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Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape
of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss
the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential,
computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is
used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement
with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used
to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in
different temperature ranges. The sampling is also used to discuss critically the usual approximations employed
in the literature to represent the statistical properties of TLSs.
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I. INTRODUCTION

Internal friction is responsible for the limited quality factor
of glass-based devices, such as electromechanical systems
[1–3] or the mirror coatings of gravitational wave detectors [4–
6]. In crystals, defects such as impurities [7] and dislocations
[8] are known to be the main sources of mechanical dissipation
but in disordered solids, the origin of dissipation remains
largely elusive, in part because of the strong disparities in short-
and medium-range orders among glasses.

It is well accepted that in oxide glasses, such as silica,
mechanical waves of low frequencies [hertz (Hz) to mega-
hertz (MHz)] are attenuated because of their interactions
with thermally-activated relaxations (TARs) when the tem-
perature is above a few Kelvin. The resulting dissipation is
understood in the framework of the two-level system (TLS)
model [9–12] where the complexity of the potential energy
landscape (PEL) of the glass is represented by a distribution of
double-well potentials corresponding to pairs of local potential
energy minima. The dynamics in the double-well potentials
is controlled at very low temperatures by quantum tunneling
but hopping between minima becomes thermally-activated at
higher temperatures [13,14]. When a mechanical wave passes
through the glass, the solid is deformed and so is the PEL,
bringing the TLSs out of equilibrium. The TLSs return to
equilibrium with a thermally activated relaxation time, which
may come into resonance with the frequency of the forcing
wave, thus producing dissipation.

There have been numerous studies on glasses and more
specifically in amorphous silica (SiO2) to quantify energy dis-
sipation and unravel its atomic origin. These studies were car-
ried out through internal friction measurements in resonators,
such as vibrating spheres or beams [15–21], attenuation
measurements of acoustic waves [22], Brillouin-scattering
[23–25], and more recently atomic-scale simulations [26–28].
The amorphous silica samples used in these works are of three
kinds: well-relaxed vitreous bulk silica obtained through the
slow heating and cooling of crystalline SiO2, poorly relaxed

thin films deposited using ion beam sputtering (IBS),
and numerical silica produced by molecular dynamics (MD).
Dissipation (Q−1) measured experimentally at low frequencies
shows a plateau at low temperature (<5 K) in the quantum
tunneling regime, followed by a maximum of dissipation,
Q−1 ≈ 10−3, at around 30 to 50 K [17]. In the case of vitreous
silica, this maximum is followed by a drop of four orders of
magnitude reaching Q−1 ≈ 10−7 at 300 K [17–19,25], while
for IBS silica, the dissipation decreases slowly to Q−1 ≈ 10−4

before presenting two smaller maxima at 150 and 250 K [21],
recently reproduced by numerical simulations [28].

The TLS model has been used successfully to fit ex-
perimental data in vitreous bulk silica, see, for instance,
Refs. [18,23,24,29–31]. However, this top-bottom approach
suffers from two limitations: (1) the experimental measure-
ments yield spatially averaged properties and cannot probe
individual TLSs; (2) simplifying assumptions had to be used to
represent the statistical properties of the TLSs in order to make
the fit technically feasible. In particular, the energy asymmetry
between the TLS states and the energy barrier were assumed
statistically independent and given by predefined distributions.
A bottom-up approach starting at the atomistic scale has also
been attempted, identifying TLSs in model Lennard-Jones
glasses [32] and in more realistic models of oxide glasses,
silica [26–28], and tantalum oxide [33]. These data were used
as input of a TLS model to predict dissipation, but simplifying
approximations were still used.

In the present paper, we build on this bottom-up approach
to predict dissipation using the TLS model based on an atomic-
scale exploration of the PEL of amorphous silica. In contrast
with previous studies, we make no assumption on the statistical
properties of the TLSs and use a discrete sample to compute
dissipation. Moreover, analyzing the atomic rearrangements
involved in the TLSs, we propose a classification based on
three categories, which affect dissipation in different ranges
of temperature. The paper is organized as follows. Section II
introduces a revised expression of the TLS model accounting
for the full tensorial nature of the deformation and the a priori
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FIG. 1. Schematic representation of a two-level system, with two
metastable states connected by a double-well potential. The dashed
curve represents the potential under a strain ε.

difference in attempt frequencies between the initial and final
states of the TLSs. In Sec. III, we discuss the physical and
atomic characteristics of the TLSs, which are then used in
Sec. IV to predict dissipation numerically.

II. METHODOLOGY

A. Two-level system model

As illustrated in Fig. 1, a TLS can be characterized by the
energy asymmetry F1between its initial and final states (noted
1 and 2), � = E2 − E1, by the average energy barrier, V =
Ea−E1

2 + Ea−E2
2 = Ea − �

2 (where Ea is the activation energy),
the attempt frequencies in the initial and final states ω1/2, and
the deformation potential tensor ¯̄γ = ∂�/∂ ¯̄ε, which represents
the sensitivity of the asymmetry � on an applied strain tensor ¯̄ε.

The dissipation due to TLSs has been expressed in seminal
works [9–14], using the harmonic transition state theory
(hTST) [34] in the linear regime and assuming independent
TLSs. We revisit this derivation in Appendix A to stress its
relation with the eigenstrain approach of defect mechanics
[35] and to account explicitly for the difference of attempt
frequencies in both states of the TLSs and the tensorial nature
of the deformation potential. Dissipation at a frequency ω is
expressed as

Q−1(ω) = 1

VC

∑
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γ 2
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where V is the sample volume and C the appropriate elastic
modulus (longitudinal or transverse). The deformation poten-
tial γ� appears quadratically and must be averaged over all
possible orientations of the TLSs with respect to the applied
strain. As detailed in Appendixes B and C, this results in two

TABLE I. Average first-neighbor coordination numbers in the
present numerical SiO2 glasses.

Silicium % Oxygen %

Coord. 4 99.7 Coord. 1 0.1
Coord. 5 0.3 Coord. 2 99.7

Coord. 3 0.2

different quadratic averages depending on whether the defor-
mation is longitudinal or transverse [see Eqs. (B2) and (C2)].
The relaxation time depends on an effective attempt frequency,√

ω1ω2, which depends on the product of the attempt frequen-
cies in the initial and final configurations that are not assumed
equal a priori.

Equation (1) is usually transformed into an integral by
replacing the attempt frequencies and deformation potentials
by their averages and introducing statistical distributions for �

and V . By way of contrast, we will keep here the discrete sum
over TLSs in Eq. (1) and will evaluate whether dissipation can
be predicted without using any statistical approximation.

B. Atomic-scale glass model

To generate representative samples of TLSs, 115 glassy
structures of silica were synthesized using molecular dynamics
(MD) by quenching a melt from 5000 K down to 0 K at a
constant quench rate of 1011 K s−1. All samples are cubic
and periodic with a size L = 34.77 Å. They contain 3000
atoms (1000 silicon and 2000 oxygen atoms) at a density of
2.4 g/cm3, which corresponds to zero average pressure with
the present potential [36]. Atomic interactions are modeled
with the standard van Beest-Kramer-van Santen (BKS) pair
potential [37], which is known to reproduce accurately the
structure [36,38,39] and pressure response of amorphous
SiO2 [40,41]. The calculations are further optimized using
a Wolf truncation, with the smoothing function proposed by
Carré et al. [42] and already employed in Refs. [36,40,43].
As expected, the samples form tetrahedral networks, with a
short-range order made of SiO4 tetrahedra and a medium-
range order consisting mainly of five- and six-membered Si-O
rings [36,44,45]. Average coordination numbers are shown
in Table I, highlighting that the samples contain very few
coordination defects, although we will see in the following
that they strongly affect low-frequency dissipation.

C. Exploring the potential energy landscape

To find TLSs, we need to explore the potential energy
landscape (PEL) around the glassy structures to identify tran-
sitions with low-energy barriers. We follow the methodology
proposed by Reinisch and Heuer [26] and already used by
Hamdan et al. [27] in amorphous SiO2. MD simulations
were used at finite temperature to induce transitions and a
double-ended transition method was employed to reconstruct
the energy barriers. In the present case, we used the nudged
elastic band (NEB) method [46,47].

More specifically, for each of the 115 samples, we generated
1000 trajectories at constant temperature (1000 K), starting
with different initial random velocities. Every 40 fs (40 time
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steps), the energy was minimized, checking whether the system
returned to the initial configuration during relaxation. In this
case, the MD run was continued until either a new configuration
was obtained or the simulated time reached 10 ps. The newly
found configurations were compared using a distance criterion
of 1.0 Å to eliminate duplicates, i.e., we produced a set
of final configurations separated from each other by more
than 1.0 Å in configuration space. We then employed a
climbing NEB [48] algorithm to find the minimum energy
path between the initial and final configurations. The path
between the initial and final configurations was discretized
in 50 images linked in configuration space by springs with

a spring constant of 1.0 eV/Å
2
. The initial path was linearly

interpolated between initial and final configurations. We used
the same maximum force criterion of 2.5×10−5 eV/Å for
both the energy minimizations and NEB calculations. From
the minimum energy paths, the energy asymmetry (�) and
barrier (V = Ea − �/2) were obtained, as illustrated in Fig. 1.
We checked that the energy asymmetry depends negligibly on
the cell size by taking a few final configurations and building
systems three times larger in all three directions by surrounding
the configurations with copies of the initial configuration. We
then rerelaxed these larger systems and recomputed the energy
asymmetry. We found relative variations of � below 3%.

Using this technique, energy barriers are searched with a
bias due to Boltzmann factor, exp(−Ea/kBT ). The search
temperature has therefore to be chosen carefully, high enough
so that the system traverses as many barriers as possible, but not
too high to remain in a glassy state. Here, we chose about 80%
of the mode-coupling temperature, the reference temperature
for the dynamics of liquids at the atomic scale [49]. Even at
this high temperature, only low-energy barriers, with activation
energies typically below 1 eV are identified. Another advantage
of the present method is that the searches follow physical
dynamics and probe paths in the PEL along which the system
goes naturally. The main disadvantage of this approach is that
it is numerically highly inefficient because most searches pass
through the same few low-energy barriers that have a high
Boltzmann factor, requiring to perform many searches to obtain
a sufficient sampling.

D. Deformation potential and attempt frequency

Two more parameters need to be computed to predict
dissipation from the TLS model: the deformation potential
tensor, γij = ∂�/∂εij , and the attempt frequencies in the
initial and final configurations, ω1/2. The deformation potential
depends on the eigenstrain generated when the TLS transforms
from state 1 to state 2. As shown in Appendix A [Eq. (A10)],
the deformation potential can be computed from the difference
in internal stresses between both states:

γij = V�σij . (4)

We checked using finite-difference calculations that this ex-
pression is indeed equivalent to the usual definition γij =
∂�/∂εij .

Finally, the attempt frequencies in the initial and final
configurations of each TLS were computed using the hTST
[34] from the ratio of the real, strictly positive eigenfrequencies

in the initial and activated states of each transition:

ω1/2 =
∏3N−3

i=1 ω1/2,i∏3N−4
i=1 ω�

i

. (5)

For this, we used an exact diagonalization of the dynamical
matrix of the initial, final, and activated configurations of each
TLS. The activated configurations have exactly one strictly
negative eigenvalue because the NEB method converges to the
minimum energy path and the climbing procedure brings the
maximum energy image to the saddle configuration [48]. We
did not add an entropic correction as done in Refs. [27,28,33]
since the latter should emerge from the PEL exploration.

III. TWO-LEVEL SYSTEMS

A. TLS properties

1. TLS density

From the MD searches detailed above, 668 different transi-
tions were identified, which represents 1.93 transitions/1000

atoms or 1.4×10−4 TLS/Å
3
. This number is, however, not

well-defined since it necessarily increases with the search
temperature. We also checked that this density increases in less-
relaxed glasses by considering systems quenched at 1012 K s−1.
From the data analyzed by Vacher et al. [24], an experimental

density of 810−5 TLS/Å
3

can be estimated, which is about
half the present density. However, we will see below that only
a limited fraction of the transitions identified in the numerical
glasses contribute to the dissipation, while the experimental
density only reflects the contributing TLSs.

2. Energy asymmetry and barrier

Figure 2 shows the TLS energy asymmetry, �, as a func-
tion of the energy barrier V . As expected from the bias by
Boltzmann factor of the MD searches, very few barriers with
V larger than 0.5 eV were found. Also, there are no barriers
above the � = 2V line, i.e., for all barriers, � < 2V . This is a
direct consequence of the definition of the energy barrier, V =
Ea − �/2, and the condition Ea > �. This simple observation
rules out the common assumption that V and � are statistically
independent. We also note that very few transitions have a

FIG. 2. Asymmetry � as a function of the TLS energy barrier
V for 668 TLSs. The orange dashed line represents the maximum
possible asymmetry � = 2V for a TLS of energy barrier V .
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negative asymmetry, an indication that the present glasses are
well relaxed.

Finally, we note that there is a rather high density of
transitions near the � = 2V line. They correspond to highly
asymmetrical transitions, with the saddle state at almost the
same energy as the final state. We will see below that these
transitions do not contribute to dissipation.

3. Deformation potential

The longitudinal and transverse deformation potentials, γ 2
L

and γ 2
T , respectively, are shown in Fig. 3 as a function of V .

Both potentials show similar behavior, as expected from the
similarity between Eqs. (B2) and (C2).

Experimentally, values of 1.08 and 0.42 eV2 were reported
by Doussineau et al. [50] for the longitudinal and transverse
potentials, respectively. Numerical average deformation poten-
tials between 1 and 2 eV were also reported by Hamdan et al.
[27] and Billman et al. [28]. These values are significantly
lower than the bulk of the data obtained here. However, the
experiments were performed at extremely low temperatures (in
the range 0.1 to 1.5 K) and therefore correspond to very low
energy barriers crossed with the help of quantum tunneling.
We see in Fig. 3 that, indeed, the lowest barriers have low
deformation potentials in the experimental range. However, the
TLSs with higher barriers, which are relevant for dissipation
in the classical regime, have deformation potentials about a
hundred times higher.

The ratio between longitudinal and transverse deformation
potentials was studied by Heuer [51] as a universal measure of
disorder in glasses. Experimental data in the quantum regime
over a wide range of glasses [29] show a ratio γ 2

L/γ 2
T =

2.6 ± 0.4. The present data, which extend beyond the quantum
regime, have interestingly a similar average ratio, of about
2.7. Inspecting Eqs. (B2) and (C2), we see that for a given
TLS, γ 2

L/γ 2
T is a function of I 2

1 /I2 alone, with I1 = tr( ¯̄γ ) and
I2 = tr( ¯̄γ 2), two invariants of the deformation potential tensor:

γ 2
L

γ 2
T

= 4

3

1 + 1
2

( I 2
1

I2

)
1 − 1

3

( I 2
1

I2

) , (6)

The minimum value of the ratio is 4/3, as noted in Ref. [51],
obtained when I1 = 0, i.e., when the eigenstrain of the TLS
corresponds to pure shear. The longitudinal deformation poten-
tial is therefore necessarily larger than the transverse potential
and cannot be zero because shear deformations involve tensile
strains. On the other hand, if the eigenstrain is a pure dilatation,
I 2

1 = 3I2, the transverse potential vanishes and γ 2
L/γ 2

T is
infinite. This ratio is therefore a measure of the relative weights
between the TLS shear and dilatation. Figure 3(c) shows this
ratio for each TLS of the sample. The values cover about an
order of magnitude, with a higher density at small ratios close
to 4/3. TLSs have therefore a marked shear component, but
dilatations are also involved.

4. Attempt frequency

The effective attempt frequency,
√

ω1ω2, which appears in
the prefactor of the relaxation time in Eq. (3) is plotted in
Fig. 4. The values are rather homogeneously spread, show-
ing no hint of correlation with V . The average frequency,

FIG. 3. (a) Longitudinal and (b) transverse deformation potentials
as a function of V . The green dashed lines represent experimental
values [50], while the orange lines are the numerical averages. In (c),
we show the ratio γ 2

L/γ 2
T for each TLS.

13.6 THz, is in-between the two experimental values reported
in bulk vitreous SiO2, 10.5 THz [24], and IBS thin films,
18.9 THz [21].

B. Classification of TLSs

Inspecting the atomic motions taking place in TLSs, we no-
ticed that most TLSs can be sorted into one of three categories
that will be referred to as types I–III. This classification remains
empirical and some TLSs can share characteristics from more
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FIG. 4. Effective attempt frequency
√

ω1ω2 as a function of V .
The orange dashed line represents the numerical average while the
green and purple dashed lines are experimental values for SiO2

deposited by IBS [21] and for bulk vitreous SiO2 [24], respectively.

than one type. We discuss in the following mostly archetypical
cases.

1. Type I

In this type of TLS, an Si atom changes tetrahedron, as
illustrated in Fig. 5. These transitions are highly localized
and induce a significant displacement (i.e., larger than 0.3 Å)
for less than a dozen atoms. During the transition, the Si
atom breaks a SiO bond, leaves an O atom (noted A in the
figure), and forms a new SiO bond with another O atom
(noted B). Such transition is energetically possible only when
either the A or B atom is ill-coordinated, with one or three Si
neighbors, and the other O atom is well-coordinated, with two
Si neighbors. The ill- and well-coordinated O atoms are then
switched during the transition.
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FIG. 5. Example of minimum energy path for a TLS of type I.
The three snapshots show from left to right: the initial, saddle, and
final configurations of the TLS. The oxygen and silicon atoms are
shown in red and gray, respectively. Only atoms with a displacement
larger than 0.3 Å are shown.
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FIG. 6. Example of minimum energy path for a TLS of type II
with snapshots of the initial, saddle, and final configurations. Only
atoms with a displacement larger than 0.3 Å are shown.

As illustrated in Fig. 5, the energy profile of type-I TLSs is
often highly symmetrical, reflecting the structural symmetry
between the initial and final configurations. The energy barrier
is high (typically above 0.2 eV) because it involves breaking
SiO bonds. Similar atomic motions have been observed in
alumina by Paz et al. [52], where an Al atom can oscillate
between two O neighbors.

2. Type II

This second category involves mainly the displacement of O
atoms. An example is shown in Fig. 6, where several intercon-
nected SiO4 tetrahedra rotate, leading to the simultaneous and
coordinated jump of O atoms from one side of their Si-O-Si
bond to the other. The number of tetrahedra involved in these
rotations varies from 3 to about 10. Such events have already
been reported in atomic-scale studies of SiO2 [26]. Type-II
TLSs are highly delocalized and involve quasi-1D chains of
Si-O-Si bonds and sometimes rings of Si-O-Si bonds. As all O
atoms jump simultaneously, the energy profile shows a single
energy barrier and since no SiO bond is broken, the energy
barrier is rather low, typically less than 0.2 eV. The saddle
occurs when the O atoms are compressed in the middle of
their Si-O-Si bonds.

3. Type III

The third category encompassed events in which an O atom
carries the largest displacement, going from being twofolded to
threefolded (3 Si neighbors) or changing one of its Si neighbors
(an Si atom ends up fivefolded). An illustration is shown
in Fig. 7. Type-III TLSs are usually strongly asymmetrical
because they create a coordination defect and the final state is
highly metastable. We checked that applying a small strain
to the simulation cell is often sufficient to make the final
state unstable. Type-III transitions also require a high energy
because they involve the breaking of SiO bonds.
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FIG. 7. Example of minimum energy path for a TLS of type III
with snapshots of the initial and final configurations. Only atoms with
a displacement larger than 0.3 Å are shown.

IV. APPLICATION OF THE TLS MODEL

A. Full calculation

Figure 8 represents the dissipation computed from Eq. (1)
for a longitudinal wave at 10 kHz. Transverse dissipation is
qualitatively similar and will not be discussed here. In addition,
dissipation was not computed below 10 K as quantum effects
are not included in present study. To our knowledge, this is the
first time the TLS model is applied on discrete TLSs without
any approximation on their statistical distribution.

The numerical dissipation is compared in Fig. 8 to three
sets of experimental data obtained on high-purity bulk fused
silica in Refs. [16,19] and on 1-μm-thin films produced by
IBS in Ref. [21]. It is important to note that compared to bulk
vitreous silica, deposited thin films are known to be less relaxed
and prone to structural defects, being sometimes even porous
[53]. We also note that the experimental data were obtained

FIG. 8. Longitudinal dissipation at 10 kHz as a function of tem-
perature, predicted using the numerical TLS sampling and compared
to the experimental measurements of Refs. [16,19,21].

FIG. 9. Scatter plot of the TLS sampling showing each TLS
with a symbol whose size scales logarithmically with the maximum
dissipation produced by the TLS and a color which depends on the
temperature at which this maximum dissipation is reached. Orange
lines of expression � = ±V/3 were added to show empirically the
region of high-dissipative TLSs.

at different frequencies (1.5 MHz in Ref. [16], 3.8 kHz in
Ref. [19], and 10 kHz in Ref. [21]), but these differences will be
neglected here because the shape and magnitude of dissipation
vary slowly with frequency.

We see in Fig. 8 that at low temperatures, below about 100 K,
all data, numerical and experimental, are in qualitative agree-
ment. At higher temperatures, the experimental dissipation in
bulk silica decreases rapidly, while the numerical dissipation
and that obtained in IBS thin films remain rather constant.
The numerical dissipation then shows a high-temperature tail,
which decreases slowly up to 800 K. Globally, the numerical
dissipation is closer to IBS silica both in amplitude and
shape. This was to be expected since the numerical glasses
are quenched rapidly and contain coordination defects. Their
structure is therefore closer to that of IBS silica than well-
relaxed vitreous silica.

The numerical signal is made of peaks, which come from
the contribution of individual TLSs. The present sampling is
therefore not large enough to obtain a smooth prediction for
dissipation. The reason is that only a very small fraction of the
TLSs identified here contribute significantly to dissipation. To
show this, we computed the maximum dissipation that each
TLS (labelled �) can produce, expressed from Eq. (1) as

q−1
max,� = γ 2

�

VC
max

T

(
A�

ωτ�

1 + ω2τ 2
�

)
. (7)

Figure 9 shows each TLS with a circle, whose size depends
on q−1

max and whose color depends on the temperature at which
this maximum is reached. We had to use a logarithmic scale for
the symbol size because of the enormous difference between
low- and high-dissipative TLSs. We see clearly that only a very
small fraction of TLSs contribute to dissipation. More quanti-
tatively, only 41 TLSs in the 668 sample present a maximum
above 10−5 and therefore produce a significant dissipation. We
see in Fig. 9 that only TLSs with a small asymmetry, those near
the � = 0 line, contribute. We could not express analytically
q−1

max,� nor the corresponding optimum temperature Tmax,� in the
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general case. However, it can be shown that along the � = 0
line, Tmax,� increases almost linearly with V and that, at fixed
V , q−1

max,� is maximum for � = 0. We checked numerically that
Tmax,� varies slowly near � = 0 at fixed V . Thus, assuming a
constant Tmax,�, it is straightforward to show that at fixed V ,
q−1

max,� decreases exponentially with |�|/kBTmax,� ∝ |�|/V .
The dissipation is therefore maximum along the � = 0 line
and decreases exponentially away from it, with a characteristic
energy proportional to V . This explains why in Fig. 9, only the
TLSs in a cone around the � = 0 line produce dissipation.
Empirically, this cone has equation |�| < V/3, as illustrated
in Fig. 9.

Also, as said above, Tmax,� increases linearly with V along
the � = 0 line, which is consistent with the intuitive result that
TLSs of higher energy barriers are activated at higher temper-
atures. This is also visible in Fig. 9, where the temperature
color varies from blue to red as V increases. Finally, we note
in Fig. 8 that the numerical dissipation shows a gap around
350 K, which is also visible in Fig. 9 through the low density
of contributing TLSs near 0.5 eV. At this point, we do not know
if this is a physical effect or an artifact of the limited size of
our sampling.

B. Approximations

Above, we have used the detailed characteristics of each
TLS to predict dissipation. However, in applications of the
TLS model, approximations on the TLS statistics are usually
applied without clear justification. We have already seen in
Sec. III A 2 that contrary to the usual assumption, asymmetries
and energy barriers are not independent for the simple reason
that �< 2V [28]. In this section, we wish to evaluate the
impact of three other typical approximations, related to the
TLS attempt frequency, deformation potential and energy
asymmetry.

1. Attempt frequency

When applying the TLS model, both experimentally and nu-
merically, the attempt frequencies in the initial and final states
ω1/2 are usually assumed identical and equal to a mean value
common to all TLSs. To test this approximation, Fig. 10 com-
pares the dissipations obtained using the full sample (in blue),
or assuming that for each TLS ω1 = ω2 ≡ √

ω1ω2 (in orange)
and finally, using for each TLS the average effective attempt
frequency of the sample, 〈√ω1ω2〉 = 13.6 THz, shown in
Fig. 4. We see that these approximations do not affect the over-
all amplitude of the dissipation below 200 K, but only its details
and they shorten the high-temperature tail above 400 K, par-
ticularly when an average attempt frequency is used. Attempt
frequencies therefore play a limited role, particularly at low
temperatures, even if they vary by 2 orders of magnitude among
TLSs, as seen in Fig. 4. The reason is that the attempt frequen-
cies appear in Eq. (3) as pre-exponential factors and have a
limited influence on the relaxation time and the dissipation.

2. Deformation potential

Another typical assumption used to treat both experimental
[23,31,54] and numerical [27,28] data is to assume that
all TLSs have the same deformation potential. To test this

FIG. 10. Longitudinal dissipation at 10 kHz predicted using
the full sample, i.e., individual attempt frequencies, ω1 and ω2,
for each TLS (blue curve), or assuming that ω1 = ω2 ≡ √

ω1ω2

(orange curve), or using for every TLS the mean effective frequency
〈√ω1ω2〉 = 13.6 THz, computed over the entire sample (green curve).

approximation, we compare in Fig. 11 the full calculation
(in blue) with the dissipation computed when all TLSs have
the same deformation potential equal to the mean value of
the sampling, 〈γ 2

L〉 = 82.3 eV2, shown in Fig. 3(a). We see
that again, even if the deformation potential varies by about
two orders of magnitude among TLSs and scales linearly
with the TLS contribution in Eq. (1), using a single reference
deformation potential for all TLSs affects the dissipation even
less than the attempt frequencies.

3. Asymmetry

A third typical assumption is to ignore TLSs with large
asymmetries, which is justified from our above discussion.
However, the rule to discard TLSs should be chosen with care.
For instance, a selection rule was introduced in Refs. [27,33],
consisting in ignoring all TLSs with asymmetries higher than
0.1 eV. This approximation is tested in Fig. 12 and reproduces
perfectly the full calculation below 300 K, but cuts-off the
high-temperature tail above 400 K. This result is expected

FIG. 11. Longitudinal dissipation at 10 kHz predicted using the
full sample, i.e., individual deformation potentials for each TLS
(blue curve), or using for every TLS the mean deformation potential
(〈γ 2

L〉 = 82.3 eV2), computed over the entire sample.
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FIG. 12. Longitudinal dissipation at 10 kHz predicted using the
full sample, i.e., individual asymmetries (blue curve), or keeping only
the TLSs such that |�| < V/3 (orange curve), or keeping TLSs such
that � < 0.1 eV.

from Fig. 9, where TLSs that contribute at low temperatures
have indeed asymmetries within ±0.1 eV. However, at higher
temperatures and energy barriers, the range of asymmetries
increases and the approximation artificially removes important
barriers. Similarly, the approximation used in Ref. [24], where
TLSs with |�| > 2kBT were neglected, also cuts-off the
high-temperature tail of the dissipation. A better empirical
approximation is to ignore TLSs with an asymmetry larger than
V/3 (i.e., TLSs outside the cone identified in Fig. 9), which, as
seen in Fig. 12, predicts dissipation in perfect agreement with
the full calculation, even at high temperatures.

V. DISCUSSION AND CONCLUSION

We have shown here that using an atomic-scale model
of amorphous silica in conjunction with the TLS model
allows to predict internal friction in qualitative agreement
with experiments, without requiring any approximation to
simplify the statistical properties of the TLSs. The dissipation
predicted numerically is closer to that of poorly relaxed thin
films, as expected from the fact that the numerical glasses are
quenched on MD time scales and therefore extremely rapidly
compared to vitreous silica. As a result, the numerical glasses
still contain structural defects in the form of coordination
defects (see Table I), which strongly affect dissipation at
elevated temperatures. Comparison with the experiments is,
however, limited by several factors. Impurities are known to
strongly impact dissipation and cannot be fully controlled
experimentally [16]. Also the comparison between numerical
and experimental TLS distributions [27,28] is difficult because
the experiments were analyzed assuming that the energy
barriers and asymmetries are independent, an assumption,
which is not supported by the present results. On the numerical
side, we have used the simplest interatomic potential to model
amorphous silica and there is no guarantee that this potential
represents properly low-activation barriers. More advanced
potentials, which account for charge polarization [55,56],
should be tested. Also, we considered larger samples than in
previous studies [26–28,33], but they may still be too small
to fully account for the collective rotations of type-II TLSs.

Considering larger systems remains, however, computationally
challenging. Several TLSs may appear simultaneously in larger
systems during the MD searches since the latter are performed
at elevated temperature, which would clearly complicate the
analysis.

The present work shows the importance of sampling low-
energy barriers, typically <0.5 eV, which control dissipation
up to room temperature, the range of interest for many appli-
cations. Finding low-activation energies remains a challenge.
In particular, eigenvector-following methods, such as the
activation-relaxation technique (ART) [57], tend to identify
high energy barriers, typically up to 10 eV in SiO2 [36].
Using MD at high temperatures offers a practical solution but
remains numerically inefficient. In the present case, we ran
115 000 searches to identify less than 1000 independent TLSs.
However, we should note that the real numerical bottleneck
in the present calculations is the initial quench to produce
well-relaxed glasses. Progress has been achieved recently [58],
but it remains to be seen whether this new approach can be
extended to realistic glasses like silica.

By analyzing the atomic motions involved in TLSs, we
defined three types of transitions, which contribute differently
to dissipation. We have seen that type-III TLSs produce
coordination defects and involve large asymmetries. They are
found in Fig. 9 near the � = 2V line and therefore do not
participate in the dissipation. They unfortunately represent the
largest fraction of TLSs found here and are one reason why the
present sampling is too small to predict a smooth dissipation
curve. The two other types of TLSs are more symmetrical and
are found near the � = 0 line of high dissipation. Type-I TLSs
are centered on coordination defects in the initial configuration
and have large energy barriers, typically, above 0.2 eV, because
they involve breaking SiO bonds. From Fig. 9, we understand
that these TLSs contribute to dissipation above 300 K and
are responsible for the high-temperature tail of dissipation in
Fig. 8. Since these TLSs are centered on coordination defects,
we expect that they do not exist in slowly-relaxed bulk vitreous
silica, which explains why dissipation decreases rapidly at
high temperatures in this case. Finally, type-II TLSs involve
the cooperative rotation of SiO-Si bonds and have low-energy
barriers because they do not require breaking SiO bonds. We
therefore understand from Fig. 9 that type-II TLSs contribute
below 300 K and are responsible for the low-temperature
portion of the dissipation curve where both numerical and
experimental data agree at least qualitatively. Since type-II
TLSs have very low activation energies, they are probably also
involved in dissipation in the quantum regime, as proposed
by Reinisch and Heuer [26]. Finally, we wish to note that
the example in Fig. 6 can be considered as a canonical TLS,
since its activation barrier (∼65 meV) and asymmetry (|�| ∼
V/10) closely match the characteristic energies estimated from
experimental data by Vacher et al. [24]. Interestingly, the
collective motion of SiO-Si bonds is also responsible for energy
dissipation at high frequency in the THz regime, although in
this case, dissipation arises from the harmonic bending motion
of these bonds around the equilibrium configuration [43].

The classification proposed here remains empirical. It
would be interesting to develop a mathematical criterion in
order to sort automatically TLSs. Also, it remains to be seen
whether this classification can be adapted to more complex
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glasses compared to the almost perfect arrangement of amor-
phous silica.

Finally, we have tested several classical approximations.
Using an average attempt frequency is justified, if one is
interested in low-temperature dissipation. Replacing the de-
formation potential by its average has a smaller effect, which
is quite unexpected since the dissipation due to a TLS directly
scales with its deformation potential. Also, we note that we
found numerical values about 100 times larger than reported
previously, both experimentally [50] and numerically [27,28].
We believe that the discrepancy with the experiments is
because the latter were performed in the quantum regime.
Concerning numerical works, the reason might be a size effect,
but this point should be explored in more details. Since the
deformation potential and attempt frequency can be replaced
by their averages, the contribution of a TLS is only a function of
its asymmetry � and its energy barrier V . We have seen that
these variables cannot be assumed statistically independent.
However, the present sampling is not large enough to estimate
whether a simplified coupled distribution, P (�,V ), exists.

In Appendixes A–C, we detail the theory leading to the
expression of dissipation 1. We follow an approach similar
to that of Jäckle et al. [12], but fully account for the tensorial
nature of the strains and stresses and for the possible difference
between the attempt frequencies in both states of the TLSs.
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APPENDIX A: COMPLEX MODULUS

1. Equilibrium probabilities and detailed balance

We consider a TLS with 2 metastable states, noted 1 and 2,
linked by a double-well potential, V (x) as shown in Fig. 1 of the
main text. We note p1 and p2, the probabilities to find the TLS
in either state 1 or 2, which denote the basins on either sides of
the energy barrier. p̄1 and p̄2 are the equilibrium probabilities.

At equilibrium, the probability to be at position x is
proportional to exp(−V (x)/kbT ). Therefore

p̄1 ∝
∫

1
exp(−βV (x))dx (A1)

and

p̄2 ∝
∫

2
exp(−βV (x))dx, (A2)

where the integrals are performed over the basins of both states
and β = 1/kbT . Using a harmonic approximation, with ω2

1 and
ω2

2 the curvatures at the bottom of both states, we have

p̄1 = 1

1 + exp(−β�) ω1
ω2

,

p̄2 = 1

1 + exp(β�)ω2
ω1

, (A3)

where � is the energy asymmetry between states 1 and 2, as
in the main text.

According to the harmonic transition state theory [34], the
transition rates between states 1 and 2 are

a12 = ω1

2π
exp(−βEa),

a21 = ω2

2π
exp (−β(Ea − �)), (A4)

where Ea is the energy barrier from state 1 to 2. One can easily
check that Eqs. (A3) and (A4) satisfy the detailed balance, i.e.,
p̄1a12 = p̄2a21.

2. Deformation potential

The TLS is in a volume V subjected to a periodic applied
strain tensor, ¯̄ε(t). Dissipation occurs if the energy asymme-
try, �, depends on the applied strain. Within an eigenstrain
approach [35], such coupling occurs if an eigenstrain ¯̄ε� is
generated when the TLS transforms from state 1 to state 2.
The energy asymmetry and stress then depend on the applied
strain as (with repeated index summation)

�
(
¯̄ε
) = � + V

2
C∞

ijkl

(
εij − υa

V ε�
ij

)(
εkl − υa

V ε�
kl

)
,

σij = C∞
ijkl

(
εkl − υa

V ε�
kl

)
, (A5)

where C∞ is the tensor of elastic constants (including both
affine and nonaffine contributions, since the latter relax over
time scales much shorter than considered here [43]) and υa ,
the TLS volume. Introducing the deformation potential tensor

γij = ∂�

∂εij

∣∣∣∣
¯̄ε=0

= −υaC
∞
ijklε

�
kl, (A6)

we have

σij = C∞
ijklεkl + γij

V . (A7)

If we introduce δp2(t) = p2(t) − p̄2(0), the difference between
the current probability of being in state 2, p2(t), and its
equilibrium value in absence of applied strain, p̄2(0), the
time-dependent part of the stress is expressed as

σij = C∞
ijklεkl(t) + γij

V
δp2(t). (A8)

Concerning the energy asymmetry, keeping only the first-order
time-dependent term in Eq. (A5), we have

�( ¯̄ε) = � + γij εij . (A9)

We also note that, from Eq. (A7), the deformation potential can
be calculated from the difference of internal stress in states 1
and 2 subjected to the same applied strain:

γij = V�σij . (A10)

3. Master equation

Dissipation arises because the strain changes � [Eq. (A9)],
which in turn changes the equilibrium probabilities, p̄1 and
p̄2 [Eq. (A3)], and brings the system in an out-of-equilibrium
state with a finite relaxation time. Following Ref. [12], the
probabilities p1 andp2 are written in terms of master equations:

ṗ1 = −p1a12 + p2a21,

ṗ2 = p1a12 − p2a21, (A11)
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where the transition rates, a12 and a21, depend on time because
of their dependence on � [Eq. (A4)]. Since p1 + p2 = 1, we
have

ṗ2 = −p2(a12 + a21) + a12. (A12)

We can define a time-dependent equilibrium:

p̄2(t) = a12(t)

a12(t) + a21(t)
. (A13)

Inserting Eq. (A13) into Eq. (A12), we obtain

ṗ2 = −(p2 − p̄2(t))(a12(t) + a21(t)). (A14)

We see from this equation and Eq. (A4) that to first order,
the time dependence of the transition rates can be neglected,
allowing to define a relaxation time, τ−1 = a12(0) + a21(0).
Using V = Ea − �/2, the relaxation time is rewritten as

τ−1 =
√

ω1ω2

π
exp(−βV )ch

(
β�

2
+ 1

2
ln

ω2

ω1

)
. (A15)

From Eq. (A14) using δp2 = p2 − p̄2(0), we have

τ δ̇p2 = −δp2 + p̄2(t) − p̄2(0) (A16)

From the definition of the coupling parameter, we have

p̄2(t) − p̄2(0) = p̄2(� + γij εij (t)) − p̄2(�)


 ∂p̄2

∂�
γij εij (t) (A17)

and from Eq. (A3):

∂p̄2

∂�
= − 1

4kT ch2
(

β�

2 + 1
2 ln ω2

ω1

) ≡ −A. (A18)

Finally, inserting Eq. (A17) with the definition of A into
Eq. (A16), we obtain the following first-order differential
equation for δp2:

τ δ̇p2 = −δp2 − Aγij εij , (A19)

which is solved in the spectral domain, with ε ∝ exp(iωt):

δp2 = − A

1 + iωτ
γij εij . (A20)

4. Complex modulus

From Eqs. (A8) and (A20), the tensor of complex elastic
moduli is expressed as

C(ω) = C∞ − 1

V
A

1 + iωτ
¯̄γ ⊗ ¯̄γ, (A21)

with γ ⊗ γ , the tensor of components γij γkl . If the volume V
contains a population of independent TLSs, with different ¯̄γ�,
A�, and τ�, we obtain from the superposition principle:

C(ω) = C∞ − 1

V
∑
�,TLS

A�

1 + iωτ�

¯̄γ� ⊗ ¯̄γ�. (A22)

APPENDIX B: LONGITUDINAL DISSIPATION

If the medium is deformed by a longitudinal wave along a
unit vector �U , the corresponding strain tensor is ε(t) �U ⊗ �U ,
with elements ε(t)UiUj . Dissipation is then given by the time
delay between ε(t) and the tensile stress σ = UiσijUj along �U .

Glasses being isotropic, the static term in Eq. (A22) cor-
responding to C∞ yields σ = Mε, where M = λ + 2μ is the
longitudinal modulus and λ and μ are the Lamé coefficients.
The second term in Eq. (A22) yields for each TLS a coupling
term of the form

∑
ijkl γij γklUiUjUkUl = (

∑
ij γijUiUj )2.

Since a TLS can take any orientation with respect to the applied
strain, we have to average this term over all strain directions:

γ 2
L =

∑
ijkl

γij γkl〈UiUjUkUl〉. (B1)

Only even-power averages are nonzero and because of
isotropy, there are only two distinct terms, 〈U 4

X〉 = 〈U 4
Y 〉=

〈U 4
Z〉= 1/5 and 〈U 2

XU 2
Y 〉= 〈U 2

XU 2
Z〉 = 〈U 2

Y U 2
Z〉= 1/15. Thus

γ 2
L = 1

5

(
γ 2

XX + γ 2
YY + γ 2

ZZ

)
+ 2

15 (γXXγYY + γXXγZZ + γYY γZZ)

+ 4
15

(
γ 2

XY + γ 2
XZ + γ 2

YZ

)
. (B2)

This orientation-average is unchanged under a rotation of
the deformation potential tensor, and can be expressed in terms
of the invariants, I1 = tr( ¯̄γ ) and I2 = tr( ¯̄γ 2):

γ 2
L = 1

15

(
2I2 + I 2

1

)
. (B3)

The frequency-dependent longitudinal modulus is therefore
expressed as

M(ω) = M − 1

V
∑
�,TLS

A�

1 + iωτ�

γ 2
L,� (B4)

and the dissipation is given by the ratio of the imaginary and
real parts of the complex modulus:

Q−1
L (ω) =

∑
� A�

ωτ�

1+ω2τ 2
�

γ 2
L,�

VM − ∑
�

A�

1+ω2τ 2
�

γ 2
L,�

. (B5)

We have checked that for the present system, systematically,∑
� A�〈γ 2

� 〉L 
 VM , such that

Q−1
L (ω) 
 1

VM

∑
�,TLS

A�

ωτ�

1 + ω2τ 2
�

γ 2
L,�. (B6)

APPENDIX C: TRANSVERSE DISSIPATION

With a transverse wave, the medium is sheared along a
unit vector �U parallel to a plane of normal �V . The corre-
sponding strain tensor is ε(t)(U ⊗ V + V ⊗ U )/2. The time-
independent term in Eq. (A22) now yields a shear stress σ =
Gε, where G is the shear modulus and the average coupling
term is

γ 2
T =

∑
ijkl

γij γkl〈UiVjUkVl〉. (C1)

Again, only even-power averages are nonzero, and accounting
for the fact that �U and �V are perpendicular, we find
〈U 2

XV 2
X〉 = 〈U 2

Y V 2
Y 〉 = 〈U 2

ZV 2
Z〉 = 1/15, 〈UXVXUY VY 〉 =

〈UY VY UZVZ〉 = 〈UZVZUXVX〉 = −1/15, and 〈U 2
XV 2

Y 〉 =
〈U 2

XV 2
Z〉 = 〈U 2

Y V 2
Z〉 = 3/15. Therefore

γ 2
T = 1

15

(
γ 2

XX + γ 2
YY + γ 2

ZZ

)
− 1

15 (γXXγYY + γYY γZZ + γZZγXX)

+ 3
15

(
γ 2

XY + γ 2
XZ + γ 2

YZ

)
, (C2)
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which is expressed in terms of tensor invariants as

γ 2
T = 1

15

(
3
2I2 − 1

2I 2
1

)
. (C3)

The resulting dissipation is

Q−1
T (ω) 
 1

VG

∑
�,TLS

A�

ωτ�

1 + ω2τ 2
�

γ 2
T ,�. (C4)
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