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Anharmonic model for the elastic constants of bulk metallic glass across the glass transition
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Here we examine the role of anharmonicity in the elastic constants of bulk metallic glasses and develop
an anharmonic model to consider the effects of both pressure and temperature across the glass transition.
By comparing against reported experimental data and elastic constants obtained from molecular dynamics
simulations, we show that the model is able to capture reported elastic constants from cryogenic temperatures
through the glass transition and under hydrostatic pressures up to 18 GPa. Microstructural indicators based on
short-range order analysis also display strong correlations with the bulk and shear moduli across the range of
pressures and temperatures studied. These results not only greatly expand our understanding in the physical
origins of elastic properties of bulk metallic glasses but are also of practical interest for application to processing
routes for bulk metallic glass materials.
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I. INTRODUCTION

Bulk metallic glasses (BMGs) include systems with varied
chemistry and can display high strength, low weight, and ex-
cellent fracture toughness [1–4]. However, due to their tensile
brittleness in bulk form arising from localized deformation,
processing MGs at room temperature or lower is still a signifi-
cant challenge. It is known that within the solid glassy regime,
BMGs generally display decreasing strength and elastic moduli
with increasing temperature and an accompanying shift from
brittle failure in tension (localized shear deformation) to
increasing tensile ductility (homogeneous deformation) [5–7].
These changes may thus present a viable window for pro-
cessing BMGs. Further increasing temperature beyond the
glass transition temperature leads to supercooled liquid be-
havior where the viscosity of the metallic alloy decreases
by several orders of magnitude and processing BMGs under
thermoplastic forming may be also viable [8,9]. Clearly, the
temperature-dependent mechanical and viscous behavior of
BMGs serves as a key to unravel the still-mysterious glass
transition phenomenon and identify processing windows for
BMGs [10].

Previous studies have indicated that BMGs tend to display
a weak sensitivity to hydrostatic pressure at temperatures well
below Tg [11–15]. However, recent tension and compression
experiments conducted at a significant fraction of the glass
transition temperature revealed that the mechanical response
of BMGs displays increasing hydrostatic pressure dependence.
For example, Vatamanu et al. reported that tension and com-
pression experiments on Zr and La-based BMGs performed
at temperatures between 70% and 90% of the glass transition
temperature showed a significant increase in fracture stress
as well as a transition from homogeneous deformation to
localized failure when a hydrostatic pressure was applied
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[16]. Other reported effects of hydrostatic pressure include an
increase in the glass transition and crystallization temperature
with pressure [17,18], an anomalous energy-density relation
under simulated pressure quenching [19], and high-pressure
amorphous to amorphous phase transition [20]. Given the
importance of understanding the fundamental physics during
the glass transition and developing practical thermoplastic
processing techniques, understanding the pressure sensitivity
of the mechanical properties near the glass transition becomes
imperative and necessary.

Current models for the temperature dependence of the
elastic properties of BMGs rarely approach the glass transition
regime. To our knowledge, currently, there is no theory that
is able to simultaneously capture temperature- and pressure-
dependent behavior in the elastic properties of BMGs. Clearly,
a physically grounded model that is able to capture both
effects will not only be able to contribute to understanding
these observed phenomena and underlying physics, but also
revealing practical routes for processing BMGs.

Our above discussion highlights several areas of interest
regarding the effect of pressure on the mechanical properties
and microstructure of a BMG across a wide temperature range.
Incorporating the effects of pressure and temperature through
the glass transition regime will not only provide a theoretical
basis for temperature-dependent pressure sensitivity, but also
suggest new thermodynamic pathways in controlling the me-
chanical behavior of a BMG and further identify practical pro-
cessing windows for BMGs. In this paper, we propose a model
based on anharmonic theory to capture both temperature- and
pressure-dependence in the mechanical properties of BMGs.
We validate this model with several experimental data and the
results from molecular dynamic simulations.

II. MODEL

The pressure and temperature dependence of proper-
ties such as the elastic constants is known to arise from
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anharmonicity of the interatomic potential [7,21]. Using a
quasiharmonic approximation, the adiabatic elastic constants
can be expressed using the following general form [21]:

Cad
ik,j l = C̃ik,j l(1 − Dik,j l ε̄ + dik,j lP ). (1)

C̃ik,j l is the harmonic contribution to the elastic modulus,
ε̄ is the mean energy per oscillator, and P is an external
hydrostatic pressure. Dik,j l and dik,j l are assumed constant
within the quasiharmonic approximation. Equation (1) shows
the temperature dependence of the elastic constants through
the mean energy per oscillator, ε̄, and the pressure dependence
through the term linear with pressure. Following the assump-
tions of the Einstein model and taking the system as individual
harmonic oscillators, it can be shown that ε̄ = 1

2hν + hν
ehν/kT −1 ,

where h is Planck’s constant, ν is the oscillation frequency,
and k is Boltzmann’s constant. For the case with no applied
pressure (P = 0), Eq. (1) then gives the functional form of
the Varshni expression. The empirical Varshni model was
originally proposed to provide an accurate model for the
behavior of the elastic constants from room temperature down
to near absolute zero for a wide range of materials, including
crystalline metals, intermetallic compounds, and crystalline
benzene [22]. More recently, it has been used effectively to
model the temperature dependence of many BMGs at low
temperatures [23–27].

From the above discussion, a reasonable functional form
for the adiabatic elastic constants is

Cad
ik,j l = C̃ik,j l − BT

ik,j l

eTe/T − 1
+ BP

ik,j lP . (2)

Te is the effective Einstein temperature, and BT
ik,j l and

BP
ik,j l are coefficients for the temperature and pressure de-

pendence, respectively. We can relate the adiabatic elastic
constants to the isothermal elastic constants, C iso

ik,j l through the
expression [21]

Cad
ik,j l − C iso

ik,j l = Aik,j lT Cv. (3)

Cv is the specific heat at constant volume, and Aik,j l is a
constant of proportionality. Due to the lack of an explicit form
for Cv and knowledge of its dependence on pressure, we restrict
the current study to the adiabatic elastic constants.

Equation (2) is developed for a solid material and does not
consider any transition phenomena. Near the glass transition
temperature, the internal relaxation time becomes very sensi-
tive to temperature and the solid glassy state begins to transition
into the supercooled liquid regime. It is at this point that the
elastic response becomes time-dependent and the frequency
at which the measurement is taken must be considered. In
this manuscript we focus on isochronal measurements of the
elastic response and thus choose the “high-frequency” shear
modulus as the value that quantifies the elastic shear response
of our MG. By high-frequency we mean that the elastic
response does not change beyond a certain fixed frequency.
Near the glass transition temperature, the high-frequency
shear modulus of the equilibrium supercooled liquid continues
to decrease and shows a rate of decay nearly an order of
magnitude greater than in the glassy state regimes [9,28,29].
Several functional forms to describe the shear modulus of the
equilibrium supercooled liquid have been previously proposed,

including an exponential, a power-law, and hyperbolic tangent
decay [9,29–31]. Several groups have noted the importance of
the shear modulus in the mechanical and thermal properties
of metallic glasses and its correlation to the glass transition
phenomenon [29,32–35]. In contrast to the shear modulus,
it has been noted by several groups that the bulk modulus
typically shows a significantly reduced softening effect near
the glass transition as compared to the shear modulus [10,29].

Here we are concerned with the continuous transition
from the glassy state to the supercooled liquid as the solid
assumption begins to break down. To account for an observed
increased softening in elastic properties, we modify Eq. (2) as

Cik,j l =
(

C̃ik,j l − BT
ik,j l

eTe/T − 1
+ BP

ik,j lP

)
�ik,j l(T ,P ), (4)

where � is a continuous, monotonically decreasing func-
tion that represents the transition. Note that we are chiefly
concerned with capturing the continuous nonlinear transition
regime and do not presume a functional form of the shear
modulus within the equilibrium supercooled liquid although
we do require that � reproduce the observed sharp increase
in decay of the shear modulus. A simple function that meets
requirements of continuity, monotonicity, and rapidly increas-
ing rate of decay is the sigmoidal function. In this model,
we set � = 1

1+( T
T0(P ) )

z(P ) , where T0 is the inflection point of the

sigmoid and z is a positive value that represents the strength of
the transition. This general approach allows us to capture the
behavior of the transition.

A few comments should be made concerning the choice
of T0 and z in the �(T ,P ) function. Within experimental
time scales, the glass transition is a kinetic transition and the
measured calorimetric glass transition temperature is known
to depend on heating rate [36] and molecular dynamic simula-
tions have shown a pressure dependence of the glass transition
temperature [19,37] with increases of up to 20 K per magnitude
of heating rate or GPa of applied pressure. It is therefore
reasonable to expect that the transition parameters will be
dependent upon pressure.

Considered as an isotropic solid, the elastic behavior of a
BMG can be entirely characterized by two parameters. The
most experimentally relevant moduli are the shear and bulk
modulus. Following the discussion above, we write

μ(T ,P ) =
(

μ0 − BT
μ

eTe/T − 1
+ BP

μ P

)
1

1 + (
T

T0(P )

)z(P ) , (5)

K(T ,P ) = K0 − BT
K

eTe/T − 1
+ BP

KP. (6)

III. MODEL COMPARISON

To validate the ability of Eqs. (5) and (6) to capture the
pressure- and temperature-dependent nature of the elastic
constants over the relevant temperature and pressure range,
we compare them to experimentally reported behavior as well
as simulated elastic data over a pressure and temperature range
currently inaccessible experimentally.

014101-2



ANHARMONIC MODEL FOR THE ELASTIC CONSTANTS OF … PHYSICAL REVIEW B 97, 014101 (2018)

FIG. 1. Experimental data for BMGs: Zr41.2Ti13.8Cu12.5Ni10Be22.5

( [23]), (Cu50Zr50)95Al5 ( [23]), Zr46.75Ti8.25Cu7.5Ni10Be27.5

( [29] ), Zr52.5Cu17.9Ni14.6Al10Ti5 ( [38]), Cu47.5Zr47.5Al5

( [38]), Zr50Cu40Al10 ( [38]), Zr50Cu30Ni10Al10 ( [38]),

Cu60Zr30Ti10 ( [24]), Cu60Hf25Ti15 ( [24]), Zr55Cu30Al10Ni5

( [39]), Zr55Cu30Al10Ni5 ( [40]), Pd42.5Ni7.5Cu30P20 ( [41]),

Pd40Cu30Ni10P20 ( [42], [43]), Pd43Ni10Cu27P20 ( [9]),
Mg65Cu25Gd10 ( [23]), La68Al10Cu20Co2 ( [23], [25]),

Ce68Al10Cu20Co2 ( [10], [25]), Ca65Mg15Zn20 ( [38]) with solid
line indicating model fit.

A. Experimental Dataset Comparison

Figure 1 shows a plot of the experimentally measured
shear modulus against temperature normalized to the re-
ported calorimetric glass transition temperature for many
different BMG systems. Also shown in Fig. 1 are the
analytic curves of Eq. (5) fit to each set of experimen-
tal data. We refer the reader to the Appendix for a de-
tailed discussion of the fitting procedure. Here we have in-
cluded several Zr-Cu-dominated [23,24,29,38–40], PdCuNiP
[9,26,41–43], La68Al10Cu20Co2 [23,25], Mg65Cu25Gd10 [23],
Ca65Mg15Zn20 [38], and Ce68Al10Cu20Co2 [10,25] BMGs.
The vast majority of elastic properties are measured at room
and cryogenic temperatures while fewer studies of the high-
temperature elastic shear behavior of BMGs are available in
the literature due to the difficult nature of such experiments.
In situ high temperature mechanical measurement techniques
used in the work cited here include the pulse echo overlap
method [10,39,40] and the contactless electromagnetic acous-
tic transformation (EMAT) method [42,43]. Techniques such
as EMAT can achieve frequencies up to 10 MHz, allowing for
the instantaneous mechanical response to be measured. There
have also been attempts to characterize the high-temperature
mechanical properties ex situ by rapidly quenching a fully
annealed sample to capture the high-temperature atomic con-
figuration [9,29]. This allows measurements to be performed at
room temperature and correcting for thermal expansion gives
the high-temperature modulus. We note that near the glass
transition, the BMG displays an anelastic response [44,45].
Due to the kinetic nature of the glass transition, the mechanical
response of the glassy sample near the transition is expected
to be dependent upon pressure and also on the timescale of the

mechanical measurement. The time-dependent nature of the
mechanical response in glassy materials is most clearly seen in
dynamic testing. A recent work by Hecksher et al. [46], shows
experimental dynamic mechanical testing data for the glass-
forming tetramethyl tetraphenyl trisiloxane across a wide range
of temperatures and testing frequencies. Such frequency scan-
ning methods are in contrast to experimental data included here
that includes only a single measurement frequency. The data
presented in Ref. [46] demonstrates that the point at which they
observe a drop in storage modulus depends both on temperature
and testing frequency. Thus, the fitting parameters T0 and z

included in Eq. (5) are expected to be dependent both on tem-
perature and time scale. In the work presented here, we anal-
ogously consider only a single frequency (the high-frequency
plateau region in dynamic tests) for the simulated data and
experimental data is reported at for a single testing frequency.

In Fig. 1, equilibrium values are indicated by filled symbols,
while nonequilibrium data are indicated by unfilled symbols.
Temperature data are normalized by the reported glass tran-
sition temperature except for one data-set [43], which has
been normalized against the reported cross-over temperature
of equilibrium data [42].

Figure 1 shows that from 0.2Tg up to slightly below Tg , the
temperature dependence of the shear modulus is approximately
linear. Well above the effective Einstein temperature and below
the glass transition temperature, Eq. (5) can be approximated

as linear with the slope ∼ − BT
μ

Te
. Below 0.2Tg , the slope

increases to zero as the temperature approaches the effective
Einstein temperature and the shear modulus levels off to μ0.
Slightly below Tg , the slope begins to decrease drastically.
Due to the increased relaxation time at elevated temperatures,
in situ measurements of the shear modulus near the glass
transition are expected to depend upon the heating rate [45].
This has been demonstrated in Pd40Cu30Ni10P20 [43] and the
reported equilibrium and nonequilibrium data are included for
comparison in Fig. 1.

Figure 1 shows that Eq. (5) is able to fully capture the tem-
perature dependence of the shear modulus of many different
BMG systems from the nonlinear cryogenic temperature range,
through the linear room temperature regime, and slightly above
the glass transition temperature into the supercooled liquid
regime. It is also able to capture both equilibrium data and
measurements taken at constant heating rate.

Please refer to the Supplemental Material [47] for Table
S1, which gives the fitting parameters for all data sets shown in
Fig. 1. It is seen that BMGs span a wide range of shear modulus
although there is a low variation in the temperature dependence
at moderate temperatures. Most BMGs shown here display
a room temperature slope between −5 to −10 MPa K−1,
showing a moderate temperature dependence. For data passing
through the glass transition, T0 and z are seen to be consistent
among similar alloy compositions. Since � represents the
transition from glassy state to supercooled liquid, T0 and z

are expected to be related to the fragility [9].
The choice of transition function will certainly determine

the magnitude of the chosen transition parameters, here T0 and
z. Johnson et al. have derived a functional form for the shear
modulus of the supercooled liquid [9]. As a check of the magni-
tude of the parameters we introduce here, we can compare the
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FIG. 2. (a) Shear modulus for the simulated Cu64Zr36 as a function of temperature. Each curve shows the dependence for a given applied
pressure. Dashed lines indicate the fit curve following Eq. (5). (b) Displays the shear modulus normalized as given in Eq. (7) against the
normalized temperature. By accounting for the pressure contribution to the shear modulus and pressure-dependent transition temperature, the
shear modulus data all collapse onto a similar curve. The pressure dependence of the glass transition temperature (c) and the strength of the
transition (d).

analytic slope of our predicted shear modulus against their pre-
diction for the shear modulus of a supercooled liquid evaluated
at Tg. For VIT4, Pd43Ni10Cu27P20, and Pt57.5Ni5.3Cu14.7P22.5

metallic glasses, the value of ∂μ

∂T
|T =Tg

/μ(Tg) (as derived
from Eq. (11) in Ref. [9]) is −0.00116 K−1, −0.002 K−1,
and −0.0026 K−1, respectively. Calculating the same value
using Eq. (5) in our manuscript and parameters for VIT4,
Pd40Cu30Ni10P20, and our simulated Cu64Zr36, we find similar
values of −0.0014 K−1, −0.0026 K−1, and −0.0013 K−1,
respectively. This suggests that the magnitude of these param-
eters is appropriate for our choice of transition function.

B. Simulated Dataset Comparison

There are few studies of the effect of pressure on the
elastic constants of BMGs and none explore the temperature
dependence of pressure sensitivity. Figure 2(a) shows the
temperature and pressure dependence of the shear modulus as
calculated from molecular dynamics simulations of a Cu64Zr36

metallic glass. (For details about the simulation procedure
and results, please see the Appendix). Values for BT

μ , Te, and
μ0 were obtained using a similar fitting procedure as applied
to the experimental datasets and BP

μ was obtained from data
calculated at T = 300 K . The behavior of the simulated BMG
can then be captured at elevated temperatures and pressures
from these low-temperature values. Transition parameters
were again obtained using a least square fit procedure. Dashed
lines in Fig. 2(a) correspond to the model and show excellent

agreement with the simulated data. Figures 2(c) and 2(d)
give T0 and z as a function of applied hydrostatic pressure.
The transition temperature appears to linearly increase with
pressure while z appears to be weakly dependent on pressure.
Motivated by these fittings, we normalize Eq. (5) as

μ̄(T̄ ) = μ(P,T̄ )

μo

− B̄P
μ

1 + (
T̄

T̄0

)z

(7)

P =
(

1 − B̄T
μ

e
T̄e
T̄ − 1

)
1

1 + (
T̄

T̄0

)z ,

where T̄ = T
Tg

, T̄e = Te

Tg
, T̄0 = T0

Tg
, B̄T

μ = BT
μ

μo
, and B̄P

μ =
BP

μ

μo
. Figure 2(c) gives a pressure dependence for T0 of

∼7 K GPa−1, which corresponds well with the previously
reported pressure dependence of the crystallization temper-
ature of Pd40Cu30Ni10P20 [17] at 11 K GPa−1 and pres-
sure dependence of the glass transition temperature of
Zr46.8Ti8.2Cu7.5Ni10Be27.5 [18] and Cu50Zr50 [19] systems at
4.4 K GPa−1, and 14 K GPa−1, respectively. This suggests
that the ratio T0

Tg
should be weakly dependent on hydrostatic

pressure. For the glass transition temperature under no applied
pressure obtained from simulations (Tg = 670 K), we then take
the value T̄0 = 1.2, consistent with values reported in Table S1.
Figure 2(b) shows that by normalizing through Eq. (7), all
simulated shear modulus data collapse onto the same curve as
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a function of normalized temperature. With the exception of
the highest values of pressure, the shear modulus data as shown
in Fig. 2(b) differs only by a few percent from the normalized
curve.

Figures 1 and 2 show that Eq. (5) is able to capture the
behavior of the shear modulus from low temperatures through
the glass transition temperature and under a hydrostatic pres-
sure. The normalized shear modulus decreases approximately
linearly until the glass transition temperature, after which it
begins to drop precipitously. In the solid glassy state, the
assumptions of the quasiharmonic theory remain valid. Near
the glass transition where these assumptions begin to break
down, the � function can then be said to dominate the behavior
of the shear modulus. Combined with the observations of a
linear dependence of glass transition temperature, this suggests
that hydrostatic pressure chiefly acts to shift the transition
regime to higher temperatures by constraining atomic motion
[37]. This is demonstrated in the normalized temperature,
T̄ = T

Tg(P ) , where we see that even a small hydrostatic pressure
can significantly change the position along the normalized
curve as shown in Fig. 2(b). Further, the sensitivity of the
normalized temperature with respect to pressure increases with
increasing temperature. Analogous to thermal quenching, an
applied pressure can result in movement from the supercooled
liquid regime (T̄ > 1) to the glass regime (T̄ < 1). Such
increasing pressure sensitivity of the mechanical behavior of
metallic glasses near the glass transition temperature has been
observed experimentally [16].

We should note that values of shear modulus shown in
Fig. 2(b) are taken from a single simulation sample due to
the high computational cost in creating metallic glass samples
through simulated quenching. Due to the nonergodic nature
of metallic glass, the existence (or lack thereof) of coupling
between pressure and temperature dependence of the shear
modulus at high temperatures may be made clearer with the
inclusion of further simulation and study.

Figure 3(a) shows the temperature and pressure dependence
of the bulk modulus as calculated from molecular dynamics
simulations. Dashed lines in Fig. 3(a) correspond to the
model and show excellent agreement with Eq. (6). Following
the procedure used for the shear modulus, Eq. (6) can be
normalized as

K̄
(
T̄

) = K(P,T̄ )

Ko

− B̄P
KP = 1 − B̄T

K

eT̄e/T̄ − 1
, (8)

where B̄T
K = BT

K

Ko
and B̄P

K = BP
K

Ko
. Figure 3(b) shows that normal-

izing through Eq. (8) results in a collapse of the bulk modulus
data. It has been noted previously that the bulk modulus
displays an approximate linear dependence on hydrostatic
pressure [7,15], which is predicted by Eq. (6) for a fixed
temperature.

IV. DISCUSSION

All fitting parameters for the simulated elastic constants are

given in Table S2. Comparing the values
B̄T

μ

B̄T
K

= 2.55 and
B̄P

μ

B̄P
K

=
0.58 indicate that the shear modulus is more than twice as
sensitive to changes in temperature as the bulk modulus while
∼40% less sensitive to changes in pressure. Interestingly, the

FIG. 3. (a) The bulk modulus as a function of temperature. Each
curve shows the dependence for a given applied pressure. Dashed lines
indicate the fit curve following Eq. (6). The bulk modulus decreases
weakly with temperature while showing a significant dependence on
the applied pressure. (b) The bulk modulus normalized as indicated in
Eq. (8) plot against the normalized temperature. Accounting for the
pressure contribution to the bulk modulus results in a collapse of the
bulk modulus data onto a similar curve.

normalized values of pressure sensitivity for the shear modulus,
B̄P

μ = 0.0217, and bulk modulus, B̄P
K = 0.0335, reported here

are quantitatively similar to the pressure sensitivities reported
for Vit 1 (0.0203 and 0.0351) [13], Cu60Zr20Hf10Ti10 (0.0236
and 0.0421) [48], and Pd39Ni10Cu30P21 (0.0222 and 0.0390)
[49].

There has been much work investigating the sources of
pressure-dependent behavior in nonmetallic, typically polymer
and molecular, glassy systems (for example, see the review by
Roland et al. [50]). Of particular interest is the role of pressure
on the behavior of viscosity and relaxation time in a glass-
forming liquid. The sources of pressure dependence for these
quantities can provide insight into the pressure dependence of
mechanical behavior.

Most models describing the pressure and temperature
dependence of viscosity are modifications of the Vogel-
Fulcher-Tammann (VFT) equation and largely empirical. The
physical source of pressure dependence is often described
using a variety of measures of “free volume,” which generally
defines the difference between the total volume and “occupied”
volume. This excess or “free” volume allows for atomic
rearrangements and would clearly be expected to depend
upon an applied hydrostatic pressure. There are important
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FIG. 4. (a) The dependence of Cu atoms with icosahedral coordination as a function of temperature. Icosahedral coordination generally
decreases with increasing temperature and increases with applied pressure. Approaching the glass transition temperature, there is an increase
in the sensitivity of icosahedral coordination to applied pressure. (b) Correlation between the bulk modulus and fraction of Cu atoms with
icosahedral coordination. The bulk modulus shows less sensitivity to temperature than icosahedral coordination. (c) Correlation between the
shear modulus and fraction of Cu atoms with icosahedral coordination. The similar isothermal curves suggest that the shear modulus and
icosahedral coordination have similar sensitivities to temperature and pressure.

differences between metallic and nonmetallic glass-forming
systems that should be noted. It has been observed that
free volume models that have been successful in describing
polymer glasses may not be appropriate to metallic systems due
to their “soft” core behavior and nondirectional bonding [51].

In spite of a large volume of work to elucidate the mi-
crostructural origins of the mechanical behavior in metallic
glasses, no conclusive theory has been reached. Many proposed
indicators for the internal microstructural state have been
motivated by the observation of a significant configurational
dependence of the shear modulus [52–56]. By considering both
short-range and medium-range contributions to the shear mod-
ulus, Ma et al. concluded that differences in the medium-range
order underlie differences in the shear modulus of Cu50Zr50

metallic glasses quenched at different cooling rates [57].
Indeed, the shear modulus is also seen to strongly correlate with
the fraction of Cu atoms with icosahedral coordination in Cu-Zr
BMG systems [52,58–60]. The configurational dependence
of the shear modulus is then seen as a result of ordering
of the local atomic clusters into icosahedral coordination
and the medium-range order beyond the local clusters. As
icosahedral coordination is the energetically preferred local
configuration [57], such a process would generally agree well
with correlations of configurational potential energy.

Figure 4(a) gives the fraction of Cu atoms with icosahe-
dral coordination as a function of temperature and pressure.
Figures 4(b) and 4(c), respectively, show the bulk and shear
moduli against the fraction of Cu atoms with icosahedral coor-
dination. Due to microstructural changes caused by relaxation
at elevated temperatures as seen in Fig. 4(a), we omit data above
750 K in Figs. 4(b) and 4(c). Figures 4(b) and 4(c) clearly show
that there is a strongly positive, linear correlation between the
fraction of Cu atoms with icosahedral coordination and the
elastic constants. The strong correlation between icosahedral
atoms and the shear modulus shown in Fig. 4(c) suggests that
to first order in pressure and temperature, icosahedral atoms
and the shear modulus have similar pressure and temperature
dependencies and it may be prudent to ask whether a similar
quasi-harmonic model may also shed light on the dependence
of short-range order in the glass. Although it might generally
be expected that a denser glass will have a greater fraction
of icosahedral atoms, the lack of details of such a correlation
means that the fraction of icosahedral atoms cannot be fully
captured by the anharmonic dependence of atomic spacing.

While Fig. 4 demonstrates the correlation between
short-range order and the shear modulus is observed over a
wide range of temperatures and pressures, we might ask to
what extent are changes in short-range order the cause of
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changes in shear modulus. We may allow that the change in
elastic moduli can have a contribution due to anharmonicity
and some contribution due to “structural changes” (athermal
term). We have performed annealing by bringing the sample
to a temperature of 825 K and holding it there for 3 ns.
We then quench it back down to 300 K using a quench rate
of 1010 Ks−1. This results in an increase in the icosahedral
fraction from 23.3% to 27.0% showing a significant amount
of structural relaxation has taken place. The temperature
pathway and evolution of icosahedral fraction is shown in Fig.
S1 [47]. Despite this, the shear modulus calculated before
annealing was 23.9 GPa and the shear modulus calculated
after the annealing took place was 23.2 GPa. This suggests
that any structural changes that may occur (whether it is
local, reversible β-relaxation or long-range, irreversible
α-relaxation) do not play a significant part in the temperature
and pressure dependence of the elastic moduli and that the
anharmonic nature of the interatomic potential is the primary
source of the temperature and pressure dependence.

There is currently no widely accepted model that connects
icosahedral coordination and the mechanical properties of
metallic glasses although a more general result has shown
that Cu atoms with icosahedral coordination exhibit more
resistance against local shear deformation [61,62]. Icosahedral
short-range order is most likely not the singular microstructural
motif that determines mechanical properties as demonstrated
by the strong correlation between the bulk and shear moduli
with other top, most populous low-energy, high-density atomic
configurations as shown in Figs. S2, S3, and S4 [47]. It has been
shown more generally that fivefold symmetries are correlated
with relaxation in glasses [63–66], and thus the correlations
shown in Figs. 4(b) and 4(c) (together with Figs. S2, S3, and
S4) demonstrate the correlation between elastic properties and
fivefold coordination symmetry.

V. CONCLUSION

We have presented an anharmonic model to account for
both the temperature and pressure dependence of the elastic
properties in a representative BMG. We have demonstrated
that the model is able to capture the reported temperature and
pressure dependence of the elastic properties of many BMGs
across a wide range of temperatures and hydrostatic pressures.
Consistent with previous experimental results, the effect of
pressure shifts the glass transition to higher temperatures,
effectively extending the solid regime. We have also verified
the correlation between icosahedral short-range order and
the elastic moduli under varied pressure and temperature.
The effects of pressure and temperature and the origin of
temperature-dependent pressure-sensitivity as revealed here
have significantly expanded our understanding about the phys-
ical origins of mechanical properties in BMGs. The origin
revealed here for the experimentally observed pressure behav-
ior in BMGs is of importance toward identifying fabrication
and processing paths for metallic glass components [67]
as well as gaining deeper insight into the glass transition
phenomenon.
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APPENDIX: SIMULATION METHODS
AND MODEL FITTING

We employ molecular dynamic simulations to compare the
current model to elastic behavior under high pressure and tem-
perature. To construct the initial sample, rapid quenching was
simulated using the LAMMPS molecular dynamics software
[68]. The system consisted of 8000 atoms using a Cu64Zr36

composition, a good glass former that has been previously
well-characterized [69,70]. From an initially random cubic
configuration with fully periodic boundary conditions, the
system was assigned a velocity profile that corresponded
to 2000 K, well above the expected melting temperature
(∼1300 K) [71]. The system was held at 2000 K and stress-free
boundary conditions for 1 ns using an integration timestep of
1 fs. This was followed by a quench down to 10 K at a rate
of 1010 Ks−1 under stress-free boundary conditions. Following
quenching, the base sample was then brought to temperatures
ranging from 10 to 1050 K. At each temperature, we generated
two sample sets by applying a simulation pressure ranging from
0 to 18 GPa following both an adiabatic (NVE ensemble) and
isothermal (NPT) path. This resulted in a dense mesh of the
parameter space that covered temperatures from near 10 K
through the glass transition regime and hydrostatic pressures
up to 75% of the room temperature shear modulus. For each
sample, we calculated the bulk and shear modulus. The bulk
modulus was defined as

K = −V
dP

dV
. (A1)

We performed shearing simulations by applying a shear
strain to the simulation box at a strain rate ranging from
0.7 · 106 s−1 to 109 s−1. The shear modulus was calculated
as the slope of the initial linear regime of the stress-strain
data. Bulk modulus data presented here was taken from the
adiabatic sample set while shear modulus data was taken from
the isothermal sample set which we note should be equivalent
to the adiabatic shear modulus. For consistency and to allow for
a reliable fit, we took the linear regression up to 0.025 shear
strain, well below the typically observed onset of plasticity
at ∼0.05. Below the glass transition temperature, the shear
modulus as calculated using this procedure does not differ
significantly as a function of strain rate. In contrast, above the
glass transition temperature, the shear modulus was observed
to decrease by as much as 44% when the strain rate was
decreased from 108 s−1 to 0.7×106 s−1. In contrast, increasing
the strain rate from 108 s−1 to 109 s−1 shows no significant
or consistent change in the shear modulus. Based on this
observation, we take the shear modulus as calculated here
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to be the “instantaneous” elastic response of the material.
The modulus as reported in the manuscript was calculated
using data from dynamic simulations performed at 108 s−1.
Under an assumption of material isotropy, all other material
properties were defined from the calculated shear and bulk
moduli.

Radical Voronoi analysis was performed using Voro++
software library [72] using atomic radii of 1.28 and 1.59 Å
for Cu and Zr, respectively.

Solid lines in Fig. 1 show the fit of Eq. (5) to the experimental
data. For all data sets, an important and easily obtained value
is the slope at room temperature, which can be approximated

as ∂μ

∂T
|T =TRT = μ′

RT ≈ −BT
μ

Te
. Evaluating Eq. (5) at room tem-

perature, TRT, and cryogenic temperature, Tcryo, and taking the

difference between the two gives

0 = μ(Tcryo) − μ(TRT) + BT
μ

e
− BT

μ

μ′
RTTcryo − 1

− BT
μ

e
− BT

μ

μ′
RTTRT − 1

,

(A2)

which can be used to obtain BT
μ from the experimental data. Te

is then immediately obtained from the room temperature slope,
μ′

RT and similarly, μ0 is then specified from these two constants
and any point in the dataset. For high temperature data sets, we
use the value of Te obtained at low temperature and obtain BT

μ

from the room temperature slope. These three parameters quan-
tify the glassy response of the bulk metallic glass and the tran-
sition parameters can then be obtained from least squares fit.
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