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Sign phase transition in the problem of interfering directed paths
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We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the
average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending
on dimensionality and the concentration of negative scattering sites x. We show that in two dimensions the
sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three
dimensions, we present strong evidence that there is a sign phase transition at a finite xc > 0. These results
have consequences for several different physical systems. In two-dimensional insulators at low temperature, the
variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the
point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may
enhance superconductivity in a random system of D-wave superconducting grains embedded in a metallic matrix.
Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase
diagram at high temperature.
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I. INTRODUCTION

In this paper, we investigate the properties of interfering
directed paths in random media. An example is shown schemat-
ically in Fig. 1, where solid lines correspond to directed “tun-
neling” paths and blue dots represent scattering sites. Important
physical settings for interfering directed paths include hopping
conduction in doped semiconductors [1,2], spin glasses at high
temperature [3], and granular D-wave superconductors [4,5].
We describe these applications in more detail below. First, let
us introduce the common mathematical structure among them
and motivate the question which we shall address.

In each of these settings, the physics is determined by the
statistics of a sum over paths:

A =
∑

�

A�, A� =
∏
j∈�

αj , (1)

where A� is the tunneling amplitude of path �, given as a
product of scattering amplitudes αj along the path (see Fig. 1).
If the amplitudes αj have random signs, so too does the sum A.
The destructive interference at large distances r ≡ |rf − ri | is
characterized by whether the sumA is more likely to be positive
than negative:

�Pr→∞ ≡ �P ≡ Pr[A > 0] − Pr[A < 0]. (2)

It was suggested in [2,6] that the path sum exhibits a “sign phase
transition” at a critical concentration of negative scattering sites
xc. For example, if

αj =
{

1 with probability 1 − x,

−M with probability x,
(3)

then

�P > 0 for x < xc,

�P = 0 for x > xc.
(4)

The quantity �P (x) serves as an order parameter for the sign
phase transition. Such a transition is shown qualitatively in the
bottom panel of Fig. 1.

It was argued in [2] that the upper critical dimension for
the sign phase transition is four. The lower critical dimension
has been debated, and in particular, whether the sign-ordered
phase exists in two dimensions (2D) has remained unresolved
for a long time [2,7–15].

Here, we show conclusively that the sign-ordered phase
does not exist in 2D (�P = 0 for any x > 0) and present
strong numerical evidence that it does exist in three dimensions
(3D). The former result is consistent with some of the previous
studies (see in particular [14]). We explain the instability of
the sign-ordered phase at small values of x by identifying
the rare fluctuations which destabilize the sign order. These
lead to an anomalously large correlation length which scales
stretched exponentially with x and explains the apparent sign
order observed in previous numerical studies [6,9,12,15].

The (non)existence of the sign-ordered phase and associ-
ated transition has immediate consequences for the following
physical systems:

(a) The quantity A in Eq. (1) can play the role of the
electron tunneling amplitude in a disordered medium, where it
arises as a sum of partial amplitudes corresponding to different
tunneling paths [2,6,16–22]. It was argued in Refs. [2,6,21] that
the sign of the magnetoresistance in the hopping conductivity
regime depends on whether the system is in the sign-ordered
or -disordered phase.

(b) In the Edwards-Anderson spin glass, the spin correlation
function at high temperature is governed by a sum analogous to
A, where αj correspond to bond disorder. Thus, the presence of
a sign-ordered phase in 3D implies that a transition takes place
in the sign of the correlation functions at high temperature.

(c) At high temperature, the correlation function χ =
〈exp [i(φi − φj )]〉 in a system of randomly oriented and ran-
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FIG. 1. (top) Schematic of interfering directed paths in a random
medium. �1 and �2 are two different paths from site i to site f . S�1 is
the area enclosed by �1 relative to the line joining i and f . (bottom)
Sketch of the order parameter for the sign phase transition.

domly shaped grains of a D-wave superconductor embedded
into a metallic matrix can be reduced to Eq. (1). Here, φi is
the phase of the order parameter on grain i. In analogy with
the magnetoresistance in the hopping conductivity regime, the
magnetic field suppresses superconductivity in the sign-
ordered phase and enhances it in the sign-disordered phase.

We will return to these applications in more detail in Sec. III.
In the following, we first review the essential physical

picture of the sign-ordered phase in Sec. II A. We then develop
a more detailed picture of the fluctuations in 2D which lead to
the instability of sign order in Sec. II B and confirm these with
numerical simulations. In Sec. II C we turn to the 3D problem
and present evidence that sign order is stable at small x. Finally,
we present applications and discussion in Secs. III and IV.

II. THE SIGN PHASE TRANSITION

A. Mean-field description and generalities

The essential picture of the sign-ordered phase is illustrated
in the “space-time” diagram of Fig. 2. Here, the “time”
coordinate t corresponds to the direction of propagation of the
directed paths, and the “spatial” coordinates s correspond to
the d − 1 transverse directions. Negative-amplitude scatterers
produce cigar-shaped negative domains in the sign

σ (s,t) ≡ sgn[A(s,t)] (5)

of the amplitude field.
For an isolated negative scatterer in an otherwise uniform

lattice of positive scatterers, the sign at (s,t) is determined
by the interference between those paths which go through the
negative scatterer and those which miss it. If the scattering
amplitude is sufficiently large, the path sum may be estimated
in the diffusive limit [15],

A(s,t) ∝ 1 −
( |μ|

t

) d−1
2

e− s2

4Dt , (6)

t

s

∼ |µ|

∼ |µ|

FIG. 2. Regions in which the path sum is negative (purple),
created by isolated negative scatterers (black dots). Although each
region has a random size, the typical scales are as shown. The paths
are directed along t . The scattering length μ characterizes the strength
of the scatterer; see [15] for details.

where the scattering length μ characterizes the strength of the
negative scatterer, D is a microscopic length, and we have
suppressed an O(1) constant. We find that the negative domain
A < 0 has extent τ ∼ |μ|, width w ∼ √|μ|, and volume v ∼
|μ| d+1

2 . At a sufficiently small concentration of scatterers x,
the negative domains remain far apart and do not interfere.
The sign field σ (s,t) disorders only if the domains percolate,
i.e., when

xv = x|μ| d+1
2 � 1. (7)

Thus, this picture predicts a finite xc for sign order in any
dimension d > 1 [23].

This argument neglects fluctuations in the size of the
isolated negative domains. Should the distribution of domains
have a sufficiently long tail, then sign order becomes unstable
even at very small x, as argued by [14]. Suppose that the
distribution of domain lengths τ has a power-law tail, ps(τ ) ∼
τ−η, and that the typical transverse width of such domains is
w(τ ) ∼ τ γ . We refer to η as the “survival” exponent and γ as
the “growth” exponent. The fraction of the transverse volume
occupied by negative domains at time t is

x

∫ t

dt ′ps(t − t ′)w(t − t ′)d−1. (8)

This fraction converges as t → ∞ provided
1 − η + (d − 1)γ < 0. (9)

Inequality (9) is a necessary condition for the stability of the
sign-ordered phase with respect to these fluctuations.

Since the sign σ (s,t) takes values in {+,−}, it is instructive
to interpret it as an Ising field in d − 1 spatial dimensions s

and temporal dimension t , which evolves in the presence of
“noise” given by the scattering disorder. In this language, the
sign order parameter is simply the magnetization as t → ∞,

E[σ (s,t)] = Pr[A(s,t) > 0] − Pr[A(s,t) < 0]

= �P (s,t). (10)

Here, E[·] denotes averaging with respect to the random
distribution of scatterers (i.e., the noise). The steady state
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FIG. 3. A typical snapshot of the (log-)amplitude field ln |A(s,t)| as a function of s for fixed t (L = 200, x = 0.04). The y-axis values are
shifted so that the minimum is at zero. The time t = 86000 is close to the disordering time scale t∗ for this x. Red (blue) points correspond
to positive (negative) σ (s,t) ≡ sgn[A(s,t)]. The vertical black lines indicate the negative scatterers at the current t , i.e., where α(s,t) = −1. All
other sites have α(s,t) = 1.

resulting from the noise need not correspond to equilibrium
with respect to any Ising model. Nevertheless, one might
suspect that the sign-ordered phase is unstable to fluctuations
for d = 2 (i.e., one spatial dimension) and stable for d � 3.
We will argue below that this is indeed the case.

B. Absence of the sign-ordered phase in 2D

1. Survival and growth exponents

As a warm-up, consider the one-dimensional (1D) equilib-
rium Ising model with Glauber dynamics at low temperature.
Domain walls undergo random walks and annihilate when
they meet. When a single spin is flipped in a uniform back-
ground, the resulting domain has probability ps(τ ) ∼ τ−1/2 of
surviving until time τ . Over that time, the walls typically walk
w ∼ τ 1/2. Thus, η = γ = 1

2 and inequality (9) with d − 1 = 1
is violated. The magnetization is unstable, as expected for a
finite-temperature 1D model.

In the directed path problem, there is no Hamiltonian with
respect to which the sign field σ comes into equilibrium. The
stochastic “dynamics” nevertheless induce survival and growth
exponents. We follow [14] and consider an isolated negative
scatterer embedded in a dense background of disordered
positive scatterers. The path sum in the positive-scattering
background reduces to the well-known directed polymer prob-
lem [24,25]. In the extreme disordered limit, the polymer
“pins,” so that one path �0 dominates the sum:

A = A�0 + · · · . (11)

Accordingly, the sign σ (s,t) is negative only if �0 happens
to go through the lone negative scatterer. It is known that
the directed polymer wanders over a distance w(τ ) ∼ τ ξ with
wandering exponent ξ = 2

3 . Thus, we identify η = (d − 1)ξ
and γ = ξ . Inequality (9) is violated, which again implies
the instability of the sign-ordered phase even at arbitrarily
small x.

Since the fraction of space occupied by negative domains
at time t is xt [see Eq. (8)], we also obtain a simple estimate
for the disordering time:

t∗(x) ∼ x−1. (12)

This argument clearly applies to the large-disorder limit where
the path sum is dominated by a single path �0. At weaker
disorder in the “pinned” phase, the wandering exponent ξ

governing the directed polymer is unchanged, yet subdomi-
nant paths now contribute to the path sum, and interference
effects may become nontrivial. Numerical investigations in
Ref. [14] confirmed that the survival and growth exponents
for the domains produced by isolated negative scatterers are
nevertheless unchanged when the background disorder is of
intermediate strength in 2D.

2. Negative scatterers and the role of interference

The above analysis relies on positive background disorder
to produce the destabilizing fluctuations. It leaves open the
possibility of 2D sign order when the disorder arises only from
negative scatterers. Here, we close the door by considering
this regime in the limit where the typical negative domain
is microscopic (μ � D) and the concentration of negative
scatterers x → 0. We find that sign order is nonetheless
destroyed by rare events.

First, we consider no disorder (x = 0). The sum (1) de-
scribes diffusion of paths, so that in the continuum limit,

∂tA = D∇2
s A, (13)

where we have rescaled A exponentially with t in order to
remove an overall s-independent factor. Suppose the amplitude
at t = 0 is roughly uniform over a region of width l. If a
negative scatterer flips the sign of A in a subregion of width
w � l, the negative domain becomes positive after a time
τ ∼ w2/D. Thus, isolated negative scatterers do not produce
asymptotically long-lived negative domains.

For small but finite concentration x, a large length scale l(x)
emerges. Figure 3 shows a typical realization of the amplitude
A(s,t) at late time t (see Sec. II B 3 for numerical details). The
log-amplitude field forms smooth “hills” separated by sharp
minima. The length scale l(x) is the typical distance between
minima, i.e., the typical width of a hill. As in the isolated case,
scattering events which produce negative domains of width
w � l(x) remain short-lived (τ ∼ w2). However, if a negative
scattering event produces a domain covering more than half of
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t
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FIG. 4. The lattice (blue dots) used in the 2D simulations. All
2D simulations begin with uniform initial conditions A(s,0) = 1 and
propagate forward in t using Eq. (16). The arrows show two examples
of directed paths on this lattice.

the weight in the hill [w ∼ l(x)/2], then it cannot disappear
due to diffusion of amplitude within the hill. Such domains are
locally stable, and their lifetimes are governed by competition
with neighboring hills over much longer time scales. Thus, l(x)
separates short-lived and long-lived domains.

A self-consistent argument gives the scaling of l(x) as x →
0. A single negative scatterer at time t0, although it does not
produce a lasting negative domain, creates a local minimum
in |A(s,t)|. The minimum becomes wider and shallower as
�t ≡ t − t0 increases, with the width scaling as �t1/2. After a
time �t ∼ l(x)2, the minimum merges into its neighbors and
can no longer be resolved. Thus, l(x)2 is the “lifetime” of a
local minimum. New minima are created at a rate x per unit
length and time. Thus, the typical density of minima present
at any given time is ∼xl(x)2, but by definition, this must equal

1
l(x) . We have that

l(x) ∼ x− 1
3 , (14)

which holds for x � 1.
Coarse grained on the scale l(x), isolated negative scatterers

become effective positive-weight disorder, while the rare
events which produce domains of width l(x) become negative
scatterers whose concentration is xαl(x) for some O(1) constant
α. On this scale, the effective positive scatterers are disordered,
so the analysis of Sec. II B 1 and Ref. [14] again applies. We
recover that the sign order is unstable but with a parametrically
longer time scale [see Eq. (12)],

t∗(x) ∼ x−αl(x) ∼ x−αx−1/3
(15)

for x → 0.

3. Numerical validation

The above arguments are qualitative and require numerical
validation, which we now present.

For concreteness, we use the lattice shown in Fig. 4. Each
site (s,t) contains a scatterer with random amplitude α(s,t),
for which we take the binary distribution given by Eq. (3)
with M = 1. Instead of evaluating each path amplitude A� ,
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FIG. 5. (top) Mean distance between local minima of the height
field at time t , averaged over disorder (L = 1600). Each line (color)
corresponds to a different density of scatterersx. Error bars (not shown
for clarity) are of the same magnitude as the fluctuations within each
curve. (bottom) Asymptotic distance l(x) between minima, taken from
the average of the late-time plateaus of lt (x). The color of each point
indicates which curve in the top panel it corresponds to. Error bars
are smaller than the marker size. The solid line is a power-law fit of
the points with x ∈ [0.01,0.03].

we organize the sum over paths iteratively:

A(s,t + 1) = α(s,t+1) [A(s − 1,t) + A(s,t) + A(s + 1,t)].

(16)

In all simulations in this section, we consider “quenches”
from uniform initial conditions A(s,0) = 1 in systems with
transverse width L and periodic boundary conditions.

We first determine l(x) numerically by defining, at fixed
time t , lt (x) as the disorder- and spatial-averaged distance
between local minima of ln |A(s,t)|. Figure 5 shows lt (x) as
a function of t for a system of size L = 1600 (the curves
are independent of L). Since the curves saturate at t well
within the simulation time, we determine l(x) ≡ limt→∞ lt (x)
by averaging lt (x) over their plateaus. The scaling behavior of
the resulting l(x) with x, shown in the bottom panel of Fig. 5,
confirms Eq. (14).

We have also verified Eq. (15) for the disordering time.
Figure 6 shows

�P (t) ≡ E

[
1

L

∑
s

σ (s,t)

]
(17)
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FIG. 6. Decay of the sign order parameter �P (t) ≡
E[ 1

L

∑
s σ (s,t)] in 2D from uniform initial conditions (transverse

size L = 100). Error bars (not shown) are of the same magnitude
as the fluctuations within a curve. The vertical lines correspond
to the independently determined disordering time scales t∗(x) for
each density of negative scatterers x [see Eq. (15)]. The predicted
t∗(x = 0.01) ≈ 1012 is not accessible with current computing
resources.

as a function of t for various small x. For all x � 0.02, the
sign field clearly disorders at large t . The vertical lines are the
independent estimates t∗(x) = x−αl(x), with α = 1

2 and l(x)
determined numerically as described above. The agreement
with the observed disordering times is excellent considering
that t∗(x) ranges over ∼5 orders of magnitude as x varies.
This also explains why past numerical work on the 2D sign
phase transition was inconclusive: the simulation must run for
very long times to see disordering. Indeed, we estimate that the
disordering time for x = 0.01 is ∼1012, which is longer than
we can study numerically.

We note that within our analysis, α is the only free-fitting pa-
rameter. α = 1

2 gives an excellent fit and has a simple physical
rationale: only half of a hill must change sign simultaneously,
for then the new domain occupies the majority of the hill and
annihilates the remainder.

C. The sign phase transition in 3D

There are several suggestive but contradictory arguments
regarding the sign-ordered phase in 3D. The analogy with
the (d − 1)-dimensional stochastic Ising model (see Sec. II A)
suggests that the sign-ordered phase can exist since Ising order
is stable in two spatial dimensions. On the other hand, disorder
always drives the (positive-weight) directed polymer into its
“pinned” phase in 3D [25], just as in 2D. In the strongly
pinned limit where A is dominated by a single path, this
would lead to sign disorder by the arguments of Sec. II B 1 and
Ref. [14]. However, this does not rule out the possibility of a
stable sign-ordered phase at weaker disorder. Here, we present
a numerical study in the weak-disorder regime analogous to
that studied in 2D above. By several complimentary numerical
simulations and finite-size scaling analyses, we conclude that
3D sign order exists.
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FIG. 7. Decay of sign order in 3D from uniform initial conditions
on the lattice of Eq. (18). (top) The sign order parameter �P (t) as a
function of t for various x at size L = 80. Error bars are smaller than
the marker size. (bottom) �P evaluated at time t = 105 as a function
of x. The sharpness of the crossover is suggestive of a transition at
xc ≈ 0.16.

We calculate path sums on the cubic lattice defined by the
recursion relation

A(s1,s2,t + 1) = α(s1,s2,t+1)[A(s1,s2,t)

+A(s1 − 1,s2,t) + A(s1 + 1,s2,t)

+A(s1,s2 − 1,t) + A(s1,s2 + 1,t)], (18)

with periodic boundary conditions for systems of transverse
size L × L.

Figure 7 shows the decay of �P (t) starting from uniform
initial conditions. It suggests that the sign field becomes
disordered when x � 0.16 but remains ordered when x �
0.16. However, we face the same difficulty as in 2D (see
Fig. 6): �P (t) may remain nonzero throughout the accessible
simulation but disorder on longer time scales. The values of
�P as a function of x plotted in the bottom panel of Fig. 7 are
only upper bounds to the true t → ∞ values.

To confirm that the sign-ordered phase is, in fact, stable
at small x, we consider quench experiments from disordered
initial conditions: A(s1,s2,0) = ±1 with equal probability. If
the sign order is stable, we expect the sign field to order
spontaneously for x < xc. This is in analogy to the 2D Ising
model, which magnetizes spontaneously when quenched from
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FIG. 8. Spontaneous ordering of the sign field starting from
disordered initial conditions, as shown by �P2(t) [Eq. (19)] for
various L. Error bars are smaller than the marker size. (top) For
x = 0.08, the late-time value of �P2(t) becomes independent of
system size L, consistent with spontaneous long-range order. (bottom)
For x = 0.17, the late-time value of �P2(t) decays with increasing
system size.

high temperature to below Tc. Figure 8 demonstrates this
ordering for two representative concentrations x. Note that
because of the symmetry in the initial conditions, we consider
the order parameter

�P2(t) ≡

√√√√√E

⎡
⎣(

1

L2

∑
s1,s2

σ (s1,s2,t)

)2
⎤
⎦. (19)

At x = 0.08, well below the tentative xc identified above,
�P2(t) approaches a constant value independent of L as
t → ∞. The time scale to reach the asymptotic value scales
as L2 (not shown), which is the same scaling as that of
coarsening dynamics in the 2D Ising model [26]. At x =
0.17, in contrast, limt→∞ �P2(t) decreases as the system size
increases, consistent with lack of long-range order.

These two complementary simulations, respectively ob-
serving the decay of ordered sign fields and the spontaneous
ordering of disordered ones, together suggest that the sign field
remains ordered at small x and disorders only at larger x.
To quantitatively extract the critical xc, we have carried out a
crossing-point analysis of the Binder cumulant obtained from
the uniform-initial-condition simulations. The sign Binder
cumulant

U (t) ≡ 1 − E
{[

1
L2

∑
s1,s2

σ (s1,s2,t)
]4}

3E
{[

1
L2

∑
s1,s2

σ (s1,s2,t)
]2}2 (20)
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FIG. 9. Convergence of the Binder cumulant crossing points to
the location of the sign phase transition (at t = 105). x∗(L) is the
point at which the size-L and size-2L cumulant curves cross, and the
1/L → 0 limit is the thermodynamic value xc for the transition. Error
bars are imperceptible on this scale. The inset shows the representative
cumulant curves for small systems (blue to red: L = 10,20,40,80),
together with the ordered and disordered limiting values of 2/3
and 0.

provides a dimensionless measure of the ordering transition in
the sign field [27]. In a Gaussian ordered phase, U = 2/3,
while in a disordered phase, U = 0. The Binder cumulant
is especially useful for extracting xc by the crossing-point
method described below because it has very small finite-size
corrections [28].

The inset in Fig. 9 shows representative data for the Binder
cumulant U computed at the longest times accessible to our
simulations (tmax = 105) as a function of x at several system
sizes. At a given size L, U crosses over from its ordered
value at small x to the disordered value at large x. There
is significant finite-size drift of the crossing points between
consecutive system sizes L. The main panel of Fig. 9 shows
the crossing point x∗(L) for the size-L and size-2L curves as
a function of 1/L. Our procedure for determining the crossing
points, including their uncertainties (smaller than the marker
size in Fig. 9), is described in the Appendix B. Without
further assumptions regarding the finite-size scaling of the
transition, we cannot make a quantitatively accurate estimate
of xc = limL→∞ x∗(L), but the data in Fig. 9 appear to be
consistent with xc ≈ 0.14.

To summarize, at small x in 3D, the sign field orders
spontaneously at long times even when initialized with a
disordered configuration. At large x, on the other hand, the
sign field disorders even when starting from an ordered con-
figuration. As we increase the system size, the Binder cumulant
of the sign field flows to the ordered limit at small x and
the disordered limit at large x, and a crossing-point analysis
shows that the transition persists into the thermodynamic
limit.

These numerical results are robust but limited by finite
computational resources. Moreover, we note that sign order
is in some tension with the established marginal flow of the
3D positive-weight directed polymer to the pinned phase at
arbitrarily small disorder. We speculate that there are three
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FIG. 10. Proxy for the 3D magnetoresistance L(B) [see Eq. (21)]
as a function of the applied magnetic field B for various x (system
size L = 1000 and length t = 1000). Error bars are smaller than the
marker size, and the solid lines are guides to the eye.

possible renormalization group scenarios for sign order in 3D:

(i) Sign order is consistent with pinned-phase fluctuations
of the ln |A| field because of interference from subdominant
paths.

(ii) Negative amplitudes stabilize the Gaussian phase of the
directed polymer in 3D, and the sign-ordered phase coincides.

(iii) Sign order is ultimately unstable in 3D due to the
fluctuations in the strongly pinned phase. As the flow to strong
pinning is only marginal, the disordering time scales are too
long to be observable.

It would be very interesting to conclusively establish which
of these scenarios holds and develop a theory of the associated
fixed points.

III. APPLICATIONS

Our results have physical consequences for a variety of
systems, which we now describe.

A. Magnetoresistance of variable-range hopping

In the variable-range-hopping regime of disordered semi-
conductors, electrons tunnel farther than the typical distance
between localized states [1,29]. In this case, A in Eq. (1)
is the electron tunneling amplitude given as a sum of par-
tial amplitudes corresponding to different tunneling paths �

[6,16–20,22]. In the presence of a magnetic field, each am-
plitude acquires a factor exp (i 
�


0
), where 
� = BS� is the

flux enclosed between � and some fixed reference path, and

0 is the flux quantum (see Fig. 1). It has been argued that
the magnetoresistance is positive in the sign-ordered phase
and negative in the sign-disordered phase [21]. Thus, our
results imply that in 2D systems at sufficiently small magnetic
fields and low temperature, the magnetoresistance is always
negative. In contrast, in 3D systems, the magnetoresistance
should change sign as a function of the concentration of
negative scatterers x.

This point is illustrated in Fig. 10, which shows the magne-
toresponse for 3D systems with the lattice of Eq. (18). We plot

x

T

0 1/2 1

SG

SOP SOPSDP

AFF

FIG. 11. Schematic phase diagram of 3D ±J spin glass on
a bipartite lattice. The sign-ordered paramagnet (SOP) and sign-
disordered paramagnet (SDP) are separated by the sign phase tran-
sition (dotted line). The high-temperature expansion implies a finite
asymptotic xc for this line at large temperature; its terminus at the
multicritical point is conjectural. The low-temperature ferromagnetic
(F), antiferromagnetic (AF), and spin-glass (SG) phases are separated
by solid lines. For the ±J model, the Nishimori line is indicated by
the dashed line. Boundaries capture the topology of the phase diagram
but are not drawn quantitatively accurately.

the quantity

L(B) ≡ ln

∣∣∣∣AB(0,t)

A0(0,t)

∣∣∣∣
2

(21)

for a fixed large value of t . AB(s,t) is the path sum in the
presence of a magnetic field B (see the Appendix A for
details). L(B) ∼ t�ξ/ξ 2 measures the relative change �ξ =
ξ (B) − ξ (0) in the effective localization length which enters
into the hopping conductivity. L(B) > 0 indicates negative
magnetoresistance, and L(B) < 0 indicates positive magne-
toresistance (see Ref. [21] for details). The magnetoresistance
at small B indeed changes sign as a function of x at xc, in
agreement with our estimate of the sign phase boundary.

B. Three-dimensional spin-glass phase diagram

Consider a spin glass described by the Hamiltonian

H =
∑
ij

Jij SiSj , (22)

where Si are spins (Ising, Heisenberg, etc.) and the exchange
energies Jij are random. For 3D spin glasses with Pr[Jij >

0] = 1 − x and Pr[Jij < 0] = x, the existence of the sign
phase transition implies new features of the phase diagram.
This is qualitatively shown in Fig. 11 for the case of a bipartite
(e.g., cubic) lattice.

The three low-temperature phases (ferromagnetic, spin
glass, and antiferromagnetic) are well established for both Ising
and Heisenberg spins [30–35]. At high temperature T � Jij ,
the system is paramagnetic. The high-temperature expansion
for the spin correlation function,

〈SiSf 〉 = Tr

[
SiSf

exp (−βH )

Z

]
, (23)

can be expressed as a sum over interfering directed paths of the
form Eq. (1). Thus, there is a sign phase transition in the sta-
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tistical properties of 〈SiSf 〉 at long distance. This is indicated
by the dotted lines at high temperature in Fig. 11. Note that
the line at x > 1

2 , corresponding to mainly antiferromagnetic
bonds, is a transition in the Néel correlator (−1)|i−f |〈SiSf 〉.

Sign order or disorder in the spin correlation function is well
defined at any temperature, not only high temperatures where
a directed-path expansion holds. Furthermore, the sign phase
transition divides phases with different symmetries in their
correlators. Thus, although we have demonstrated the existence
of the transition only at high temperature, the boundary cannot
terminate in the middle of the phase diagram and must persist
to lower temperatures. We conjecture that it meets the triple
point of the thermodynamic phases. In that sense, it is a
continuation of the boundary separating the low-temperature
(anti)ferromagnetic and spin-glass phases. Keep in mind that
all thermodynamic properties of the system are analytic across
the sign phase transition. However, the sign phase transition
may nevertheless be relevant for the thermodynamics and
dynamics of spin glasses, particularly at lower temperatures
near the triple point (compare the “Widom line” that extends
well beyond the critical point in classical fluids [36,37]).

For the ±J model, the well-known Nishimori line [38] also
intercepts the multicritical point in Fig. 11. The Nishimori
line approaches x = 1

2 as T → ∞; thus, it lies in the sign-
disordered phase at high temperature. We conjecture that
〈SiSf 〉 is sign disordered throughout the entire paramagnetic
portion of the Nishimori line, as sketched in Fig. 11. This is
consistent with the identity

E[〈SiSf 〉] = E[〈SiSf 〉2], (24)

which holds everywhere along the Nishimori line. In particular,
in the paramagnetic phase, E[〈SiSf 〉] decays exponentially
with distance, so E[〈SiSf 〉] � 1 for long-enough paths. The
Nishimori identity Eq. (24) then implies

Var[〈SiSf 〉] ∼ E[〈SiSf 〉] � E[〈SiSf 〉]2, (25)

i.e., the relative fluctuations of 〈SiSf 〉 diverge at large distance,
as expected in the sign-disordered phase.

In 2D, the phase diagram is much simpler (not shown).
While the (anti)ferromagnetic phases still exist, there is no
finite-temperature spin glass. Similarly, our results show that
there is no high-temperature sign-ordered phase and thus no
equivalent of the dotted line in the 3D phase diagram.

C. Composite D-wave superconductors

The existence of sign-ordered and -disordered phases man-
ifests in properties of random composite D-wave supercon-
ductors, where superconducting grains are embedded into a
metallic matrix (see Fig. 12). In the regime where the grain size
is larger than the coherence length and the temperature is below
the bulk Tc, fluctuations in the magnitude of the superconduct-
ing order parameter can be neglected. The superconducting
phases φi on each grain are then described by the Josephson
Hamiltonian,

Hd =
∑
ij

Jij cos

[
φi − φj + 2e

c

∫ rj

ri

dr · A(r)

]
, (26)

where A(r) is the vector potential. In D-wave systems with no
applied field [A(r) = 0], the effective Josephson couplings Jij

Δ1e
iφ1

Δ2e
iφ2

Δ3e
iφ3

FIG. 12. Sketch of D-wave superconducting grains embedded in
a nonsuperconducting medium. The lobes on each grain reflect the
random alignment of the D-wave order parameter �(k)eiφ .

may have random signs which depend on the separation and
orientation of the embedded grains. For further details, see the
discussion in [4].

The high-temperature expansion of the correlation function
χ = 〈exp [i(φi − φj )]〉 reduces to Eq. (1), and the system can
exhibit a sign phase transition as a function of the concentration
of negative Jij . On application of a magnetic field, this
correlation function increases in the sign-disordered phase just
like the negative magnetoresistance in hopping conductivity.
This manifests as a general magnetic-field enhancement of the
superconductivity.

IV. CONCLUSION

We have shown that the sign-ordered phase of the directed
path sum is unstable in d = 2 and have provided strong
numerical evidence that it exists in d = 3. In 2D, these results
have been argued previously in the regime of intermediate
disorder. Here, we identified a large emergent length scale on
which fluctuations destabilize sign order even in the limit of
weak disorder (x → 0). The associated stretched-exponential
disordering time explains the difficulty of observing disorder-
ing in numerical studies.

The application of our results to the 3D spin glass (Fig. 11)
suggests that there are both sign-ordered and -disordered
high-temperature paramagnets in this canonical model. The
nature of the phase boundaries and proposed tetracritical point
require further study. It is also an open question how best
to experimentally observe the sign-ordered high-temperature
phase. We plan to continue work along these lines.

The magnetic-field enhancement of superconductivity in
disordered D-wave materials is an intriguing phenomenon. It
would be interesting to characterize the physical regime in
which this enhancement would be observable in real materials.
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APPENDIX A: INCLUDING A MAGNETIC FIELD IN
THE SYSTEM

Here, we focus on the 3D cubic lattice whose recursion
relation is Eq. (18). The generalization to other geometries
and dimensions is straightforward.

In general, to include a magnetic field corresponding to
vector potential A(r), the hop from r0 to r0 + b acquires the
phase q

h̄

∫ r0+b
r0

dr · A(r), where q is the charge of the particle.
That is,

A(r0 + b) = αr0+bA(r0) + · · ·
→ A(r0 + b) = αr0+be

i
q

h̄

∫ r0+b
r0

dr·A(r)
A(r0) + · · · . (A1)

We set q = h̄ = 1 henceforth. To apply a field B(s1,s2,t) =
B ŝ2 to the cubic lattice, we choose vector potential
A(s1,s2,t) = −Bt ŝ1 (using the orientation ŝ1 × t̂ = ŝ2). The
recursion relation becomes

A(s1,s2,t + 1) = α(s1,s2,t+1)[A(s1,s2,t)

+ e−i(t+ 1
2 )BA(s1 − 1,s2,t)

+ ei(t+ 1
2 )BA(s1 + 1,s2,t)

+A(s1,s2 − 1,t) + A(s1,s2 + 1,t)].

(A2)

APPENDIX B: FITTING THE BINDER
CUMULANT CURVES

In order to accurately estimate the crossing points x∗(L)
of the Binder cumulant curves UL(x), we fit the data points
(x,U ) for each L to a low-order polynomial near the tentative
crossing points. The ranges of x over which we fit are shown in
Table I. Over these intervals, second-order polynomials give
acceptable fits as judged by χ2. The crossing points x∗(L)
shown in Fig. 9 are those of the fitted polynomials.

We estimate the uncertainty in the values x∗(L) by first
computing the uncertainty in the fit parameters for each curve
UL(x). The data points to be fit are (xi,Ui) (i ∈ {1, . . . ,N})
with uncertainties σi . The fitting function is an nth-order
polynomial,

UL(x) =
n∑

k=1

akx
k, (B1)

TABLE I. Fitting ranges for the Binder cumulant crossing-point
analysis. The first column shows system sizes of the curves being fit.
The second and third columns give the range of x for data points being
fit (spacing is �x = 0.001).

(L,2L) Fit range for L Fit range for 2L

(10,20) 0.174–0.182 0.168–0.182
(12,24) 0.172–0.182 0.171–0.182
(14,28) 0.170–0.182 0.169–0.180
(20,40) 0.168–0.182 0.167–0.175
(24,48) 0.166–0.175 0.164–0.172
(28,56) 0.162–0.180 0.162–0.170
(40,80) 0.158–0.167 0.155–0.165
(48,96) 0.153–0.162 0.152–0.162
(64,128) 0.145–0.154 0.145–0.155
(80,160) 0.140–0.150 0.140–0.150
(100,200) 0.138–0.150 0.139–0.150

and we choose ak to minimize

χ2 =
N∑

i=1

(
UL(xi) − Ui

σi

)2

. (B2)

The solution is

ak =
n∑

l=1

N∑
i=1

(C−1)klDliUi, (B3)

where

Ckl ≡
N∑

i=1

xk
i x

l
i

σ 2
i

, Dli ≡ xl
i

σ 2
i

. (B4)

Suppose we redo the simulation and obtain new cumulant
values U ′

i . These will deviate from Ui by amounts of order
σi . Thus, the covariance matrix for the fit parameters is

Cov[ak,al] =
N∑

i=1

N∑
j=1

(C−1D)ki(C
−1D)lj Cov[U ′

i ,U
′
j ]

=
N∑

i=1

(C−1D)ki(C
−1D)liσ

2
i . (B5)

The underlying distribution of the fit parameters ak is unknown,
but we approximate it as a Gaussian distribution with mean
given by Eq. (B3) and covariance matrix given by Eq. (B5).
Note that we have separate distributions for each system size
L. For each pair (L,2L), we sample from the approximated
distributions to obtain an ensemble of fitted curves U

(α)
L (x)

and U
(α)
2L (x), compute the crossing points x∗(α)(L), and take

the uncertainty in x∗(L) to be the standard deviation of the
ensemble.
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