orbitals average the white noise over a larger area
and, based on Eq. (24), experience a reduced disorder strength
Veff = V (1 − q/p)1/2. This simple derivation is in qualitative
agreement with what we observed for a variety of p/q ratios;
for the cases discussed in this section (p/q = 2 and p/q =
5/4) it gives 1/

√
2 � 0.71 and 1/

√
5 � 0.45, reasonably close

to the observed values of 0.77 and 0.49.
Remarkably, up to the aforementioned rescaling of the

disorder strength (or, equivalently, of the magnetic length),
the plateau transition in a fraction of the lowest Landau level
looks exactly the same as in the full lowest Landau level of
corresponding dimension. This result suggests that, besides
the localization length critical exponent, quantitative details
of the plateau transition depend solely on the dimensionality of
the Hilbert space of the flat, C = 1 band (in this case a fraction
of the lowest Landau level). They do not seem to depend on
other details of the states that make up such a band.

C. Different spatial distributions of δ functions

In order to check that our result is general and not a
special property of the square lattice distribution previously
considered, we performed checks with different geometric
distributions of δ functions.

First we considered a triangular lattice. Given the irrational
aspect ratio of the triangular lattice unit cell, it is impossible
to accommodate an integer number of δ functions on a square
torus in a perfectly triangular lattice. Thus either the torus or

FIG. 6. The three distributions of δ impurities we consider in
Sec. V C. Left: a 14 × 14 square lattice. Center: a 13 × 15 triangular
lattice. Right: 195 randomly distributed δ impurities. Each position
is sampled out of a uniform distribution on the torus and discarded if
within 0.5�B of any other δ impurity.

FIG. 7. Comparison between plateau transitions in the E = 0
energy subspace of the three δ-impurity potentials represented in
Fig. 6: a square lattice, a triangular lattice, and a random distribution.
106 disorder realizations are averaged for each case (for the random
case, 102 distributions of δ impurities are considered and for each of
them 104 realizations of white-noise disorder are averaged).

the lattice configuration must be made slightly anisotropic.
We use an anisotropic triangular lattice with unit-cell aspect
ratio of 13/15, which approximates

√
3/2 to one part in 103.

We thus fit 13 × 15 = 195 δ impurities on a square torus
in a nearly triangular lattice and study the plateau transition
in the subspace L(390,195) by diagonalizing 106 disorder
realizations.

Then we consider a random distribution of δ functions,
again in a system with Nφ = 390 and Nδ = 195. We sample
the positions from a uniform distribution on the square torus,
but require any two δ impurities to be at least 0.5�B away
from each other (for comparison, the spacing in the lattices we
considered is ∼3�B) to ensure that the projection on L(Nφ,Nδ)
is well behaved.1 We generate 102 such configurations and, for
each one, we diagonalize 104 disorder realizations.

These two cases can be compared to the transition in the
square lattice problem L(392,196), where the δ impurities
are arranged on a 14 × 14 square lattice,2 which we know
is equivalent to L(195,0) from the analysis presented in the
previous section. For this case, too, we average 106 disorder
realizations. The results are shown in Fig. 7. For the two
lattices, the density of states and scaling functions overlap
within uncertainty at all energies. For the random distribution,

1If two δ impurities get very close to each other, Vδ can have very
small, nonzero eigenvalues arising from wave functions that have a
node on one δ impurity but not on the other.

2The difference in electron number between the square and trian-
gular cases is expected, based on the scaling hypothesis, to cause
a small discrepancy of order 1/2νNφ ∼ 10−3 in the collapse of the
scaling functions between the two cases.
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the density of states has larger tails and the scaling functions
also show small deviations away from E = 0. These tails arise
from the spatial nonuniformity of the random distribution, as
can be seen in Fig. 6: states localized in regions without δ

impurities, or with an abnormally low concentration of them,
experience a stronger effective disorder. Nonetheless, in the
bulk of the critical regime, the forms ofρ,g andσxy coincide for
all distributions. This quantitative match implies universality
that goes beyond the critical exponent: the diagonal and
Hall conductivities match quantitatively, independently of the
geometric distribution of δ functions. This further suggests that
the plateau transition is the same for any C = 1 flat band of a
given dimensionality, be it a whole Landau level or a fraction
of a larger one.

VI. CONCLUSIONS AND DISCUSSION

We have presented a method to isolate a “fraction” of the
lowest Landau level (LLL) by using δ-function potentials.
This subspace shares many features with the original LLL,
including its total topological Chern character and its vanishing
bandwidth. It therefore undergoes a quantum Hall plateau
transition, but its lower dimensionality makes it easier to study
numerically. Physically, each δ impurity effectively binds, or
localizes, one electronic state, so that Nδ impurities in an
Nφ-dimensional LLL give rise to a subspace L(Nφ,Nδ) of
dimension N ′

φ ≡ Nφ − Nδ consisting of electron states that
avoid all the δ impurities.

We studied the integer quantum Hall plateau transition in
this subspace by exact diagonalization of large numbers of
disorder realizations. Our numerical results indicate that the
transition in the “fraction” of the LLLL(Nφ,Nδ) quantitatively
matches the one occurring in L(Nφ − Nδ,0), i.e., the whole
LLL of a system with (Nφ − Nδ) magnetic-flux quanta and
no δ impurities. The only effects of the δ impurities are (i) an
effective reduction of the magnetic field through the system,
or equivalently an effective increase in the magnetic length;
and, as a consequence of that, (ii) an effective reduction in the
strength of the disorder.

From this we conclude that the plateau transition, and in
particular the localization length critical exponent, is the same
for all flat C = 1 bands with a given number of states. Our
results thus suggest that a computational speedup for finite-size
scaling studies of the plateau transition cannot be achieved by
retaining only a fraction of the LLL. It remains to be seen
whether or not this conclusion changes in the presence of inter-
actions: the many-body problem in the truncated Landau level
L(Nφ,Nδ) may reveal some information about the problem in
the larger Landau level L(Nφ,0), or it may map exactly to
the problem in the smaller Landau level L(Nφ − Nδ,0). Both
options have interesting consequences.

In the first case, a truncation of the single-particle Hilbert
space would lead to an exponential computational speedup
for the many-body problem, potentially allowing exact-
diagonalization studies of unprecedented system sizes. The
latter case, on the other hand, would potentially enable interest-
ing experimental applications. Attractive pointlike impurities
could be used to artificially reduce the density of carriers in
quantum Hall systems: by binding a fraction 0 < f < 1 of the
carriers into inert, topologically trivial states at large negative

energies, one could obtain effective filling fractions ν∗ of the
flat C = 1 band with a larger overall LLL filling fraction of ν =
f + ν∗(1 − f ). This could allow the observation of fractional
quantum Hall states in systems where that would otherwise
require exceedingly high magnetic fields. In this respect, recent
progress towards the realization of artificial superlattices in
various two-dimensional electron systems [28,29] appears
promising.
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APPENDIX A: DIRECT COMPUTATION
OF THE CHERN NUMBER

In this Appendix we directly compute the Chern number of
the flat band of electrons at E = 1

2 h̄ωc in the presence of Nφ

quanta of magnetic flux through the system and Nδ δ-function
impurities, via the boundary integral

C = 1

2πi

∮
dθi〈	0(	θ )| ∂

∂θi

|	0(	θ)〉. (A1)

The key observation is that the 	θ dependence is only in the
center-of-mass part of the wave function, Fcm(Z; 	θ ). This
allows us to rewrite the integral as

C = 1

2πi

∮
dθi

∫
dN ′

φ x dN ′
φ y |	0({zi}; 	θ )|2

× ∂

∂θi

lnFcm(Z; 	θ ). (A2)

It is useful to split the integral into the four sides of the
rectangle. Since a 2π change in the boundary angles can cause
at most a phase shift, the weight |	0({zi}; 	θ )|2 is the same for
corresponding points on opposite sides. So pairs of opposite
sides can be grouped as follows:

C = 1

2πi

∫ 2π

0
dθ

∫
d2N ′

φ zi

×
(

|	0({zi}; θ,0)|2 ∂

∂θ
ln

Fcm(Z; θ,0)

Fcm(Z; θ,2π )

+ |	0({zi}; 2π,θ )|2 ∂

∂θ
ln

Fcm(Z; 2π,θ )

Fcm(Z; 0,θ )

)
. (A3)

The logarithm of the ratio of Fcm functions yields two terms:
the first is ± 2π

Lx
Z, which is independent of θ and thus vanishes

when we take the derivative; the second only includes the ϑ1

functions. Exploiting the quasiperiodicity of ϑ1 we finally get

C = 1

2πi

∫ 2π

0
dθ

∫
dN ′

φ x dN ′
φ y |	0({zi}; 0,θ )|2

× ∂

∂θ

[
π

(
i + Ly

Lx

)
− 2πi

Z

Lx

+ iθ

]

=
∫ 2π

0

dθ

2π

∫
dN ′

φ x dN ′
φ y |	0({zi}; 0,θ )|2 = +1. (A4)
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APPENDIX B: DIAGONALIZATION OF THE δ-FUNCTION
LATTICE POTENTIAL

In this Appendix we discuss the diagonalization of the δ-
function potential when the impurities are arranged on a lattice.
We consider the potential introduced in Eq. (12) and its block-
diagonal structure with respect to quasimomentum eigenstates,
Eq. (15).

Let us pick a value of the quasimomentum k and compute
the corresponding block of the potential matrix,

V ab
δ (k) = 〈ψk,a|V |ψk,b〉 = λ

N1∑
n1=1

N2∑
n2=1

ψ∗
k,a(n1a1 + n2a2)

×ψk,b(n1a1 + n2a2). (B1)

We can replace the ψ functions with the pseudo-Bloch u

functions, since the plane-wave phase factors cancel out.
Furthermore, by using Eq. (14), we obtain that all terms related
by a magnetic-unit-cell translations are identical, and thus the
sum reduces to

V ab
δ (k) = 〈ψk,a|Vδ|ψk,b〉 = λ

Nδ

q

q∑
n=1

u∗
k,a(na1)uk,b(na1).

(B2)

By defining the q × p matrix vn,a(k) ≡ uk,a(na1), we get the
form V (k) ∝ v(k)†v(k) discussed in the main text.

As an example, for a square lattice, one has

uk,a(na1) = 1√
N

ϑ3

(
a

p
− n

q
− il

kx + iky

2πp

∣∣∣∣ i

pq

)
, (B3)

where N is a normalization factor independent of a (but
generally dependent on k), l = |a1| is the lattice spacing, and
ϑ3 is the third elliptic ϑ function,

ϑ3(z|τ ) =
∑
l∈Z

eiπτ l2
e−2πilz. (B4)

Thus at any given quasimomentum the Hamiltonian block in
Eq. (B2) is

V ab
δ (k) = 1

N

q∑
n=1

ϑ3

(
a

p
− n

q
− il

kx + iky

2πp

∣∣∣∣ i

pq

)∗

×ϑ3

(
b

p
− n

q
− il

kx + iky

2πp

∣∣∣∣ i

pq

)
. (B5)

The resulting bands are found by diagonalizing Vδ(k),
which is a p × p matrix of rank q. As such, it has q nonzero
eigenvalues and a kernel of dimension p − q. Practically, the
projector P on the kernel of Vδ , which we use in Sec. V B, is
obtained by diagonalizing Vδ(k) in the basis of quasi-Bloch
wave functions as discussed earlier, and then transforming to
the basis of usual Landau orbitals on a torus,

φn(x,y) ∝
∑
p∈Z

e2πy(n+Nφp)/Le
−(1/2)(x+ n

Nφ
L+pL)2

.

The whole process takes computational time O(Nφp2), as op-
posed to the numerical diagonalization of a generic δ-function
potential without lattice symmetry which takes O(N3

φ). Fur-
thermore, the resulting projector is sparse due to the quasi-

momentum quantum number, which speeds up the calculation
of PVnP .

APPENDIX C: KUBO FORMULA FOR σx y

OF STATES IN THE ZERO-ENERGY
SUBSPACE OF THE δ-IMPURITY POTENTIAL

In this Appendix we discuss the Kubo formula for the Hall
conductance of states in the kernel of a δ-function potential, in
the limit of very strong δ functions.

The Hamiltonian for the full system is

H = 1
2 h̄ωc + Vn + λVδ, (C1)

where Vn is a Gaussian white-noise potential of strength V0

(we set �B as the unit of length),

〈Vn(r)Vn(r′)〉 = V 2
0 δ(r − r′),

and

Vδ(r) = V0

Nδ∑
j=1

δ(r − Rj ).

The set of δ-potentials locations {Rj } is arbitrary. We assume
λ � 1 and work in perturbation theory in the small parameter
η ≡ 1/λ � 1. For convenience, we drop the constant 1

2 h̄ωc

(which does not affect the Hall conductance), rescale H by λ,
and define V ≡ Vδ + ηVn.

The Kubo formula for the exact eigenstate |ψa〉 of V reads

σxy(a) = e2

Nφh
+ �σxy(a), (C2)

with

�σxy(a)

e2/h
= −2Im

∑
b �=a

〈ψa|∂xV |ψb〉〈ψb|∂yV |ψa〉
(Ea − Eb)2

. (C3)

We are interested in states a in the kernel of Vδ , so in the
perturbative expansion

|ψa〉 = ∣∣ψ (0)
a

〉 + η
∣∣ψ (1)

a

〉 + · · ·
one has Vδ|ψ (0)

a 〉 = 0. Sorting the states based on increasing
energy, the kernel of Vδ corresponds to a � Nφ − Nδ .

We expand the Kubo formula using perturbation theory in
η � 1 and retain all contributions of order 1. There are two
types of terms in the sum in Eq. (C3): those with b > Nφ −
Nδ , and those with b � Nφ − Nδ . In the former case case, the
denominator is O(1), so only terms of O(1) in the numerator
matter. The only such term is 〈ψ (0)

a |∂xVδ|ψ (0)
b 〉〈ψ (0)

b |∂yVδ|ψ (0)
a 〉.

So the sum over b > Nφ − Nδ , in the limit η → 0, is

〈
ψ (0)

a

∣∣∂xVδ

⎛
⎝ ∑

b>Nφ−Nδ

∣∣ψ (0)
b

〉〈
ψ

(0)
b

∣∣
E2

b

⎞
⎠∂yVδ

∣∣ψ (0)
a

〉

= 〈
ψ (0)

a

∣∣∂xVδQV −2
δ Q∂yVδ

∣∣ψ (0)
a

〉
, (C4)

where Q is the orthogonal complement to P , the projector on
the kernel of Vδ .

In the latter case, i.e., if b � Nφ − Nδ , Eb is O(η) like Ea ,
so that the energy denominator is O(η2). For the limit η → 0 to
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be finite, all terms O(1) or O(η) must vanish in the numerator. This is indeed the case, since

〈
ψ (0)

a

∣∣∂iVδ

∣∣ψ (0)
b

〉 =
Nδ∑
j=1

∂i

(
ψ (0)∗

a ψ
(0)
b

)∣∣∣∣
r=Rj

= 0 (C5)

as the product ψ (0)∗
a (r)ψ (0)

b (r) has a double zero at all impurity locations. This leaves, as the next leading terms, products of pairs
of the following terms, all O(η):

〈
ψ (1)

a

∣∣∂xVδ

∣∣ψ (0)
b

〉 = −〈
ψ (0)

a

∣∣VnQV −1
δ Q∂xVδ

∣∣ψ (0)
b

〉
, (C6)

〈
ψ (0)

a

∣∣∂xVδ

∣∣ψ (1)
b

〉 = −〈
ψ (0)

a

∣∣∂xVδQV −1
δ QVn

∣∣ψ (0)
b

〉
, (C7)

〈
ψ (0)

a

∣∣∂xVn

∣∣ψ (0)
b

〉
. (C8)

This is simplified by introducing the operators

�i ≡ QV −1
δ Q∂iVδ. (C9)

Putting the two contributions together, the overall result to O(1) in the limit η → 0 from the sum over all 1 � b � Nφ is

�σxy(a)

e2/h
= − 2

Nφ

Im
〈
ψ (0)

a

∣∣
⎛
⎜⎜⎜⎝�†

x�y +
∑

b < Nφ − Nδ

b �= a

(∂xVn − Vn�x − �
†
xVn)

∣∣ψ (0)
b

〉〈
ψ

(0)
b

∣∣(∂yVn − Vn�y − �
†
yVn)(

E
(0)
a − E

(0)
b

)2

⎞
⎟⎟⎟⎠

∣∣ψ (0)
a

〉
,

(C10)

where all the disorder-dependent data come from the projected problem: the |ψ (0)
a 〉 and E(0)

a are respectively eigenvectors and
eigenvalues of the projected potential PVnP . The �i operators do not depend on the disorder realization Vn, and thus must be
computed only once. This guarantees that the computation of σxy inL(Nφ,Nδ) is almost as efficient as that of σxy inL(Nφ − Nδ,0),
with only a small overhead.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[3] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs,

Phys. Rev. Lett. 49, 405 (1982).
[4] R. E. Prange, Phys. Rev. B 23, 4802 (1981).
[5] B. E. Feldman, M. T. Randeria, A. Gyenis, F. Wu, H. Ji, R. J.

Cava, A. H. MacDonald, and A. Yazdani, Science 354, 316
(2016).

[6] E. Brezin, D. J. Gross, and C. Itzykson, Nucl. Phys. B 235, 24
(1984).

[7] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[8] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K.

Watanabe, M. P. Zaletel, and A. F. Young, arXiv:1706.06116.
[9] R. Nandkishore and A. C. Potter, Phys. Rev. B 90, 195115

(2014).
[10] S. D. Geraedts and R. N. Bhatt, Phys. Rev. B 95, 054303 (2017).
[11] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. B 31, 2529 (1985).
[12] D. P. Arovas, R. N. Bhatt, F. D. M. Haldane, P. B. Littlewood,

and R. Rammal, Phys. Rev. Lett. 60, 619 (1988).
[13] J. Zak, Phys. Rev. 139, A1159 (1965).
[14] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[15] Z. Gedik and M. Bayindir, Phys. Rev. B 56, 12088 (1997).

[16] K. Ishikawa, N. Maeda, and K. Tadaki, Phys. Rev. B 51, 5048
(1995).

[17] K. Ishikawa, N. Maeda, T. Ochiai, and H. Suzuki, Phys. Rev. B
58, 1088 (1998).

[18] K. Ishikawa, N. Maeda, T. Ochiai, and H. Suzuki, Phys. E
(Amsterdam, Neth.) 4, 37 (1999).

[19] P. Streda, J. Phys. C 15, L717 (1982).
[20] A. Krishna, M. Ippoliti, and R. N. Bhatt (unpublished).
[21] B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).
[22] D. Thouless, Phys. Rep. 13, 93 (1974).
[23] Y. Huo and R. N. Bhatt, Phys. Rev. Lett. 68, 1375 (1992).
[24] K. Slevin and T. Ohtsuki, Phys. Rev. B 80, 041304 (2009).
[25] H. Obuse, I. A. Gruzberg, and F. Evers, Phys. Rev. Lett. 109,

206804 (2012).
[26] Q. Zhu, P. Wu, R. N. Bhatt, and X. Wan (unpublished).
[27] I. A. Gruzberg, A. Klümper, W. Nuding, and A. Sedrakyan, Phys.

Rev. B 95, 125414 (2017).
[28] C. Forsythe, X. Zhou, T. Taniguchi, K. Watanabe, A.

Pasupathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean,
arXiv:1710.01365.

[29] T. Hensgens, U. Mukhopadhyay, P. Barthelemy, S. Fallahi,
G. C. Gardner, C. Reichl, W. Wegscheider, M. J. Manfra, and
L. M. K. Vandersypen, arXiv:1709.09058.

014205-10

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.23.4802
https://doi.org/10.1103/PhysRevB.23.4802
https://doi.org/10.1103/PhysRevB.23.4802
https://doi.org/10.1103/PhysRevB.23.4802
https://doi.org/10.1126/science.aag1715
https://doi.org/10.1126/science.aag1715
https://doi.org/10.1126/science.aag1715
https://doi.org/10.1126/science.aag1715
https://doi.org/10.1016/0550-3213(84)90146-9
https://doi.org/10.1016/0550-3213(84)90146-9
https://doi.org/10.1016/0550-3213(84)90146-9
https://doi.org/10.1016/0550-3213(84)90146-9
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.71.3697
http://arxiv.org/abs/arXiv:1706.06116
https://doi.org/10.1103/PhysRevB.90.195115
https://doi.org/10.1103/PhysRevB.90.195115
https://doi.org/10.1103/PhysRevB.90.195115
https://doi.org/10.1103/PhysRevB.90.195115
https://doi.org/10.1103/PhysRevB.95.054303
https://doi.org/10.1103/PhysRevB.95.054303
https://doi.org/10.1103/PhysRevB.95.054303
https://doi.org/10.1103/PhysRevB.95.054303
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.1103/PhysRevLett.60.619
https://doi.org/10.1103/PhysRevLett.60.619
https://doi.org/10.1103/PhysRevLett.60.619
https://doi.org/10.1103/PhysRevLett.60.619
https://doi.org/10.1103/PhysRev.139.A1159
https://doi.org/10.1103/PhysRev.139.A1159
https://doi.org/10.1103/PhysRev.139.A1159
https://doi.org/10.1103/PhysRev.139.A1159
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.56.12088
https://doi.org/10.1103/PhysRevB.56.12088
https://doi.org/10.1103/PhysRevB.56.12088
https://doi.org/10.1103/PhysRevB.56.12088
https://doi.org/10.1103/PhysRevB.51.5048
https://doi.org/10.1103/PhysRevB.51.5048
https://doi.org/10.1103/PhysRevB.51.5048
https://doi.org/10.1103/PhysRevB.51.5048
https://doi.org/10.1103/PhysRevB.58.1088
https://doi.org/10.1103/PhysRevB.58.1088
https://doi.org/10.1103/PhysRevB.58.1088
https://doi.org/10.1103/PhysRevB.58.1088
https://doi.org/10.1016/S1386-9477(98)00243-4
https://doi.org/10.1016/S1386-9477(98)00243-4
https://doi.org/10.1016/S1386-9477(98)00243-4
https://doi.org/10.1016/S1386-9477(98)00243-4
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1103/PhysRevLett.68.1375
https://doi.org/10.1103/PhysRevLett.68.1375
https://doi.org/10.1103/PhysRevLett.68.1375
https://doi.org/10.1103/PhysRevLett.68.1375
https://doi.org/10.1103/PhysRevB.80.041304
https://doi.org/10.1103/PhysRevB.80.041304
https://doi.org/10.1103/PhysRevB.80.041304
https://doi.org/10.1103/PhysRevB.80.041304
https://doi.org/10.1103/PhysRevLett.109.206804
https://doi.org/10.1103/PhysRevLett.109.206804
https://doi.org/10.1103/PhysRevLett.109.206804
https://doi.org/10.1103/PhysRevLett.109.206804
https://doi.org/10.1103/PhysRevB.95.125414
https://doi.org/10.1103/PhysRevB.95.125414
https://doi.org/10.1103/PhysRevB.95.125414
https://doi.org/10.1103/PhysRevB.95.125414
http://arxiv.org/abs/arXiv:1710.01365
http://arxiv.org/abs/arXiv:1709.09058



