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Loss compensation in time-dependent elastic metamaterials
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Materials with properties that are modulated in time are known to display wave phenomena showing energy
increasing with time, with the rate mediated by the modulation. Until now there has been no accounting for material
dissipation, which clearly counteracts energy growth. This paper provides an exact expression for the amplitude
of elastic or acoustic waves propagating in lossy materials with properties that are periodically modulated in
time. It is found that these materials can support a special propagation regime in which waves travel at constant
amplitude, with temporal modulation compensating for the normal energy dissipation. We derive a general
condition under which amplification due to time-dependent properties offsets the material dissipation. This identity
relates band-gap properties associated with the temporal modulation and the average of the viscosity coefficient,
thereby providing a simple recipe for the design of loss-compensated mechanical metamaterials.
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I. INTRODUCTION

Phononic crystals and metamaterials, which consist of
periodic arrangements of scatterers and resonators in a solid
or fluid matrix, have revolutionized the realm of acoustic and
elastic wave propagation [1–3]. These structures have allowed
the development of applications for the control and localization
of mechanical energy that would be impossible to achieve with
natural materials. Thus, gradient index lenses [4,5], cloaking
shells [6–8], and hyperlenses [9], among other interesting
devices, have been designed and experimentally tested.

However, most of the extraordinary applications of meta-
materials are hindered by the strong dissipation they exhibit,
especially near the resonant regime where the concentration
of the fields in the scatterers is higher [10]. The performance
of these structures could be considerably improved if com-
bined with materials with gain. Additionally, other emerging
applications related to PT -symmetric systems [11,12], where
gain and loss are combined, require the realization of materials
with gain. Although gain has been introduced by means of elec-
tronic amplification in metamaterials [13] and in piezoelectric
materials [14], this mechanism is difficult to implement for
acoustic waves and at low frequencies, for which a more robust
approach is required.

In this work we present a mechanism to provide gain and
therefore to compensate dissipation in mechanical metama-
terials based on materials with time-dependent properties. In
these materials both the stiffness constant and the mass density
are functions of time. The amplification properties of time-
dependent media have been of interest for at least 60 years. The
early studies focused on the parametric amplification in elec-
trical transmission lines with time-varying inductance [15,16]
or capacitance [17,18] and on wave propagation through
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dielectric media with time-varying properties [19,20]. More
recent studies have considered both time-varying mechanical
and time-varying electromagnetic materials [17,21–25]. De-
spite the wide interest in these materials, to the best of our
knowledge the effects of dissipation on wave amplification
in time-varying media have so far not been considered. A
simplified model for the effect of a resistance element on
amplification in transmission-line devices is to replace the
system by a single-degree-of-freedom RLC circuit with time-
varying capacitance [17]. This is a useful and instructive model
which is repeated in this work in the context of elasticity,
but it is important to note that it is not directly related to
wave amplitudes. While time-dependent media can be thought
of as difficult or nearly impossible to realize, it has to be
taken into account that, essentially, they are tunable materials
which can be quickly reconfigured. The domain of tunable and
reconfigurable acoustic and elastic metamaterials is moving
fast towards this direction, so that this concept could be doable
in the framework of these structures.

We will derive the general properties of a time-dependent
dissipative material, showing that the dissipation can be
compensated by the amplification of the fields due to the
time-dependent properties. It is found that the fields can either
blow up or attenuate exponentially with time but that there is a
special regime in which these effects compensate one another
and the wave propagates at constant amplitude through the
material. The demonstration is based on the analogy between
periodically modulated materials in space and time, and it is
valid for any periodic function of the constitutive parameters. A
single-degree-of-freedom mechanical model is also considered
and compared with the fully dynamic continuum model.

II. GAIN IN TIME-DEPENDENT MEDIA

The analogy between spatial and temporal modulation
represented in Fig. 1(a) shows a classical layered material with
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FIG. 1. Equivalences between materials with spatial and temporal modulation of their constitutive parameters. (a) A classical layered
material in space and (b) its space-time representation. (c) A material whose properties are periodically changed in time by means of an external
stimulus and (d) its space-time representation, which shows that it is a rotated version of (b).

alternating layers of materials A and B (a one-dimensional
phononic crystal), and Fig. 1(b) shows its space-time repre-
sentation, where we see that the properties (stiffness and mass
density) remain constant in time but not in space. Now, let
us assume that we have a medium whose material properties
are sensitive to some external stimulus such as an electric or
magnetic field, an applied stress, or even temperature. If this
external stimulus E(t) changes with time t , the properties of the
material will be time dependent, as shown in Fig. 1(c), which
represents a material in which the properties change from A to
B periodically. Figure 1(d) shows the space-time representation
of this material, where the properties are time dependent but
constant along the space coordinate. The “space” representa-
tion of these two materials shows two completely different
pictures [Figs. 1(a) and 1(c)]; however, the “space-time”
representation shows a clear equivalence between these two
problems.

The above equivalence between the spatial and temporal
modulation of the materials is more evident from the equation
for elastic waves. The one-dimensional wave equation for an
inhomogeneous elastic material with mass density ρ(x) and
stiffness constant C(x) is given by

∂

∂x

(
C(x)

∂u

∂x

)
= ρ(x)

∂2u

∂t2
, (1)

with u = u(x,t) being the x component of the displacement
vector. If the properties of the material change in time but not
in space, the above wave equation is

∂

∂t

(
ρ(t)

∂u

∂t

)
= C(t)

∂2u

∂x2
, (2)

from which it is clear that there is a direct relationship between
the solutions of the equations for space and time modulations.
Therefore, if we know the solution for the spatial modulation,
we can obtain the solution for the temporal modulation by
exchanging the roles of ρ and C.

Despite the formal analogy between spatial and temporal
modulation of materials, there is a fundamental difference
between these two situations concerning boundary and initial
conditions. This difference manifests itself when we compare
the transmission and reflection by a discontinuity in the
material in space or time. The process is illustrated in Fig. 2:
In the top panel we see the classical spatial transmission and
reflection process in a layered material, while the bottom panel
shows the analogous situation in time.

The top panel of Fig. 2 shows the process of reflection
and transmission by a spatial discontinuity: a wave traveling
through a given material arrives from the left and encounters
the discontinuity (a layered material in this example), and a
reflected wave is then excited, traveling backwards along the
x direction; also, a transmitted wave appears at the other side
of the slab, traveling forward in the x direction.

The bottom panel of Fig. 2 shows the equivalent situation
in time: a wave is traveling through a given material in which,
due to the application of a periodic temporal external stimulus,
from t = 0 to t = T0 its properties oscillate between two values
labeled A and B and finally rest at its initial state. However,
the “position” of the waves in the schematics is different since
for t < 0 we have only one wave traveling forward along the x

direction; obviously, the layered material in time cannot excite
a wave traveling “backwards” in time. The reflected wave
appears after the modulation period for t > T0 and is, in fact,
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FIG. 2. Comparison of the excitation of transmitted and reflected
waves by finite-layered materials in space (top panel) and time
(bottom panel). The position of the reflected wave before (top panel)
or after (bottom panel) the slab obeys causality, and it is responsible
for the gain in energy for the temporal layered material (see text for
further details).

a wave traveling backwards in x (it cannot travel backwards
in time), so that the result of the modulation in time is the
excitation of two waves traveling in opposite directions along
the material, as before, but the different position of the reflected
wave in the schematics will be the key to understanding the
energy gain in the process.

The consequence of this distinction becomes clearer if we
use layer theory, which relates the amplitudes of the incoming
C+

i and outgoing C−
i waves before (i = 0) and after (i = f )

the layered structure by means of the scattering matrix M , so
that for the spatial case we have(

C+
f

C−
f

)
=

(
MS

11 MS
12

MS
21 MS

22

)(
C+

0

C−
0

)
. (3)

For an incident wave coming from the left C−
f = 0, and the

reflection and transmission coefficients are defined as

rS ≡ C−
0

C+
0

= −MS
21

MS
22

, (4a)

tS ≡ C+
f

C+
0

= 1

MS
22

. (4b)

The determinant of the M matrix is unitary, and reciprocity
shows that M11 = M∗

22 and M21 = M∗
12, relations that imply

|rS |2 + |tS |2 = 1; that is, there is conservation of energy in the
spatial case.

The picture is different for the temporally layered material,
where the reflected wave corresponds to the amplitude C−

f .
Layer theory is applied likewise; thus,(

C+
f

C−
f

)
=

(
MT

11 MT
12

MT
21 MT

22

)(
C+

0

C−
0

)
. (5)

and using C−
0 = 0, the reflection and transmission coefficients

are given by

rT ≡ C−
f

C+
0

= MT
21, (6a)

tT ≡ C+
f

C+
0

= MT
11. (6b)

The transfer matrix MT is obtained directly from MS by
changing C → ρ, as discussed before, so that the unitarity and
reciprocity relationships will be identical, and it can be easily
shown that |rT |2 + |tT |2 � 1 (in fact, |tT |2 � 1); that is, there is
increased wave energy. This gain in energy can be understood
from the equivalence in the spatial case: since the values for
the reflection and transmission coefficients have to be equal to
or lower than 1, we have |M22| = |M11| � 1 for both matrices
MT and MS .

Interestingly, we see that the transmitted energy in the tem-
poral case is the inverse of the transmitted energy in the spatial
case. The roles of the mass density and the stiffness constant
are interchanged between the two situations, which changes the
elements of the matrix M. The most important consequence is
that, for a layered material of N periods, when waves propagate
at the frequency of the band gap typical of periodic structures,
the amplitude of the transmitted wave decreases exponentially
with the number of layers, so that its equivalent temporal crystal
will have an exponentially increasing gain of energy when the
selected wave number lies in the band gap. As the number of
periods becomes larger, the transmitted energy blows up, and
the material becomes unstable, unless the modulation ceases.
Therefore, the stability condition for an infinitely oscillatory
medium is that the parameter oscillations are not strong enough
to open a band gap in the dispersion curve.

The above effect can be quantified by means of layer theory,
which shows that the M matrix of an N -layer material is given
by [26]

MT
N = MT sin N�τ

sin �τ
− I

sin(N − 1)�τ

sin �τ
, (7)

where � = �(k0) defines the dispersion curve of the infinite
periodic material for spatial wave number k0. Clearly, within
the band gap the element M11 has the form eNτ Im(�), which
grows exponentially with the number of periods N . Therefore,
a periodically modulated material will be unstable if its (tempo-
ral) band structure presents a band gap, unless the modulation
is of finite duration, in which case it will act simply as an
amplifier.

III. LOSS COMPENSATION IN TIME-DEPENDENT MEDIA

When dissipation is introduced into the system, the space-
time analogy is no longer valid, and the effect of gain is
less evident. The main difference in the spatial case is that
dissipation breaks the time-reversal symmetry, which means
that the material is nonreciprocal in time and the transfer
matrix MS is no longer unitary. Although dissipation is a
complex phenomenon with a strong dependence on frequency,
the most common assumption in elasticity is to propose a com-
plex stiffness constant directly proportional to the frequency,
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C → C − iωη, whose origin is the assumption that viscous
forces are proportional to the velocity. This is equivalent to the
following time-dependent constitutive equations:

∂σ

∂x
= ∂

∂t

(
ρ(t)

∂u

∂t

)
, (8a)

σ = C(t)
∂u

∂x
+ η(t)

∂2u

∂x∂t
, (8b)

where, like before, C,ρ, and the viscosity coefficient η are
time dependent. With this model of dissipation, regardless of
the temporal dependence of the constitutive parameters, it can
be shown that the transfer matrix is given by [see Appendix A,
Eq. (A15)]

M = e−	k2
0 M̂, (9)

where the 	 factor is given by

	 = 1

2

∫ T0

0

η(t)

ρ(t)
dt (10)

and the matrix M̂ satisfies unitarity and reciprocity.
The dissipation of the system is described by the exponential

factor e−	k2
0 ; however, this dissipation can be compensated

by the elements of the matrix M̂, which is unitary, and
therefore contributes to the gain of the system. For the specific
case of a periodically modulated material, the reflection and
transmission coefficients are given by

rT = e−	k2
0

sin N�τ

sin �τ
M̂T

21, (11a)

tT = e−	k2
0

(
sin N�τ

sin �τ
M̂T

11 − sin(N − 1)�τ

sin �τ

)
, (11b)

where now

	 = Nτ

2

〈
η(t)

ρ(t)

〉
, (12)

with 〈·〉 = 1/τ
∫ τ

0 dt being the average in the temporal unit
cell τ . The above equations clearly establish the conditions for
compensating the dissipation in the material. If the dispersion
curve � = �(k0) is real, i.e., there is no band gap, all the
contributions of the unitary matrix M̂ are oscillatory in N ,
and as the number of periods (modulation time) increases,
the amplitude of both the transmitted and reflected waves
decreases because of the exponential factor e−	k2

0 . If the
modulation of the parameters is strong enough to open a band
gap, the argument in the sinusoidal terms in Eq. (11a) becomes
complex, and the sine becomes the hyperbolic sine, with an
exponentially dominant term as N increases; therefore, both
the transmission and reflection coefficients have terms of the
form

e−	k2
0 sin N�τ ≈ exp

(
−Nτ

2

〈
η(t)

ρ(t)

〉
k2

0 + Nτ Im(�)

)
. (13)

Since both the decaying and growing factors are proportional to
Nτ , this exponential term will be compensated and set constant
if the condition


(k0) ≡ 1

2

〈
η(t)

ρ(t)

〉
k2

0 − Im(�) = 0 (14)
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FIG. 3. Top: Real part of the dispersion curve � = �(k0) for a
two-layer time-dependent medium for different values of τA. Bottom:
The parameter 
 of Eq. (14) as a function of k0 for three different
values of τA. The regions of 
 that are positive, zero, and negative
correspond to the situations in which the field is dissipated, stabilized,
and amplified, respectively.

is satisfied, and the transmitted energy will be stable with
the modulation time T0 since all the exponential terms (the
decaying and the growing ones) have disappeared from the
expressions. The energy will therefore propagate along the
material without dissipation or amplification. The quantity

(k0) is therefore the parameter determining the stability of
the material. If there is a frequency region where this quantity
is negative, the material will be unstable since the energy will
blow up exponentially with the number of periods N . This
parametric amplification can also be used to gain energy in
a controllable way, using the fact that the dissipation 
 can
be a small quantity. It is interesting to compare the stability
condition with the analogous criterion for a single-degree-of-
freedom damped oscillator with time-varying parameters (see
Appendix B).

The above results are now illustrated via some numerical
examples. Further details regarding the calculations and the
expressions employed can be found in the Appendix A.

Figure 3 shows the dispersion curve � = �(k0) for a two-
layer periodic material of time period τ = τA + τB with elastic
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FIG. 4. Total energy gain after a periodic modulation of the
material for different values of the number of periods N . Simulations
are shown for τA = 0.25τ (top), τA = 0.5τ (middle), and τA = 0.8τ

(bottom), displaying dissipation, gain, and stabilization, respectively.

properties {ρA,CA,ηA} = {1,1,0.1} during the time τA and
{ρB,CB,ηB} = {1,3,0.2} in the remaining part of the period
τB = τ − τA. Figure 3 shows the behavior for τA = 0.25τ,0.5τ

and 0.8τ . The bottom panel shows the parameter 
 in Eq. (14)
as a function of wave number k0. The curves deviate from
parabolic shape only within the band gaps where Im(�) �= 0.

Observe that for τA = 0.5τ there is a region for which 
 < 0,
which means that the field will be amplified as a function of
the number of periods N of the temporal modulation, while for
τA = 0.8τ there is a region with 
 = 0, so that the field will be
stabilized there, despite the fact that the material is dissipative.

Figure 4 shows the gain in energy ET /E0 = |rT |2 + |tT |2
after the modulation of the material’s properties for the system
in Fig. 3. Results are shown for different values of the number
of periods N and for different values of τA. Clearly, for τA =
0.25τ there is a progressive dissipation of energy as a function
of N (top panel), while for τA = 0.5τ the energy increases as
a function of N within the band gap (middle panel). Finally,
for τA = 0.8τ there is a situation of stabilization since within
the band gap the energy tends to be stable as a function of N .
It must be pointed out that these three situations depend only
on the modulation period τA/τ , which is straightforward to
change in practice since it will be the duration for which the
external stimulus is in one state or the other, so that the situation
of gain-dissipation-stabilization can be externally controlled in
these materials.

Figure 5 shows the time evolution of a Gaussian pulse in
a time-dependent material under the condition of gain, i.e.,
τA = 0.5τ . The pulse is chosen to have central frequency at
the peak of gain shown in the middle panel of Fig. 4. The
left, middle, and right panels of Fig. 5 show the initial pulse,
the response after the temporal modulation has begun, and
the excitation of the reflected and transmitted wave packets
when the modulation ceases, respectively. The full time evo-
lution for this configuration is presented in the supplementary
movie [27], which clearly illustrates how the wave packet is
strongly localized in space during the amplification process
and subsequently propagates after the modulation has stopped.
The example shown here corresponds to N = 25, but the
supplementary movie [27] illustrates the response for N = 75,
in which the amplification is more evident.

IV. SUMMARY

In summary, we have presented a general theory for time-
dependent media showing that in the absence of dissipation
these materials display gain when the modulation of the
parameters is of finite duration. For continuous and periodic
temporal modulation of the material’s properties, energy blows
up exponentially in band gaps, indicating the possibility of
material instability. By extending the theory to consider real-
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FIG. 5. Time evolution of a short pulse in a time-dependent material. It is clear how after the modulation two pulses propagating along
opposite directions have been created and amplified.
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istic dissipative materials we have shown that the energy can
decrease or increase exponentially, depending on a balance
equation which relates the band gap growth to the average
value of dissipative parameters. A general equation describes
the condition under which the gain due to the band gap and
the losses due to dissipation compensate each other, so that the
material, despite being dissipative, maintains constant energy.
These results are valid for any type of time modulation and
can provide the basis for the design of loss-compensated
metamaterials and devices.
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APPENDIX A: TIME-DEPENDENT MEDIUM

1. Basic equations with space-time parameters

The field variables are displacement u(x,t), velocity v =
∂tu, and strain ε = ∂xu. The equilibrium equation and the stress
constitutive relation are

∂xσ = ∂t (ρv), (A1a)

σ = Cε + η∂xv, (A1b)

where the material parameters are density ρ(x,t), stiffness
C(x,t), and viscosity η(x,t). Equations (A1) together give the
pointwise energy balance

∂t

(
1
2ρv2 + 1

2Cε2
) + ∂x(−vσ )

= 1
2ε2∂tC − 1

2v2∂tρ − η(∂xv)2. (A2)

The right-hand terms in (A2) are clearly producers of energy;
the first two could be either sources or drains, while the final
term is the expected viscous loss.

2. Space-harmonic solution

We focus on time-dependent material properties: ρ = ρ(t),
C = C(t), and η = η(t). Assume that the variables have
separate space and time dependence,

u(x,t) = Re u(t)eik0x, (A3)

where u(t) is a complex-valued quantity and k0 is real valued
and positive. Similar expressions follow for the other variables,
and from here on we consider v(t) = ∂tu(t), ε(t) = ik0u(t),
and σ (t) = ik0[Cu(t) + ηv(t)] to be complex quantities with
the space-harmonic factor eik0x omitted but understood, anal-
ogous to how we consider time-harmonic motion.

Equations (A1) become

∂tU = −ik0

[
0 ρ−1

C −ik0ηρ
−1

]
U, (A4)

where

U(t) ≡
(

ε

−π

)
and π (t) = ρ(t)v(t) (A5)

is the momentum. The propagator, or transfer matrix, for U
is not unitary. The connection with unitarity and reciprocity
can be made by first defining the speed, impedance, and
nondimensional viscosity,

c =
√

C/ρ, z = ρc, ζ = k0η

2z
. (A6)

Consider wave solutions of Eqs. (A1) for constant material
properties ρ, C, and η of the form (u,σ ) = (u0,σ0) exp{ik0(x −
λ0ct)}. The nondimensional frequency λ0 satisfies

λ2
0 + 2iζλ0 − 1 = 0, (A7)

which implies that propagating waves in t > 0 occur only for
ζ < 1; otherwise, the wave is exponentially decaying with
time. Hereafter, is it assumed that the damping factor ζ is less
than the critical value of unity.

Equation (A4) can now be rewritten

∂tV(t) = Q(t)V(t), (A8)

where

V(t) = e
∫ t

0 k0cζdt U(t),

Q = −ik0c
√

1 − ζ 2A, A = 1√
1 − ζ 2

[
iζ z−1

z −iζ

]
.

(A9)
The property A2 = I, where I is the 2 × 2 identity matrix,
leads to the usual unitary properties for the propagator and
other related results (see below). The restriction ζ < 1 implies
that the effects of dissipation are described entirely through the
exponential term in Eq. (A9).

We next consider the propagator and transfer matrices
using well-known methods [28]. The following results are for
arbitrary time-dependent Q(t) of the form defined in (A9).

3. Propagator and transfer matrices

Let P(t) be the 2 × 2 matrix solution of the differential
initial value problem

∂tP(t) = Q(t)P(t), P(0) = I. (A10)

The propagator matrix P relates the state vector V(t) at one
time with that at another, V(t) = P(t)V(0), and it has the usual
properties of an undamped propagator, such as a determinant
of 1. The actual “damped” propagator for U(t) follows from
(A9) as e−k2

0	(t)P since

U(t) = e−k2
0	(t)P(t)U(0) (A11)

and

	(t) = 1

2

∫ t

0

η(t)

ρ(t)
dt. (A12)

For future reference we define

J =
[

0 1
1 0

]
, Z(t) =

[
1 1
z −z

]
. (A13)
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We assume a finite layer of thickness (time) T with uniform
properties outside. Then

W(T ) = MW(0), W(t) ≡
(

C+(t)
C−(t)

)
. (A14)

A forward- (backward-) traveling wave satisfies −π = zε

(−π = −zε). The forward and backward components W are
connected to the state vector U via the impedance matrix
by U = ZW, so that M = Z−1(T )P(t)Z(0). The periodicity
assumption implies Z(T ) = Z(0), so that

M = e−	k2
0 M̂, M̂ = Z−1(0)P(T )Z(0), (A15)

where the damping constant is

	 ≡ 	(T ). (A16)

Note that the term e−	k2
0 comes from the definition (A14).

The following identities are readily derived:

Q† = −JQJ, (A17a)

P−1(t) = P(−t) = JP†(t)J, (A17b)

det P(t) = det M̂ = 1, (A17c)

where the dagger (†) indicates the Hermitian transpose (trans-
pose plus conjugate). These identities imply properties for the
elements of P and M (and ones for M̂ similar to those for M):

P ∗
11 = P11, P ∗

22 = P22, P ∗
12 = −P12, P ∗

21 = −P21,

M∗
11 = M22, M∗

12 = M21,

P(t) =
[
P11 P12

P21 P22

]
, M =

[
M11 M12

M21 M22

]
, (A18)

where the asterisk (∗) indicates the complex conjugate.
According to the definition (A14), the reflection and trans-

mission coefficients for the time-varying medium can be found
using C−(0) = 0 as

rT = C−(T )

C+(0)
= M21, (A19a)

tT = C+(T )

C+(0)
= M11. (A19b)

These coefficients satisfy

|tT |2 − |rT |2 = e−2	k2
0 , (A20)

implying magnification of the forward-traveling wave (|tT | �
1) in the absence of damping (ζ = 0).

4. Piecewise constant regions

For instance, if Q is constant as a function of t , then the
solution of (A10) is

P(t) = eQt = cos φ I − i sin φ A, φ = k0c
√

1 − ζ 2 T .

(A21)
For a layer {c,z,ζ } sandwiched in time by the uniform medium
with impedance z0,

M = e−	k2
0

(
cos φ I − i sin φ

2
√

1 − ζ 2

×
[ z

z0
+ z0

z
z
z0

− z0
z

+ i2ζ
z0
z

− z
z0

+ i2ζ −(
z
z0

+ z0
z

) ])
. (A22)

The reflection and transmission amplitudes follow from
Eqs. (A19) and (A22) as

|rT |2 = e−2	k2
0

sin2 φ

1 − ζ 2

[
1

4

(
z

z0
− z0

z

)2

+ ζ 2

]
, (A23a)

|tT |2 = e−2	k2
0

{
sin2 φ

1 − ζ 2

[
1

4

(
z

z0
− z0

z

)2

+ ζ 2

]
+ 1

}
.

(A23b)

5. Bloch-Floquet

If the time modulation is T periodic, then there exist
Bloch-Floquet solutions of the form u(t + T ) = u(t)e−iωT ,
with similar expressions for the other variables. The frequency
ω satisfies the eigenvalue condition

det
[
e−k2

0	P(T ) − e−iωT I
] = 0. (A24)

Therefore,

ω = ±� − i
k2

0	

T
, (A25)

where � is the undamped Bloch-Floquet frequency,

cos �T = 1
2 tr P(T ). (A26)

Note that the frequency ω is complex valued when damping
is present. In the absence of damping (η = 0) the frequency is
real valued in the pass bands and complex in stop bands.

6. Example: Two-layer system

The materials are denoted 1 and 2, with duration t1 and t2,
t1 + t2 = T ; then (A26) is

cos �T = cos k0c1t1 cos k0c2t2

− 1

2

(
z1

z2
+ z2

z1

)
sin k0c1t1 sin k0c2t2. (A27)

This can be used to look at the response within band gaps.
For instance, suppose the speeds and temporal thicknesses

are the same in both layers (c1 = c2 = c, t1 = t2 = T/2). The
first band gap, defined by cos �T < −1, is

k0 ∈ 1

cT
(π − θ, π + θ ),

cos
θ

2
= 2√

z1
z2

+
√

z2
z1

, 0 < θ < π. (A28)

The frequency � has its largest imaginary value in the middle
of the band gap, k0cT = π , where

� = π

T
+ i

T

∣∣∣∣ln z1

z2

∣∣∣∣. (A29)

Thus, the loss from damping compensates the gain of the
temporal modulation if the two are matched according to

(k0) = 0, which in this case becomes

1

2

〈
η(t)

ρ(t)

〉
k2

0 = 1

T

∣∣∣ ln
z1

z2

∣∣∣. (A30)
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7. Energy evolution

Averaging Eq. (A2) over a wavelength 2π/k0 yields a purely
time dependent energy result,

∂t

(
1

2
C|ε|2 + 1

2
ρ−1|π |2

)
= 1

2
|ε|2∂tC + 1

2
|π |2∂tρ

−1 − η
k2

0

ρ2
|π |2. (A31)

This form of the energy balance is instructive since it involves
the quantities ε and π that vary smoothly in time according
to Eq. (A4). It is also interesting to note that ε and π are the
dual variables to v and σ , which define the state vector in the
spatially modulated material. The two sets of variables appear
on equal footing in the Willis equations [29].

Equation (A31) indicates that the energy is not necessarily
smoothly varying since instantaneous jumps in C and/or ρ lead
to instantaneous nonzero changes in the total energy. In order
to understand this further, for the moment we ignore damping
and consider a uniform medium with properties {C0,ρ0} that
instantaneously switches to {C1,ρ1} at time t = 0. Equation
(A31) with η = 0 implies the energy equation

E = E0 + 1
2

[|ε0|2(C1 − C0) + |π0|2
(
ρ−1

1 − ρ−1
0

)]
H (t),

(A32)

where E = 1
2C|ε|2 + 1

2ρ−1|π |2 is the total energy; E0, ε0, and
π0 are the values just before t = 0; and H (t) is the Heaviside
step function. According to Eq. (A32) the instantaneous change
could increase or decrease the total energy. For instance, if the
wave before the switch is propagating in one direction, π0 =
±z0ε0, then the energy increases if z1

z0
+ z0

z1
> 2 c0

c1
; otherwise,

it decreases, where C1 = c1z1, ρ−1
1 = c1/z1.

Now suppose that the medium properties revert at time t =
T > 0 to those before the switch at t = 0; then the subsequent
energy for t > T is

ET = E0 + 1
2 (|ε0|2 − |ε1|2)(C1 − C0)

+ 1
2 (|π0|2 − |π1|2)

(
ρ−1

1 − ρ−1
0

)
, (A33)

where the values ε1 and π1 at t = T are related to those at
t = 0 by the propagator(

ε1

−π1

)
=

[
cos(k0c1T ) −iz−1

1 sin(k0c1T )
−iz1 sin(k0c1T ) cos(k0c1T )

](
ε0

−π0

)
.

(A34)

Hence,

ET = E0 + C0

2

(
z2

1

z2
0

− 1

)(
|ε0|2 − |π0|2

z2
1

)
sin2(k0c1T ),

(A35)

implying that the energy can increase or decrease relative to E0

depending on the wave dynamics at t = 0. However, assuming
the dynamic state just before the first switch at t = 0 is a
wave traveling in only one direction, i.e., π0 = ±z0ε0, then
the energy after reversion is

ET = E0 + E0

2

(
z1

z0
− z0

z1

)2

sin2(k0c1T ). (A36)

This is always greater than or equal to the initial energy.
In summary, for wave incidence in one direction on the tem-

poral slab of width T , (i) the evolved energy is nondecreasing,
(ii) it remains constant for any temporal slab width T > 0 if
and only if the impedance remains constant, and (ii) for a given
impedance mismatch, the energy increase is maximum for T

such that sin2(k0c1T ) = 1.

APPENDIX B: A SINGLE-DEGREE-OF-FREEDOM MODEL

Consider a mass-spring-damper system with time-varying
stiffness

mü(t) + cu̇(t) + (K + 
K cos 2ωnt)u(t) = 0, (B1)

where ωn = √
K/m is the undamped natural frequency. The

displacement solution has the form u(t) = v(t)e(μ−ζ )ωnt , where
v(t) is periodic and ζ = c

2ωnm
is the damping factor. For small

values of 
K
K

the parameter μ follows from [30]. In particular,

Re μ ≈ 
K

8K
. (B2)

Note that this differs by a factor of 2 from the analogous result
in [17]. Hence, the solution will grow exponentially if


K

8K
> ζ. (B3)

In order to compare this with the full-wave result of
Eq. (14) we note that the latter implies exponential growth if
Im(�) > 1

2 〈 η(t)
ρ(t) 〉k2

0 . Assuming time-independent wave speed

c = √
C/ρ and nondimensional viscosity ζ of Eq. (A6), the

growth condition can be expressed

Im(�)

�0
> ζ, (B4)

where �0 ≡ ck0. In both the simple model (B3) and the
full-wave solution (B4), the condition for exponential growth
involves the nondimensional damping factor ζ . In the single-
degree-of-freedom model it competes with the relative change
in stiffness. However, in the full-wave case, the damping
competes with an indirect quantity which depends upon the
Bloch-Floquet response.

[1] R. V. Craster and S. Guenneau, Acoustic Metamaterials:
Negative Refraction, Imaging, Lensing and Cloaking, Springer
Series in Materials Science (Springer, Berlin, 2012), Vol. 166.

[2] P. A. Deymier, Acoustic Metamaterials and Phononic Crystals,
Springer Series in Solid-State Sciences (Springer, Berlin, 2013),
Vol. 173.

[3] S. A. Cummer, J. Christensen, and A. Alù, Nat. Rev. Mater. 1,
16001 (2016).

[4] S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, Phys. Rev. B
79, 094302 (2009).

[5] A. Climente, D. Torrent, and J. Sánchez-Dehesa, Appl. Phys.
Lett. 97, 104103 (2010).

014105-8

https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1103/PhysRevB.79.094302
https://doi.org/10.1103/PhysRevB.79.094302
https://doi.org/10.1103/PhysRevB.79.094302
https://doi.org/10.1103/PhysRevB.79.094302
https://doi.org/10.1063/1.3488349
https://doi.org/10.1063/1.3488349
https://doi.org/10.1063/1.3488349
https://doi.org/10.1063/1.3488349


LOSS COMPENSATION IN TIME-DEPENDENT ELASTIC … PHYSICAL REVIEW B 97, 014105 (2018)

[6] H. Chen and C. Chan, Appl. Phys. Lett. 91, 183518
(2007).

[7] S. A. Cummer and D. Schurig, New J. Phys. 9, 45 (2007).
[8] D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 063015

(2008).
[9] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nat. Mater. 8, 931

(2009).
[10] H. Pichard and D. Torrent, AIP Adv. 6, 121705 (2016).
[11] X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, Phys. Rev.

X 4, 031042 (2014).
[12] J. Christensen, M. Willatzen, V. R. Velasco, and M.-H. Lu, Phys.

Rev. Lett. 116, 207601 (2016).
[13] R. Fleury, D. Sounas, and A. Alù, Nat. Commun. 6, 5905 (2015).
[14] M. Willatzen and J. Christensen, Phys. Rev. B 89, 041201 (2014).
[15] A. Cullen, Nature (London) 181, 332 (1958).
[16] P. Tien, J. Appl. Phys. 29, 1347 (1958).
[17] W. Louisell and C. Quate, Proc. IRE 46, 707 (1958).
[18] R. Honey and E. Jones, IRE Trans. Microwave Theory Tech. 8,

351 (1960).
[19] F. R. Morgenthaler, IRE Trans. Microwave Theory Tech. 6, 167

(1958).
[20] R. Fante, IEEE Trans. Antennas Propag. 19, 417 (1971).

[21] K. A. Lurie and S. L. Weekes, J. Math. Anal. Appl. 314, 286
(2006).

[22] A. Hayrapetyan, K. Grigoryan, R. Petrosyan, and S. Fritzsche,
Ann. Phys. (NY) 333, 47 (2013).

[23] K. A. Lurie and V. V. Yakovlev, IEEE Antennas Wireless Propag.
Lett. 15, 1681 (2016).

[24] G. W. Milton and O. Mattei, Proc. R. Soc. A 473, 20160819
(2017).

[25] O. Mattei and G. W. Milton, New J. Phys. 19, 093022 (2017).
[26] J. M. Bendickson, J. P. Dowling, and M. Scalora, Phys. Rev. E

53, 4107 (1996).
[27] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.97.014105 where a video illustrating the
time evolution of a wave packet in a time-dependent material
is shown.

[28] M. C. Pease, Methods of Matrix Algebra (Academic, New York,
1965).

[29] A. N. Norris, A. L. Shuvalov, and A. A. Kutsenko, Proc. R. Soc.
A 468, 1629 (2012).

[30] N. W. McLachlan, Theory and Application of Mathieu Functions
(Oxford University Press, London, 1947), Sec. 4.23, Eqs. (3) and
(4).

014105-9

https://doi.org/10.1063/1.2803315
https://doi.org/10.1063/1.2803315
https://doi.org/10.1063/1.2803315
https://doi.org/10.1063/1.2803315
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/9/3/045
https://doi.org/10.1088/1367-2630/10/6/063015
https://doi.org/10.1088/1367-2630/10/6/063015
https://doi.org/10.1088/1367-2630/10/6/063015
https://doi.org/10.1088/1367-2630/10/6/063015
https://doi.org/10.1038/nmat2561
https://doi.org/10.1038/nmat2561
https://doi.org/10.1038/nmat2561
https://doi.org/10.1038/nmat2561
https://doi.org/10.1063/1.4968618
https://doi.org/10.1063/1.4968618
https://doi.org/10.1063/1.4968618
https://doi.org/10.1063/1.4968618
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1103/PhysRevLett.116.207601
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1103/PhysRevB.89.041201
https://doi.org/10.1103/PhysRevB.89.041201
https://doi.org/10.1103/PhysRevB.89.041201
https://doi.org/10.1103/PhysRevB.89.041201
https://doi.org/10.1038/181332a0
https://doi.org/10.1038/181332a0
https://doi.org/10.1038/181332a0
https://doi.org/10.1038/181332a0
https://doi.org/10.1063/1.1723440
https://doi.org/10.1063/1.1723440
https://doi.org/10.1063/1.1723440
https://doi.org/10.1063/1.1723440
https://doi.org/10.1109/JRPROC.1958.286771
https://doi.org/10.1109/JRPROC.1958.286771
https://doi.org/10.1109/JRPROC.1958.286771
https://doi.org/10.1109/JRPROC.1958.286771
https://doi.org/10.1109/TMTT.1960.1125245
https://doi.org/10.1109/TMTT.1960.1125245
https://doi.org/10.1109/TMTT.1960.1125245
https://doi.org/10.1109/TMTT.1960.1125245
https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1109/TAP.1971.1139931
https://doi.org/10.1109/TAP.1971.1139931
https://doi.org/10.1109/TAP.1971.1139931
https://doi.org/10.1109/TAP.1971.1139931
https://doi.org/10.1016/j.jmaa.2005.03.093
https://doi.org/10.1016/j.jmaa.2005.03.093
https://doi.org/10.1016/j.jmaa.2005.03.093
https://doi.org/10.1016/j.jmaa.2005.03.093
https://doi.org/10.1016/j.aop.2013.02.014
https://doi.org/10.1016/j.aop.2013.02.014
https://doi.org/10.1016/j.aop.2013.02.014
https://doi.org/10.1016/j.aop.2013.02.014
https://doi.org/10.1109/lawp.2016.2522384
https://doi.org/10.1109/lawp.2016.2522384
https://doi.org/10.1109/lawp.2016.2522384
https://doi.org/10.1109/lawp.2016.2522384
https://doi.org/10.1098/rspa.2016.0819
https://doi.org/10.1098/rspa.2016.0819
https://doi.org/10.1098/rspa.2016.0819
https://doi.org/10.1098/rspa.2016.0819
https://doi.org/10.1088/1367-2630/aa847d
https://doi.org/10.1088/1367-2630/aa847d
https://doi.org/10.1088/1367-2630/aa847d
https://doi.org/10.1088/1367-2630/aa847d
https://doi.org/10.1103/PhysRevE.53.4107
https://doi.org/10.1103/PhysRevE.53.4107
https://doi.org/10.1103/PhysRevE.53.4107
https://doi.org/10.1103/PhysRevE.53.4107
http://link.aps.org/supplemental/10.1103/PhysRevB.97.014105
https://doi.org/10.1098/rspa.2011.0698
https://doi.org/10.1098/rspa.2011.0698
https://doi.org/10.1098/rspa.2011.0698
https://doi.org/10.1098/rspa.2011.0698



