
PHYSICAL REVIEW B 97, 014107 (2018)

Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys

Chaoming Yang and Liang Qi
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 23 April 2017; revised manuscript received 1 January 2018; published 26 January 2018)

An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is
the mechanical failure mode of their perfect crystals under tension along 〈100〉 directions. When the tensile stress
reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100} plane so that it is
intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and
density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability
under 〈100〉 tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory
and Rice’s criterion were also applied to analyze the mechanical instability at the crack tip under 〈100〉 tension
based on the competition between cleavage propagation and dislocation emission. The results show that the
intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta
alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta
concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re
alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon
mode is related to the generation of 1

2 〈111〉{2̄11} dislocation in bcc crystals. The ideal tensile calculations, phonon
analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These
results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.
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I. INTRODUCTION

As a refractory metal, tungsten (W) has the highest melt-
ing point of all pure metals and excellent high-temperature
mechanical properties. It is a critical material in many en-
gineering applications, such as fusion reactors and turbine
engines. However, its formability and mechanical properties
are severely limited by the room-temperature brittleness [1–5].
This poor ductility is related to the low dislocation mobility
because a highly resolved shear stress is required to drive
the dislocation motion at low temperature. Theoretical studies
on dislocation behaviors of W and other similar refractory
metals in a body-centered cubic (bcc) lattice revealed that the
energetics of their dislocation motions are related to the filling
of d valence electrons [6–10]. The extra d valence electrons
in W alloys can enhance the double-kink nucleation of screw
dislocations in a bcc lattice, which can increase dislocation
mobility and result in solid solution softening, and decreasing
d valence electrons lead to hardening and embrittlement [7,8].

To fully capture the essential mechanism of ductility, it
is also necessary to analyze the competition between crack
propagation and dislocation emission behaviors [11–17]. Both
the crack propagation and dislocation emission can occur at
the preexisting crack tip to release the strain energy by bond
breaking and shear along stacking fault layers, respectively.
A ductile material emits dislocations more efficiently at the
crack tips and these dislocations blunt the crack to prevent
the cleavage failure. The quantitative descriptions of these
deformation defects depend on the geometry of crack tips and
the external loading conditions. In this study, our objective is
to connect the deformation defect behaviors to the inherent
mechanical properties of W alloys. These inherent properties
largely depend on the ideal strength behaviors, which describe

the deformation and failure of perfect crystals under extreme
stress without any influences of precursor defects [18,19].
From the stress perspective, the nucleation of specific defor-
mation defects (dislocations and cracks) requires that the local
stress reach the corresponding ideal tensile or shear strength
[20,21].

First-principles calculations have been extensively used to
investigate ideal tensile and shear strengths of different perfect
crystals [18,19,22–25]. For single crystals of bcc metals such
as W, the cleavage mostly occurs on the low-index {100}
plane, especially at relatively low temperatures [4,22,26–30],
so their ideal tensile strengths under tension along 〈100〉
directions have been well studied. Perfect crystals of the
group-V transition metals vanadium (V) and niobium (Nb)
fail by a shear deformation under the increasing 〈100〉 tensile
strain [23–25]. The tetragonal symmetry of the strained V or
Nb crystal is broken into orthorhombic symmetry by a shear
deformation as illustrated in Fig. 1 [the so-called elastic shear
instability (ESI)], where the vectors a2 and a3 of the original
cubic unit cell become nonperpendicular to each other. Thus,
these materials prefer to shear plastic deformation, and they
are intrinsically ductile. On the other hand, the strained bcc
crystals are kept in tetragonal symmetry even when the tensile
stress reaches the ideal tensile strength for both molybdenum
(Mo) and W. These materials prefer to generate cleavage
fracture along the {100} plane, and they are intrinsically brittle
[18,23,24].

Our recent studies [23] show that the intrinsic ductility can
be achieved for Mo and W by alloying them with elements
that have a lower number of valence electrons, such as Nb.
When Nb concentration is beyond a critical value, ESI occurs
to Mo-Nb alloys when the tensile stress reaches the ideal
tensile strength, so Mo-Nb alloys become intrinsically ductile.
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FIG. 1. (a) Two types of supercells of bcc crystals used in the ideal
tensile calculations. The Cartesian coordinate system is defined along
〈100〉bcc. (b) Changes of the supercells due to elastic shear instability
(ESI) under [100]bcc tensile strain viewed from the [100]bcc direction.

This transformation originates from the Jahn-Teller distortion
effect depending on the electronic band filling level [31],
where the tendency to break the symmetry of electronic band
structures under the tensile strain is increased due to the
downward shift of Fermi level. Oppositely, to increase valence
electrons in Mo and W alloys can inhibit ESI and keep these
alloys in intrinsically brittle status. This band filling effect is
insensitive to specific characteristics of cations so that it can
be implemented as a general strategy to improve the ductility
of bcc refractory alloys.

However, it is well known that a certain amount of rhe-
nium (Re) can substantially improve the ductility of W in
engineering applications, and theoretical studies attribute these
changes to the increase of dislocation mobility in W-Re alloys
[2,7,8,32]. Since Re has one more valence electron than W,
W-Re alloys should be intrinsically brittle according to the
electronic band filling effect mentioned above [23,31]. Thus,
there must be other possible mechanisms to reconcile the
controversy between the prediction of intrinsic ductility based
on electronic structures and the experimental observations.

The above inconsistency on the intrinsic ductility of W-Re
alloys could be resolved by analyses of phonon dispersion
relations of W alloys under mechanical deformation. ESI illus-
trated in Fig. 1 is a specific example of elastic instability, which
means that the perfect crystal always deforms and transforms
homogeneously until it becomes unstable under the applied
tensile/shear stress equal to the ideal tensile/shear strength.
On the other hand, unstable phonon modes with imaginary
frequencies can emerge before the elastic instability when the

applied load increases. The propagations of these unstable
phonon modes generate different displacements for individual
atoms and destroy the integrity of the perfect crystal. This
phenomenon is called phonon instability [3,32,33]. It can be the
initial step of either a transformation to another energetically
favorable structure or the nucleation of a deformation defect
(crack, dislocation, or deformation twin) [34,35]. Either elastic
instability or phonon instability is a particular case of lattice
instabilities, and there is a comprehensive review on lattice
instabilities in metals [21].

The intrinsic ductility of a material can also be evaluated
by the linear elastic fracture mechanics (LEFM) analyses
[12]. The critical stress intensity factor for cleavage fracture
propagation near a crack tip can be predicted by using elastic
constants and surface energies of cleavage planes based on
Griffith theory [36]. The critical stress intensity factor for
dislocation emission near the crack tip can be predicted by
using elastic constants and unstable stacking fault energies
γusf of specific slip systems based on Rice theory [12]. The
intrinsic ductility of this material can be determined based on
the ratio between these two types of stress intensity factors
[12,17]. These approaches have been examined and modified
in cooperation with many atomistic simulations based on
empirical interatomic potentials or first-principles calculations
for different materials [14,15,17,37–41], including bcc metals
[12,13].

In this paper, ideal tensile strengths and lattice instabilities
of W, W-Ta, and W-Re alloys under [100] tensile strain are
investigated by first-principles calculations based on density
functional theory (DFT). W alloys are simulated by using
both the standard superlattice method and the virtual crystal
approximation (VCA) method [2,32]. The results show that
additions of Ta can result in either intrinsically brittle or ductile
behaviors of W-Ta alloys depending on Ta concentrations.
Additions of Re can inhibit ESI for W-Re alloys. However,
once Re concentration is above a critical value, transverse
phonon modes with imaginary frequencies emerge for W-Re
alloys before the elastic instability is reached under increasing
tensile strain. These phonon instability phenomena correspond
to dislocation nucleation events and make W-Re alloys intrinsi-
cally ductile. Additionally, LEFM analyses provide consistent
results with the ideal tensile and phonon instability calculations
of W-Ta and W-Re alloys. The details of the calculation
methods are described in in Sec. II. The discussions on the
results and the conclusions are explained in Secs. III and IV,
respectively.

II. CALCULATION METHODS

A. Ideal tensile strength and phonon instability

The ideal tensile calculations were applied to different W
alloy configurations. Pure W in the bcc lattice, WRe and
WTa in the B2 structure, as well as W15Re1 and W15Ta1 in
2 × 2 × 2 bcc supercells were investigated based on the stan-
dard pseudopotential for each chemical element. WxTa1−x and
WxRe1−x (x = 0.05, 0.10, 0.15, 0.20, 0.25, and 0.50) alloys
were investigated based on the pseudopotentials generated by
the VCA method with the corresponding compositions. Two
types of supercell structures employed in these calculations are

014107-2



Ab INITIO CALCULATIONS OF IDEAL STRENGTH … PHYSICAL REVIEW B 97, 014107 (2018)

illustrated in Fig. 1(a). One is the conventional bcc supercell
composed by vectors ai=1,2,3, and it contains two atoms; the
other is the tetragonal supercell composed by vectors bi=1,2,3,
and it contains four atoms. The [100]bcc axis a1 in the bcc
supercell is the same as [100] axis b1 in the tetragonal supercell.
b2 and b3 in the tetragonal supercell are [011]bcc and [01̄1]bcc,
respectively.

An increasing tensile strain was applied along the [100]
direction on two types of supercells in Fig. 1(a). In this paper,
σ11 and ε11 = ( a1(σ11)

a1(σ11=0) − 1.0) denote the true tensile stress
and the engineering tensile strain along [100], respectively.
In each quasistatic step of strain increment, ε11 = 2.0% was
added along [100]; then the supercell was relaxed along other
directions until all the stress tensor components σij < 0.05
GPa except σ11. During the supercell relaxations, the lengths
along a2 = [010]bcc and a3 = [001]bcc of the bcc supercell in
Fig. 1(a) were changed independently. Similarly, b2 = [011]bcc

and b2 = [011]bcc of the tetragonal supercell in Fig. 1(a) were
also changed independently.

Two different deformation paths can be identified in the
[100] ideal tensile calculations on these two types of supercells
in Fig. 1(a). If the relaxed supercells under the fixed nonzero
ε11 constraint always maintain tetragonal symmetry, the tensile
deformation follows the tetragonal path (TP), where two types
of supercells generate the same stress-strain (σ11-ε11) relations.
However, a critical strain in the tetragonal supercell can lead
to a structural transformation as shown in Fig. 1(b), where the
original tetragonal supercell is transformed into an orthorhom-
bic structure (|b2| �= |b3|). So the tensile deformation follows
the orthorhombic path (OP) and the elastic shear instability
(ESI) may occur. TP and OP can cause different stress-strain
relations. The ideal tensile strength σ IT

11 is the minimum value
of σ11 to satisfy the condition of dσ11

dε11
= 0 along either of these

two paths.
The phonon dispersion relations were calculated based on

one-atom primitive cells for pure W and WxRe1−x/WxTa1−x

alloys described in the VCA scheme. The lattice parameters
of the primitive cells in phonon calculations were obtained
by the above relaxation methods under fixed ε11 along TP.
The wave vectors used in phonon calculations were along the
paths following the selected high-symmetry points in the first
Brillouin zone (FBZ) of the primitive cell. The coordinates of
these high-symmetry points in reciprocal space are listed in
Table I and plotted in Fig. 2 for primitive cells without and
with the tensile deformation, respectively.

B. DFT calculation parameters

Density functional theory (DFT) calculations were per-
formed by using the Vienna Ab initio Simulation Package
(VASP) [42] and Quantum Espresso (QE) [43] in non-
spin-polarized conditions. In VASP calculations, the applied
pseudopotentials were based on the projector augmented
wave (PAW) method [44] and the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [45]. The k points
were sampled using the Monkhorst-Pack method [46] by a
21 × 21 × 21 grid for 2-atom bcc supercells, a 21 × 19 × 19
grid for 4-atom tetragonal supercells, a 13 × 13 × 13 grid
for 16-atom bcc supercells, and a 13 × 11 × 11 grid for
32-atom tetragonal supercells. The partial occupancies of

TABLE I. Coordinates of the high-symmetry k points in the FBZ
of bcc and bct (body-centered tetragonal) primitive cells shown in
Fig. 2. The reciprocal coordinate is defined as the unit length equal to

2π

|ai=1,2,3| . Here ai as labeled in Fig. 1 can have different lengths due to
the ideal tensile deformation.

bcc bct Reciprocal coordinates

N N [0.5 0.5 0]
H SM [0.0 0.5 0.0]
P P [0.5 0.5 0.5]

GP [0.5 0.25 −0.25]
� � [0 0 0]

each orbital were implemented in the first-order Methfessel-
Paxton scheme with a smearing of 0.4 eV [47]. The kinetic
cutoff energy was 380 eV. The program Phonopy [48] was
employed to perform phonon spectrum calculations by the
finite-displacement method (FDM) with the force constants
from VASP calculations. The results of phonon calculations
were used to analyze the atomic displacement modes of each
phonon branch with imaginary frequencies.

In Quantum Espresso (QE) calculations [43], the vir-
tual crystal approximation (VCA) scheme was employed
to produce pseudopotentials of the virtual WxRe1−x and
WxTa1−x elements. These VCA pseudopotentials were gen-
erated by the Martins-Troullier (MT) approach [49] using
the PBE exchange-correlation functional [50], and they were
constructed by modifying the number of valence electrons
per atom for the virtual chemical element using the pro-
gram FHI98PP [51]. The k points were sampled using the
Monkhorst-Pack method by a 25 × 25 × 25 grid and a 25 ×
21 × 21 grid for the bcc and tetragonal supercells, respectively.
The kinetic cutoff energy was 615 eV. Phonon dispersion
curves and modes of atomic movements were calculated
by the density functional perturbation theory (DFPT) [52],
which was implemented by the Phonon packages of QE. An
energy convergence threshold of 1 × 10−13 eV and a 6 × 6 × 6
Monkhorst-Pack grid were used in DFPT calculations.

FIG. 2. (a) Paths (green lines) along high-symmetry points in
the first Brillouin zone (FBZ) of bcc primitive cell for phonon
calculations. (b) Changes of FBZ and the symmetric paths under
[100]bcc tension along TP. The reciprocal coordinate system (x∗-y∗-z∗)
is defined based on the Cartesian coordinate system defined in
Fig. 1(a).
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C. Stacking fault and surface energies

A stacking fault is formed by shifting one part of a crystal
relative to the rest along a slip vector on a slip plane [12,41,53].
The energy increment as a function of the slip vector is the gen-
erated stacking fault energy (GSF) or γ surface. The maximum
energy increment along the minimum energy path (usually
the same direction as the Burgers vector for bcc metals) of
the γ surface is the unstable stacking fault energy γusf, which
represents the energy barrier to shift two neighboring parts of
the crystal on the slip plane.

DFT calculations were performed to obtain the γ surface
in the Burgers vector direction 〈111〉 of stacking fault planes
{2̄11} and {1̄10} for pure W, WxTa1−x , and WxRe1−x alloys in
the VCA scheme. The calculations were carried out by QE with
the same VCA pseudopotentials applied in the ideal tensile
calculations. The supercell geometry was [111] × [011] ×
[211] and [111] × [112] × [110] along the x-y-z axes with
a periodicity of 1 × 1 on the x-y plane. The k points were
sampled using the Monkhorst-Pack method by a 17 × 9 × 1
grid and a 20 × 7 × 1 grid in 〈111〉{2̄11} and 〈111〉{1̄10} γ

surface calculations, respectively. Both types of supercells
contained 12 layers of atoms and sufficient thickness of vacuum
layers along the z axis. 25 evenly interpolated points were
calculated along each slip path. The movement of atoms along
the x and y directions on the slip plane was fixed for a given
slip vector during the relaxation. The γusf was measured by the
maximum GSF value along the slip path. Other parameters in
DFT calculations were the same as those of the ideal tensile
calculations.

Because the cleavage is mostly on the low-index {100}
planes for W [30], {100} surface energies of pure W, WxTa1−x ,
and WxRe1−x alloys in the VCA scheme were calculated by
DFT with the same VCA pseudopotentials for the further
LEFM analyses based on Griffith theory [36]. The supercell
geometry was [100] × [010] × [001] along the x-y-z axis with
the periodicity of 1 × 1 on the y-z plane. The supercells
contained 14 layers of atoms and sufficient thickness of a
vacuum layer along the x axis. The k points were sampled
using the Monkhorst-Pack method by a 1 × 16 × 16 grid.
The energy relaxations were implemented by the conjugate
gradient method in the DFT calculations. The {100} surface
energies were calculated based on the energies of supercells
with or without the vacuum layer.

D. Linear elastic fracture mechanics

Anisotropic LEFM theory was applied to analyze the
competition between crack propagation and dislocation emis-
sion on a semi-infinite crack in a homogeneous system
[12,13,36,54]. A systematic summary of this method can be
found in recent publications [16,17]. According to this method,
the strain energy release rate G of the crack growth is

G = KT �K. (1)

K is the stress intensity factor given by

K = [KI,KII,KIII]
T , (2)

where KI, KII, and KIII denote the stress intensity factors of
the basic fracture modes I, II, and III, respectively. � is defined

as

� = 1
2 Re{iAB−1}, (3)

where A and B originate from the eigenvectors of Stroh’s
formulas in solving defect problems for dislocations and cracks
in a continuous medium under 2D plane strain conditions
[54]. According to Griffith theory [36], the cleavage fracture
happens when the strain energy release rate G equals the
surface energy of the cleavage plane γs. The corresponding
critical stress intensity factor Kc is given by solving the
equation

Gc = KT
c �Kc = 2γs. (4)

Rice analyzed the critical stress intensity factor Ke for the
dislocation nucleation and emission on the crack tip in isotropic
elasticity [12]. Sun and Beltz [13] extended it to an anisotropic
formula as

s(φ)Keff =
√

γusf�s(θ,φ). (5)

Keff is the effective stress intensity factor defined by the
equation [12]

Keff = F(θ )Ke, (6)

where F(θ ) represents the angular-related matrix in the stress
function of the crack tip resolved in a given slip plane. Thus, the
critical stress intensity of dislocation emission is obtained by
solving Eq. (6). Details of this formula were reviewed by Wu
and Curtin [16]. Here γusf is the unstable stacking fault energy;
φ is the angle between the Burgers vector and the crack front
orientation projected to the slip plane; θ is the angle between
the cleavage plane and the dislocation slip plane. s(φ) is the
slip vector based on the constrained path approximation [12]
given by

s(φ) = (cos φ,0, sin φ).

�s(φ,θ ) is the resolved � based on

�s(φ,θ ) = s(���T )−1sT , (7)

where 	 is the rotation matrix

� =

⎡
⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦. (8)

For pure W, WxTa1−x , and WxRe1−x alloys in the VCA
scheme, LEFM analyses were performed to calculate the
critical stress intensity factors for the dislocation nucleation
on 1

2 〈111〉{2̄11}/ 1
2 〈111〉{1̄10} slip systems and the cleavage

propagation along the {100} plane under mode I loading along
the [100] direction. Figure 3 describes the geometry setup
of the crack tips and slip systems. A semi-infinite crack sits
in the y-z plane, and its front is along the z direction. The
KI,KII,KIII are defined in the [100], [011], and [011] directions
of the bcc crystal, respectively. The critical stress intensity
factor KIc for the cleavage propagation was calculated by
Eq. (4), and the critical stress intensity KIe for dislocation
emission was calculated by Eq. (6). The parameters for W
and WxTa1−x/WxRe1−x alloys (including elastic constants, γs,
and γusf) were obtained by the DFT calculations described in
Secs. II B and II C.
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FIG. 3. Schematic diagram of the semi-infinite crack orienta-
tion and the dislocation slip system at the crack front for LEFM
analyses. (a) [111](211) dislocation with (θ,φ) = (54.73◦,0.00◦);
(b) [111](011) dislocation with (θ,φ) = (90.00◦,35.27◦), where θ and
φ are defined in Eq. (5).

LEFM analyses are based on the energetic stability of
possible dislocation nucleation events at the crack tip [12].
Figure 3 exhibits the potential dislocation slip systems that
include the Burgers vector and the slip plane. However, there
is no explicit limitation on the dislocation line directions
in this 3-dimensional crystal. After the nucleation events,
dislocation lines can propagate on the slip planes according to
the strain field near the crack tip, and they can evolve to contain
screw, edge, and mixed components with different values
of dislocation mobility. Both these dislocation nucleation
and propagation processes make significant contributions to
improve the ductility of the material. To quantitatively evaluate
their overall effects is beyond the scope of this study.

III. RESULTS AND DISCUSSION

A. Benchmarks

The structural and mechanical properties of pure W from
this work and previous studies are summarized in Table II.
The lattice constant a, bulk modulus B, and shear modulus C ′
[defined as 1

2 (C11 − C12)] obtained in this work are consistent
with their counterparts from previous studies (the relative
differences are no more than 5%). The ideal tensile strength
σ IT

11 and the corresponding critical strain εIT
11 along TP are also

listed in Table II. The relative differences in σ IT
11 between our

results and those from recent studies are no more than 3%. The
phonon dispersion relations of pure W without strain from our
benchmark calculations are plotted in Fig. 4. The FDM method

TABLE II. Lattice constant a (Å), bulk modulus B (GPa), shear
modulus C ′ [= 1

2 (C11 − C12)] (GPa), the ideal tensile strength σ IT
11

(GPa), and the critical tensile strain εIT
11 (%) for pure W from our

calculations and previous studies.

a B C ′ εIT
11 σ IT

11

VASP-PAW-PBE 3.171 284 164 14 29.6
QE-PBE 3.171 307.3 168 16 30.1
DFT-LDA [18] 3.17 331 161 13 29.5
FLAPW [22] 12.3 28.9
CPMD-PBE [19] 3.23 294 11.7 26.7
QE, VASP [2] 3.187, 3.189 300, 330 160, 159
Exp. [55] 3.165 316 165

using VASP and the DFPT method using QE show very similar
phonon spectra along the sampled paths, and both of them
are consistent with their counterparts from previous studies
[3]. These results confirm that our calculations described
in Secs. II B and II C are representative of the mechanical
properties of perfect W crystals.

Another concern arises about the validity of the VCA
pseudopotentials in describing the mechanical properties of
W-Re/W-Ta alloys. We first check the lattice constants and
elastic properties calculated by using VCA pseudopotentials.
The lattice constant, bulk modulus, C44, and C ′ of the VCA
WxTa1−x/WxRe1−x (0.5 � x � 1.0) alloys are summarized
in Fig. 5, where the number of valence electrons per atom is
determined by the alloy composition in the VCA scheme. For
example, W0.50Ta0.50, W, and W0.50Re0.50 have 5.5, 6.0, and 6.5
valence electrons per atom, respectively. The lattice constant
decreases and the bulk modulus increases with increasing
valence electrons, consistent with the prediction based on
the d-band filling and experimental measurements [55]. C44

monotonically increases with the addition of electrons, which
agrees with the experiments as well [55]. Notably, the C ′ of W-
Re alloys monotonically decreases with increasing d electrons,
which manifests that the bcc W-Re alloy becomes structurally
unstable due to the increment of Re concentration [55]. In
summary, all these parameters change smoothly with the solid
solute concentrations, and they coincide with the recent results
of W-Ta/W-Re alloys using the VCA pseudopotentials [9].
So it is a reasonable approximation to apply these VCA

FIG. 4. The phonon dispersion relations of pure W along high-
symmetry points of FBZ of the primitive unit cell calculated by the
DFPT method using QE, which are consistent with results from the
FDM method using VASP (these results are not shown here).
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FIG. 5. The correlations of lattice constant (a), C44 (b), C ′

(c), and bulk modulus (d) with the concentration of Ta/Re in
W1−xTax/W1−xRex in the VCA scheme, respectively. The number
of valence electrons per atom is 5.0, 6.0, and 7.0 for pure Ta, W, and
Re, respectively.

pseudopotentials to investigate the effects of Ta/Re solutes on
the ideal strengths and lattice instability mechanisms of W
alloys.

B. Ideal strength and shear instability

The ideal strength behaviors of W, W-Re, and W-Ta alloys
were investigated based on different methods, including stan-
dard PAW-PBE pseudopotentials by VASP, standard MT-PBE
pseudopotentials by QE, and VCA pseudopotentials by QE. All
results are mutually consistent. Pure W exhibits intrinsically
brittle behaviors because the elastic shear instability (ESI)
along OP only occurs after the stress reaches the ideal tensile
strength along TP. Alloying W with a large amount of Ta can
generate intrinsically ductile behavior because fewer valence

electrons promote ESI along OP before the stress reaches the
ideal tensile strength along TP. Alloying W with Re can create
ideal tensile behavior with more severe brittle characteristics
because more valence electrons inhibit ESI along OP. More
details are explained in the following.

1. Ideal tensile strength of W-Ta alloys

The ideal tensile behavior of W and W-Ta calculated by
standard PAW-PBE pseudopotentials using VASP is summa-
rized in Figs. 6(a) and 6(b). The stress-strain relations for pure
W behave identically in both TP and OP when ε11 < 18%
as shown in Fig. 6(a). In both TP and OP, σ11 reaches the
ideal tensile strength σ IT

11 = 29.6 GPa when ε11 reaches the
ideal tensile strain εIT

11 = 14%. When ε11 is larger than a
critical value (nearly 18% for pure W), σ11 along OP drops
dramatically compared with σ11 along TP. Above the same
critical strain, the lattice constants of b2 along [011]bcc and
b3 along [011]bcc start to be divergent along OP as shown in
Fig. 6(b). This transition of lattice constants is also described
by ESI illustrated in Fig. 1(b). Thus, the critical strain for ESI,
marked as εESI

11 in the following sections, is approximately 18%.
However, such εESI

11 is at least 4% larger than εIT
11 along TP. This

means that the perfect W crystal should still fail by cleavage
fracture deformation and pure W is intrinsically brittle.

Our recent investigations of ideal tensile behavior suggest
that ESI is induced by the Jahn-Teller distortion of electronic
structures [23]. The Jahn-Teller distortion splits the degenerate
energy levels of symmetry-related and partially occupied elec-
tronic band structures near the Fermi level [56]. This distortion
activates symmetry-breaking structural transformation and ESI
along OP, so the reduction of valence electrons can shift down
the Fermi level and induce ESI with smaller ε11 [23]. For alloy
W15Ta1 in the conventional 2 × 2 × 2 bcc supercell shown in
Fig. 6(a), σ11 along TP and σ11 along OP are different when ε11

is above the critical strain 16%. In Fig. 6(b), lattice constants of
b2 and b3 for W15Ta1 also become significantly divergent when
ε11 is above 16%. So εESI

11 is 16% for W15Ta1. This confirms
that a slight decrease in the number of valence electrons can
induce ESI with smaller εESI

11 (16% for W15Ta1 vs 18% for
pure W) [23]. However, because εESI

11 of W15Ta1 is still larger
than εIT

11 = 14% corresponding to its σ IT
11 along TP shown in

Fig. 6(a), W15Ta1 should still fail by cleavage mode along TP
and it is intrinsically brittle. This is consistent with the recent
study that shows W-Ta alloys are brittle when Ta concentration
is small [9].

The number of valence electrons further decreases for WTa
in the B2 structure. As shown in Fig. 6(a), the difference
between σ11 along TP and σ11 along OP emerges when ε11 >

14% for B2 WTa; its σ11 along OP reaches its σ IT
11 with the

corresponding εIT
11 at a certain value between 14% and 16%,

since the σ11 has almost the same values at these two strain
states. Meanwhile, σ IT

11 along TP can only be reached at εIT
11 =

18%. In addition, the small divergence of lattice constants b2

and b3 for B2 WTa starts from ε11 ∼ 14% and becomes evident
when ε11 = 16% as shown in Fig. 6(b), indicating εESI

11 should
be approximately 14%. Thus, WTa in the B2 structure should
fail by ESI along OP and is intrinsically ductile. These results
further confirm that the decrease of valence electrons in a group
VI bcc transition metal can transform its mechanical properties
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FIG. 6. The ideal tensile behavior of the perfect W and W-Ta
alloys under [100] tensile strain. (a) and (c): The stress-strain curves
along both the tetragonal path (TP) and orthorhombic path (OP) for
pure W, W15Ta1 alloy, and B2 WTa alloy from VASP (a) and QE (c)
calculations. (b) and (d): The corresponding variations of the lattice
constants of the tetragonal supercells under [100] tensile strain along
OP from VASP (a) and QE (c) calculations, respectively. Here b2 and
b3 are defined in Fig. 1.

from intrinsically brittle to intrinsically ductile behavior under
ideal tensile deformation [23].

All the above these calculations on W and W-Ta alloys
are repeated by standard MT-PBE pseudopotentials using QE,
and the results are plotted in Figs. 6(c) and 6(d). For pure
W, the difference between σ11 along TP and σ11 along OP
emerges when ε11 > 18%. This critical strain is larger than
εIT

11 = 16% for its σ IT
11 along TP, so it is still intrinsically brittle.

For WTa in the B2 structure, ESI occurs at ε11 = 14% as
illustrated by lattice constants b2 and b3 shown in Fig. 6(d).
Correspondingly, σ11 reaches its σ IT

11 along OP at εIT
11 = 14%,

which is smaller than its counterpart εIT
11 = 18% along TP,

so it is intrinsically ductile. These results are almost the
same as those from VASP calculations with different types of
pseudopotentials. This consistency provides strong evidence
that the intrinsic brittle-to-ductile transition is the fundamental
material property insensitive to calculation methods.

2. Ideal tensile strength of W-Re alloys

Our recent studies suggest that the addition of valence
electrons into a group VI bcc transition metal inhibits its
ESI along OP [23]. This prediction is confirmed by our
current calculations of W-Re alloys by standard PAW-PBE
pseudopotentials using VASP. Figure 7(a) shows W15Re1 at
a slightly lower ideal tensile strength compared with pure W.
σ11 along TP and σ11 along OP for W15Re1 are different when
ε11 is above the critical strain 18%, similar to the case of pure
W. At the critical strain ε11 = 18%, the difference between
b2 and b3 for W15Re1 is slightly smaller than its counterpart
of pure W at the same strain, indicating less tendency for
ESI for W15Re1. Such tendency is further enhanced as the Re
concentration rises. For the B2 WRe alloy, TP and OP show
the same stress-strain responses when ε11 � 25% as shown in
Fig. 7(a), and the |b2| and |b3| always have the same values as
shown in Fig. 7(b), indicating no ESI in the whole deformation
path.

The calculations for W-Re alloys performed using standard
MT-PBE pseudopotentials by QE provide essentially the same
results as VASP calculations. When the Re concentration
increases, the differences of σ11 between OP and TP decrease
and vanish eventually as presented in Figs. 7(c) and 7(d). The
supercell for the B2 WRe alloy keeps tetragonal symmetry
throughout the deformation path, so it can completely inhibit
ESI along OP due to the increment of the valence electrons.

The above calculations are based on the conventional su-
percells and standard pseudopotentials so that the ideal tensile
behavior could be affected by the artificial order in supercells.
The ideal tensile behavior and lattice constant variations of
W1−xRex alloys based on the VCA pseudopotentials are
presented in Fig. 8. These results contain no artificial-order
effects so that they are more representative of the random
binary solid solution alloys. When the concentration of Re
increases from 10% (W0.9Re0.1) to 25% (W0.75Re0.25), the
ideal tensile strength σ IT

11 decreases and the critical strain
εESI

11 , above which the stress and lattice constant divergences
between the TP and OP emerge, increases from 18% to 20%. As
Re concentration increases to 50% for W0.5Re0.5, σ IT

11 further
decreases, and the two deformation paths become identical
throughout the deformation path, the same as the B2 WRe
alloy in Fig. 7. Because the VCA method ignores the variations
of cation characteristics at different lattice sites, it further
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FIG. 7. The ideal tensile behavior of the perfect W and W-Re
alloys under [100] tensile strain. (a) and (c): The stress-strain curves
along both tetragonal path (TP) and orthorhombic path (OP) for pure
W, W15Re1, alloy and B2 WRe alloy from VASP (a) and QE (c)
calculations. (b) and (d): The corresponding variations of the lattice
constants of the tetragonal supercells under [100] tensile strain along
OP from VASP (a) and QE (c) calculations, respectively. Here b2 and
b3 are defined in Fig. 1.

confirms that ESI along OP is inhibited for W-Re alloys mainly
due to the d-band filling effect.

FIG. 8. The ideal tensile behavior of W1−xRex in the VCA scheme
under [100] tensile strain. (a) Stress-strain curves along both tetrag-
onal path (TP) and orthorhombic path (OP). (b) The corresponding
variations of the lattice constants of the tetragonal supercells under
[100] tensile strain along OP. Here b2 and b3 are defined in Fig. 1.

C. Ideal strength and phonon instability

According to Sec. III B, Re can inhibit ESI along OP and
keep W-Re alloys in brittle failure mode under [100] ideal
tensile deformation. This brittleness tendency is inconsistent
with the experimental facts that the addition of Re can improve
the ductility of W-based alloys [2,7,8,32]. However, the above
investigations of W alloys only consider elastic instability
(EI), which means the identical motion occurs to each atom
of the crystal in a homogenous tensile or shear distortion
until σ11 reaches σ IT

11 along either TP or OP. Besides, crys-
tals can become dynamically unstable due to heterogeneous
motions of atoms when there are imaginary frequencies for
specific phonon modes, also called phonon instability (PI).
Polarization vectors of these unstable phonon modes usually
correspond to defect nucleation or structural transformation,
such as dislocation emission or deformation twinning [34,35].
Therefore, analyses of phonon instability mechanisms for W,
W-Ta, and W-Re alloys under [100] ideal tensile deformation
are explained in this section.

1. Phonon instability in pure W

Figure 9 exhibits the evolution of phonon dispersion curves
for pure W under increasing tensile strain along [100]. For
a particular value of ε11, only the phonon branch with the
lowest frequencies of the phonon dispersion relations is plotted
along a specific high-symmetry path in k space as defined in
Fig. 2. By convention, imaginary frequencies are plotted as the
negative values. Figure 9(a) exhibits that PI with imaginary
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FIG. 9. Phonon frequencies of pure W under different ε11 along
TP during the [100] ideal tensile deformation. Only the branches with
the lowest frequencies of the phonon dispersion relations are plotted.
(a) Phonon dispersion curves calculated by FDM methods using
VASP. (b) Phonon dispersion curves calculated by DFPT method
using QE.

frequencies is first observed near the � point at ε11 = 15%
in the FDM calculations using VASP, but the critical strain
εIT

11 ≈ 14% for ideal tensile strength σ IT
11 along TP for pure

W as shown in Fig. 6(a). In the DFPT calculations using
QE, PI happens near the � point at ε11 = 18%, and pure
W also reaches σ IT

11 when ε11 = 18% along TP as shown in
Fig. 6(c). If the critical ε11 for the appearance of PI under
[100] ideal tensile deformation is defined as εPI

11, it can be
found as εPI

11 = σ IT
11 for pure W (the small mismatch should

be the consequence of different discrete step sizes for strain
increments in ideal tensile and phonon calculations). The wave
vectors of unstable phonon modes at εPI

11 are always located
at the � point, corresponding to the limit of long-wavelength
motions that are equivalent to the homogenous elastic defor-
mation. Therefore, for pure W, the phonon modes only become
dynamically unstable when the system reaches its elastic limit
under the ideal tensile strength. The phonon analyses verify
that it is the elastic instability that leads to the brittle fracture
of W.

2. Phonon instability in W-Ta alloys

Phonon instability analyses during ideal tensile deformation
are also conducted for W-Ta and W-Re alloys. Since the atomic
mass and valence electron number of Re/Ta differ from those
of W, the artificial order in the superlattice structures (B2
WTa/WRe or W15Ta1/W15Re1 in a conventional 2 × 2 × 2
bcc unit cell) may significantly underestimate εPI

11, the critical
strain for the phonon instability [35]. We have verified that εPI

11

FIG. 10. (a) The ideal tensile behavior of W0.5Ta0.5 in the VCA
scheme under [100] tensile strain. (b) Phonon frequencies of VCA
W0.5Ta0.5 under different ε11 along TP during the [100] ideal tensile
deformation calculated by DFPT method using QE. Only the branches
with the lowest frequencies of the phonon dispersion relations are
plotted.

for the B2 WTa/WRe superlattice is indeed much smaller than
εPI

11 for VCA W0.5Ta0.5/W0.5Re0.5 (the results are not discussed
in this paper). Such artificial ordering of the lattice structure
usually does not exist in real W alloys. Therefore, only the
phonon instability analyses applied to W alloys in the VCA
scheme are discussed in the following sections.

For the VCA W0.5Ta0.5 alloy, the stress-strain behavior
and the corresponding phonon dispersion curves are plotted
in Fig. 10. The stress-strain behavior for the VCA W0.5Ta0.5

calculated by QE in Fig. 10(a) is almost equal to the results
for B2 WTa calculated by VASP in Fig. 6(a) and those by QE
in Fig. 6(c). The VCA W0.5Ta0.5 is also intrinsically ductile
under the [100] tensile, since σ IT

11 is first obtained when ε11

increases to εIT
11 ≈ 14% along OP before εIT

11 ≈ 18% along TP.
The DFPT method is applied to calculate the phonon dispersion
relations of the VCA W0.5Ta0.5 using the primitive unit cell
under an increasing ε11 along TP. Figure 10(b) shows that
the �-X phonon branch along [0 ξ 0] first becomes negative
near the � point when ε11 ≈ 15%, close to its εIT

11 along OP
(the small mismatch is the consequence of different discrete
step sizes for strain increments in ideal tensile and phonon
calculations). Thus, similarly to the case of pure W, the VCA
W0.5Ta0.5 becomes dynamically unstable due to the phonon
modes corresponding to the limit of long-wavelength motions
when the system reaches its elastic limit under the ideal tensile
strength.

Analyses of the polarization and wave vectors of the unsta-
ble phonon mode further confirm that the phonon instability
in the VCA W0.5Ta0.5 is equivalent to elastic shear instability
(ESI) along OP. The polarization vectors and wave vectors
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FIG. 11. A sketch of the unstable T[001][0 ξ 0] phonon mode in
VCA W0.5Ta0.5 alloy. (a) The polarization vector p and the wave
vector k of the unstable phonon mode. (b) Projection of the crystal
structure on (100)bcc plane to illustrate that the consequence of
phonon instability is equivalent to that of elastic shear instability in
Fig. 1(b).

of the unstable phonon mode are plotted in Fig. 11(a). The
wave vector k is along the [010] direction, and the polarization
vector p is along the [001] direction. Since k is near the �

point and perpendicular to p, the phonon has a long-wavelength
transverse wave mode, denoted by T[001][0 ξ 0], and it should
induce elastic shear deformation. In fact, the phonon mode
T[001][0 ξ 0] near the � point is regarded as the elastic shear
deformation that is closely related to the elastic constant C44

[3,33]. Figure 11(b) illustrates that the transverse waves of the
T[001][0 ξ 0] mode shear the neighboring (010) atomic planes.
As a result, one of the unit cell vectors ([010]bcc and [001]bcc)
in the 2D square lattice of the (100) plane is tilted relative to
the other. This deformation geometrically transforms the 2D
square lattice to a rhombus structure. Thus, the whole 3D lattice
changes from the tetragonal to orthorhombic symmetry in the
same ESI mechanism illustrated in Fig. 1(b) when the unstable
phonon propagates.

3. Phonon instability in W-Re alloys

The phonon dispersion curves for VCA W1−xRex alloys
under different ε11 during the [100] ideal tensile deformation
are plotted in Fig. 12. For the VCA W0.9Re0.1 alloy in
Fig. 12(a), the imaginary frequencies appear first near the

FIG. 12. Phonon frequencies of VCA W1−xRex under different
ε11 along TP during the [100] ideal tensile deformation calcu-
lated by DFPT method using QE. (a) W0.9Re0.1. (b) W0.75Re0.25.
(c) W0.5Re0.5. Only the branches with the lowest frequencies of the
phonon dispersion relations are plotted.

� point when ε11 increases to the critical value εPI
11 = 15%,

which is close to εIT
11 ≈ 14% for its ideal tensile strength σ IT

11
shown in Fig. 8(a). So this long-wavelength phonon instability
is equivalent to its elastic instability, similarly to the case of
pure W discussed in Sec. III C 1.

For the VCA W0.75Re0.25 alloy in Fig. 12(b), the critical
strain εPI

11 for the emergence of imaginary frequencies is 11%,
smaller than εIT

11 = 12% for its σ IT
11 shown in Fig. 8(a), so the

imaginary phonon frequencies appear before the stress reaches
its σ IT

11 to induce the elastic tensile failure. Figure 12(b) also
reveals that the unstable phonon modes are along the �-GP
branch (k = [2ξ ξ ξ ]) at the critical strain εPI

11 = 11% for
VCA W0.75Re0.25. Notably, when the phonon mode of the
wave vector k = [0.2 0.1 0.1] along the �-GP branch first
becomes negative (imaginary) at εPI

11 = 11%, other phonon
branches, including long-wavelength modes near the � point,
are still positive. This means that this phonon instability is not
triggered by a long-wavelength phonon mode equivalent to

014107-10



Ab INITIO CALCULATIONS OF IDEAL STRENGTH … PHYSICAL REVIEW B 97, 014107 (2018)

FIG. 13. The most negative phonon frequencies along different
branches of phonon dispersion curves for different VCA W1−xRex

alloys at ε11 = 12% during the [100] ideal tensile deformation.

homogenous elastic deformation. Instead, the crystal becomes
dynamically unstable due to the phonon instability with a
wavelength of several atomic layers. This short-wavelength
phonon instability becomes further visible when the Re con-
centration increases. For the VCA W50Re50 alloy in Fig. 12(c),
the imaginary phonon frequencies first appear at the critical
strain εPI

11 = 9% before the stress reaches σ IT
11 at εIT

11 = 10%
as shown in Fig. 8(a). The corresponding wave vector k is
[0.29 0.14 0.14] along the �-GP branch, also away from the
� point.

The ideal tensile behavior and phonon spectrums of
W0.85Re0.15, W0.80Re0.20, and W0.75Re0.25 alloys in the VCA
scheme are also investigated to further confirm the effect of
Re on the phonon instability of W-Re alloys. For all three of
these compositions, the critical strain εIT

11 corresponding to the
ideal tensile strength σ IT

11 is close to 12%. Meanwhile, the most
negative (imaginary) frequencies along different branches
(�-N, �-P, and �-GP) as functions of Re concentration are
plotted in Fig. 13. The figure reveals that the �-GP branch
always has the most negative value for these alloys, suggest-
ing that the first imaginary frequency always appears along
the �-GP branch. With the increment of Re concentrations,
the imaginary phonon modes always produce more negative
frequencies. For example, the most negative frequency along
the �-GP branch changes from ∼ − 0.4 THz for W0.85Re0.15

to ∼ − 1.0 THz for W0.75Re0.25, suggesting that the critical
strain εPI

11 for the emergence of imaginary frequencies should
decrease with the increase of Re concentration. Thus, phonon
instability along the �-GP branch for W-Re alloys is promoted
by the increments of Re concentration and the number of
valence electrons per atom.

Analyses of the polarization and wave vectors of the
unstable phonon modes in the VCA W0.75Re0.25 alloy are
illustrated in Fig. 14. When the critical strain of phonon
instability εPI

11 is applied, the unstable phonon propagates along
the wave vector k perpendicular to the (211̄) planes, and atoms
oscillate along the direction of the polarization vector p close
to [211] with different phase factors. This unstable phonon
mode can promote dislocation nucleations on the 1

2 [111](211̄)
slip system, which is among the most typical slip systems
for bcc crystals. The angle between the polarization vector
p ‖ [211] and the Burgers vector 1

2 [111] is about 18◦. This
deviation between p and the Burgers vector is consistent with
previous dynamic stability analyses [35], which indicate that
the nucleation of a certain dislocation due to phonon instability

FIG. 14. A schematic illustration of the dynamic instability of
T[211][2ξ ξ ξ ] phonon mode in VCA W0.75Re0.25 alloy. (a) The
polarization vector p and the wave vector k of the unstable phonon
mode shown in the 3D lattice (left) and on the projection of atoms on
(011) plane (right). (b) Sketch of the hard-sphere “roll over” model
[35]. The polarization vector p is the instantaneous tangent direction
along the transition path of the dislocation nucleation event, and it
has a small angle with Burgers vector b. Here the green/blue circles
stand for atoms at the corner/center of bcc unit cells.

requires the atoms on the potential slip plane to roll over
their neighbor atoms to minimize the dislocation nucleation
barrier. The phonon polarization direction p responds to the
instantaneous rolling direction [35] as illustrated in Fig. 14(b).
Thus, the unstable phonon for W1−xRex VCA alloys under
the critical strain before the elastic tensile failure can activate
the emission of 1

2 〈111〉{2̄11} dislocations and enhance the
preference of ductile plastic deformation to the brittle fracture
under extremely high stress conditions, such as the local region
near the crack tip.

D. LEFM analyses

All the above studies of intrinsic brittleness/ductility are
based on the ideal tensile behaviors of perfect crystals without
the involvement of specific deformation defects. Results of
linear elastic fracture mechanics formalism (LEFM) analyses
are explained in this section to evaluate the intrinsic brittle-
ness/ductility in the circumstances similarly to the deformation
of real metals/alloys. These analyses output the critical stress
intensity factors KIc for the cleavage propagation along the
{100} plane and KIe for the emission of dislocations in
the 1

2 〈111〉{2̄11} and 1
2 〈111〉{1̄10} slip systems for different

W1−xTax and W1−xRex VCA alloys under mode I loading
along the 〈100〉 directions. The parameters in LFFM analyses
listed in Table III are the elastic constants, surface energies
γs (100), and unstable stacking fault energies (γusf (211) and
γusf (110)) calculated using VCA pseudopotentials by QE. The
results of KIc and KIe for different alloys are summarized
in Fig. 15, where the number of valence electrons per atom
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TABLE III. Parameters in LEFM analyses: lattice constant a (Å),
elastic constants (GPa), and unstable stacking fault energy γusf and
surface energy γs (J/m2). The deviations between the values of pure
W from our DFT calculations and those from previous results [57]
should result from the usage of different pseudopotentials.

a C11 C12 C44 γusf (211) γusf (110) γs (100)

W0.50Ta0.50 3.250 344 187 92 1.599 1.276 3.941
W0.75Ta0.25 3.209 436 189 123 2.182 1.859 4.65
W0.80Ta0.20 3.199 467 190 136 2.191 1.992 4.771
W0.85Ta0.15 3.189 487 191 148 2.241 2.083 4.862
W0.90Ta0.10 3.178 512 191 160 2.258 2.095 4.935
W0.95Ta0.05 3.172 532 193 170 2.245 2.133 4.992
W 3.171 534 193 177 2.120 2.021 4.847
W [57] 3.165 523 203 160 1.978 1.762 4.630
W0.95Re0.05 3.168 537 199 182 2.025 1.944 4.749
W0.90Re0.10 3.166 536 203 184 1.930 1.867 4.643
W0.85Re0.15 3.163 531 208 187 1.832 1.768 4.534
W0.80Re0.20 3.161 527 211 189 1.738 1.687 4.426
W0.75Re0.25 3.159 529 217 191 1.647 1.610 4.323
W0.50Re0.50 3.149 512 243 198 1.243 1.132 3.905

indicates the chemical composition of VCA W1−xTax and
W1−xRex alloys.

The individual values of KIc and KIe for 1
2 〈111〉{2̄11} and

1
2 〈111〉{1̄10} slip systems are plotted in Fig. 15(a). Starting
from pure W (the number of valence electrons per atom equals
6.0), KIc and KIe of two slip systems both decrease with the
increment of valence electrons per atom by adding more Re to
W. These trends are consistent with the variations of γs (100),
γusf (211), and γusf (110) listed in Table III. A parameter KIe/KIc

is introduced to evaluate the intrinsic ductility of alloys
because KIe/KIc can quantitatively describe the preference
of dislocation emission over the crack propagation to release
the strain energy at the crack tip [12,17]. Figure 15(b)
shows that KIe/KIc decreases for both 1

2 〈111〉{2̄11} and
1
2 〈111〉{1̄10} slip systems when pure W is alloyed with higher
Re concentrations in the VCA scheme. This means that
increasing valence electrons in W promotes the dislocation
emission near the crack tip under mode I loading along 〈100〉
and leads to more ductile deformation. This result is consistent
with above ideal tensile calculations, which show that alloying
Re solutes can induce short-wavelength phonon instability for
W alloys to raise the tendency of dislocation nucleation under
the extremely high stress conditions.

Noticeably, KIe/KIc of both 1
2 〈111〉{2̄11} and 1

2 〈111〉{1̄10}
slip systems are larger than 1.0 for pure W. This means
that the propagation of the {100} cleavage fracture occurs
under lower stress intensity factors than dislocation emissions
at the crack tip under mode I loading described as Fig. 3,
so pure W is intrinsically brittle. KIe/KIc of 1

2 〈111〉{2̄11}
becomes smaller than 1 when Re concentration is above a
critical value slightly larger than 0.25 according to Fig. 15(b).
This means that the 1

2 〈111〉{2̄11} dislocation emission occurs
under lower stress intensity factors than the cleavage fracture,
so W1−xRex VCA alloys are intrinsically ductile above this
critical Re concentration [12,17]. Interestingly, this critical Re
concentration is close to its counterpart to induce unstable

FIG. 15. Cleavage and dislocation emission competition for dif-
ferent W alloys in the VCA scheme predicted by anisotropic LEFM
analyses based on crack tip geometry in Fig. 3. The number of valence
electrons per atom is 6.0 for pure W, and it decreases/increases linearly
with increasing concentration of Ta/Re. (a) The variations of critical
stress intensity factor KIc for Griffith cleavage and KIe for dislocation
emissions of both 1

2 〈111〉{2̄11} and 1
2 〈111〉{1̄10} slip systems. (b) The

variations of the ductility parameter KIe/KIc for both slip systems.

phonon modes to activate dislocation nucleation before the
elastic tensile failure predicted in Fig. 12(b).

On the other hand, Fig. 15(b) also unveils that, when a
small amount of Ta (less than 25%) is added to pure W,
KIe/KIc first increases to some extent for both 1

2 〈111〉{2̄11} and
1
2 〈111〉{1̄10} slip systems. These changes demonstrate that to
slightly decrease valence electrons of W inhibits the dislocation
emission near the crack tip under mode I loading along 〈100〉
so that W1−xTax VCA alloys prefer more brittle deformation.
This result matches the previous DFT calculations [9] and
experiments [5], both of which show that Ta reduces the
ductility of W alloys when Ta concentration is smaller than
10%. However, when Ta concentration is higher than a specific
value between 25% and 50%, KIe/KIc of both slip systems
for W1−xTax VCA alloys decline to values smaller than
their counterparts of pure W. These W alloys with high Ta
concentration become more ductile compared with pure W,
consistent with the elastic shear instability (ESI) revealed by
ideal tensile calculations in Sec. III B 1.

Another interesting result of these LEFM analyses is the
change of the preferable slip system in W alloys. A comparison
of KIe between two slip systems in Fig. 15(a) indicates that the
1
2 〈111〉{2̄11} slip system is more favorable for the dislocation
emission at the crack tip than 1

2 〈111〉{1̄10} in pure W and W-Re
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alloys, but adding a significant amount (∼50%) of Ta solutes
into W generates a preference to 1

2 〈111〉{1̄10} dislocation
emission. This transformation of the preferable slip system by
the variation of valence electrons is consistent with our phonon
analyses in W1−xTax and W1−xRex VCA alloys as shown in
Figs. 11 and 12. It also agrees with the results of DFT-based
dislocation core structure calculations and microcantilever
bending experiments [10], which show that adding Re in W
facilitates the 1

2 〈111〉{2̄11} dislocations while alloying Ta in
W favors the 1

2 〈111〉{1̄10} dislocations.

IV. CONCLUSION

Tuning the d-band filling by chemical alloying can make the
brittle bcc W metal more ductile due to different lattice insta-
bility mechanisms [23]. Similarly to pure W, W-Ta alloys with
small Ta concentration prefer brittle cleavage fracture during
[100] ideal tensile deformation so that they are still intrinsically
brittle. The addition of high-concentration (∼50%) Ta makes
elastic shear instability occur before brittle cleavage fracture
during [100] ideal tensile deformation so that these W-Ta
alloys are intrinsically ductile. Consistently, LEFM analyses
reveal that a small amount of Ta (less than ∼25%) in W-Ta
alloys increases their preference of {100} cleavage fracture
propagation over dislocation emissions near the crack tip under
mode I loading along 〈100〉, so these W-Ta alloys should be
more brittle than pure W. Higher Ta concentrations (above a
specific value between 25% and 50%) in W-Ta alloys induce
the preference of dislocation emissions, especially for those
of 1

2 〈111〉{1̄10} slip systems, so these W-Ta alloys should be
intrinsically ductile.

Re inhibits elastic shear instability in W-Re alloys during
[100] ideal tensile deformation. However, Re above a critical
concentration (∼25%) in W-Re alloys provokes the phonon
instability with the T[211][2ξ ξ ξ ] phonon mode before the
W-Re alloys reach the elastic tensile instability. The propa-
gation of this unstable phonon mode should correspond to
the initialization of 1

2 [111](211) dislocation nucleation, so
these W-Re alloys are still intrinsically ductile. Consistently,
LEFM analyses show that, when Re concentration is above
a similar critical concentration, the emission of dislocations
in the 1

2 〈111〉{2̄11} slip system is mostly more favorable
than {100} cleavage fracture propagation and 1

2 〈111〉{1̄10}
dislocation emission near the crack tip under mode I loading
along 〈100〉, so these W-Re alloys should be intrinsically
ductile also according to LEFM analyses.

Three different criteria, elastic instability of perfect crystals
under ideal tensile deformation, phonon instability of the same
perfect crystals, and LEFM analyses of crack tips under mode
I loading, have been applied to evaluate the intrinsic ductility
of W alloys in this work. The elastic and phonon instability

criteria emphasize the aspect of stress/strain evolutions, and
LEFM theory emphasizes the aspect of energetic variations.
Because all of them are related to the nucleation of deformation
defects (dislocations or cracks), consistent results on ductility
evaluation of W alloys are obtained by these three methods
as summarized above. Meanwhile, another criterion has been
widely used to evaluate the ductility change for bcc metals
based on the variation of the mobility of screw dislocations,
which usually have lower mobility than the edge dislocations
and control the plastic deformation in bcc metals [2,6–10].
In reality, both the dislocation nucleation and dislocation
mobility can be essential to generate plastic deformation and
determine the ductility depending on the detailed conditions.
For example, it was found that the dislocation nucleation
should be the limiting factor of the fracture behavior of W
at low temperatures (around and below room temperature),
while dislocation mobility should play more important roles at
intermediate temperatures (∼400 K) [30].

For these reasons, to quantitatively evaluate the ductility and
other mechanical properties of the real materials, it requires
larger scale simulations to study the defect evolution and
consider other factors, such as microstructures, temperature,
and loading conditions. For example, recent experimental
studies show that the ductility of W-Ta alloys is a complex
function of Ta concentrations and microstructures (W-Ta
solid solutions vs W-Ta composites with separate phases)
[5,58]. In addition, whether and how strongly the shear/lattice
instability modes under uniaxial tension are related to the
intrinsic ductility depends on the detailed material systems.
For example, martensitic transformation induced by shear
instability increases the fracture toughness in ceramics [59].
However, the extent of the increasing toughness is limited by
the finite strain provided by the martensitic transformation.
On the other hand, the shear strain generated by dislocations
is much higher to enhance the ductility. In general, for the
bcc refractory metals and alloys, the differences in ductility
behaviors found in the real materials indeed are consistent
with the differences in their lattice instability behavior founded
in this work [1,60]. These lattice instability criteria provide
valuable and easily obtainable indicators of material ductility
without considering other factors at a larger scale or from the
external environment.
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