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Precise simulation of single-hole spin control in quantum dots
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The initialization, control, and readout of a single-hole spin qubit is precisely simulated by accurately solving
the extended Anderson impurity model in the real-time domain with the hierarchical equations of motion
approach. The initialization is realized by ionization of an exciton with high fidelity. Then, a SU(2) control
is achieved via the combination of Larmor precession of the hole spin in Voigt geometry magnetic field and
rotation about the optical axis with a geometric phase. Finally, the readout of the qubit is implemented through
photocurrent recording. Our theory not only reproduces the recent experimental results with one set of internal
parameters but also predicts a maximal fidelity by adjusting the dot-electrode coupling strength.
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I. INTRODUCTION

A trapped single spin in quantum dots (QDs) is a promising
qubit that can be optically controlled within a picosecond
[1–3]. It is also compatible with the present large-scale inte-
grated circuit in quantum information processing (QIP). In the
literature, many achievements have been made in QD-based
electron spin qubits [2,4,5]. However, the non-Markovian
hyperfine interaction can induce decoherence and decrease
the fidelity of electron spin control [6]. In order to overcome
this shortcoming, much attention has been paid to the hole spin
qubit since the valence-band holes possess a p-type wave func-
tion that leaves a small residual dipolar interaction [7], which
may highly suppress contact hyperfine interaction and produce
much longer lifetimes [8,9]. In addition, the large spin-orbit
coupling from the p-type valence state makes decoherence
sensitive to electric fields [3], which provides a more conve-
nient way to control hole spin. Recently, many experiments
on single-hole spin qubits have been performed, including
initialization, coherent control, and readout [3,10–13].

For realistic application of hole spin qubits, a high fidelity
during the initializing process is a key requirement. Among
the proposed schemes at present, ionization of an exciton has
distinct advantages, which can achieve a fidelity of 98.5% [10].
By reducing fine-structure splitting or applying a magnetic
field parallel to the growth direction, fidelity as high as 99% is
possible [14,15]. Moreover, it is fast (in picseceonds) enough to
meet another requirement that the initialization time should be
an order of 10−4 smaller than the decoherence time. As a com-
parison, optical pumping [2], one of the other schemes, reaches
a fidelity of only 95% on the time scale of nanoseconds [16].

Whereas experimental investigations have been actively
performed, theoretical works on the hole spin qubit are not
sufficient so far. The rate equation is a commonly used method
to simulate the hole spin manipulation in the literature [17]. We
comment that it is not accurate enough due to the following two
defects. First, in the QD-based hole spin qubit, the QD directly
couples to electrodes (metal leads), which makes the qubit a
typical quantum open system with infinite degrees of freedom,
while the rate equation concerns only the diagonal terms of the
reduced density matrix and treats the dot-electrode couplings
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with low-order perturbation schemes. Second, the QD-based
hole spin qubit is also a typical strongly correlated system
with electron-electron (e-e), hole-hole (h-h), and electron-hole
(e-h) interactions, while the rate equation either neglects those
important interactions or treats them on the mean-field level.

Obviously, for a theoretical study on hole spin qubits, a
nonperturbative approach beyond the rate equation is highly
required. In the present work, we adopt the hierarchical equa-
tions of motion (HEOM) approach, which nonperturbatively
resolves the combined effects of dot-electrode dissipation,
Coulomb interactions, and non-Markovian memory [18–21].
As an accurate impurity solver, the HEOM approach has
been used to deal with various impurity problems, such as
Kondo problems [19,22,23], and nonequilibrium transport
with many-body effects [24,25]. The extended Anderson
impurity model will be used to describe the hole spin qubit,
with the Coulomb interactions and dot-electrode couplings
being fully considered. Then, this quantum model will be
treated by the HEOM approach nonperturbatively in the
real-time domain to precisely simulate the single-hole spin
manipulation.

In what follows, the whole process of QIP, including
initialization, coherent control, and readout, will be precisely
simulated. As will be demonstrated, our theory not only
reproduces the recent experimental results in Ref. [13] with
one set of internal parameters but also predicts a maximal
fidelity by adjusting the dot-electrode coupling strength.

The complete process of qubit initialization, coherent
control, and readout is sketched in Figs. 1(a) and 1(b). In
order to initialize the single-hole spin, a σ+ resonant circularly
polarized pulse with a pulse area of π is applied to create an e-h
pair and drive the ground state |cgs〉 (crystal ground state) into
a neutral exciton state |X0

↑⇓〉. The much larger effective mass
of holes results in a much smaller hybridization strength than
that of electrons, i.e., �H � �E . As a consequence, electrons
in the conduction level tunnel into an electrode 2–3 orders of
time magnitude faster than holes, which turns |X0

↑⇓〉 into a
single-hole spin state |⇓〉 quickly. Then, an in-plane magnetic
field Bx drives the single-hole spin to precess along the x

axis to perform a U(1) operation. In order to realize a SU(2)
operation in the Bloch sphere, the geometric-phase approach
is adopted, as proposed in Ref. [26]. After a geometric pulse
with a hyperbolic secant envelope, the hole spin undergoes a
cycle from a single-hole to positive trion state and then back
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FIG. 1. (a) Schematic illustration of the single-hole spin control
process. (b) Initialization, coherent control, and readout of a single-
hole spin, where the solid arrows represent the optical excitation
processes and the dashed ones indicate the transitions due to
tunneling.

to a single-hole state, with a rotation angle φz acquired. After
the control sequence, a detection circularly polarized pulse
σ+ is applied, which partially excites the single-hole state
to a positive trion state. That process produces a photocurrent
proportional to the spin-down component of the hole spin state,
which can be used as qubit readout, called the photocurrent
detection technique [27].

II. METHODOLOGY AND MODEL

With reference to experimental setups, our single-hole spin
qubit consists of a QD connected to two electrodes (reservoirs),
which can be described by the extended Anderson impurity
Hamiltonian with e-e, h-h, and e-h interactions. The total
Hamiltonian is written as

H = Hc + Hv + Hc−v + Hopt + Hres + Hdot−res, (1)

where Hc and Hv describe the conduction and valence levels
with e-e and h-h interactions, respectively,

Hc =
∑

μ

εcn̂cμ + Ucn̂c↑n̂c↓, (2)

Hv =
∑

μ

εvn̂vμ + Uv(1 − n̂v↑)(1 − n̂v↓). (3)

In the above equations, n̂cμ = â
†
cμâcμ and n̂cμ = â

†
cμâcμ, where

âcμ (â†
cμ) annihilates (creates) a conduction-level state with μ

being spin (μ= ↑, ↓).
As shown in the above equations, the Hamiltonian of the

valence level is similar to that of the conduction one. That
point needs to be clarified since different types of holes, heavy
and light holes, may play different roles in experiments. As
a reasonable approximation, we account for only one kind

in our theory. Let us explain the reason as follows. First,
the heavy holes (mhh

z = ±3/2) and light holes (mlh
z = ±1/2)

in the valence band are degenerate in bulk semiconductors
but are split in QDs because of their different confinement
energy. This splitting makes it possible to consider only the
heavy-hole manifolds. Then the heavy hole can be treated
as a pseudo-spin-1/2, with a perturbative treatment of the
heavy-light-hole mixing. The heavy hole is the one used in
most hole spin qubit experiments. Second, an electron-hole
pair forming an exciton has four possible spin values: Sz =
mh

z + me
z = −2,−1,+1,+2. Since the absorption of a single

photon makes a change in angular momentum of ±1, only the
excitons with Sz = ±1/2 are optically allowed, while those
with Sz = ±2 are forbidden due to the angular momentum
conservation. From this point of view, it is reasonable to
treat heavy and light holes as a 1/2 spin uniformly. As is
well known, the heavy and light holes have much different
effective masses at the � point, which will lead to different
coupling strengths to electrodes. The splitting as well as the
heavy-light-hole mixing will be further investigated in future
research.

In our Hamiltonians, Uc (Uv) is the Coulomb repulsion
energy if the c level (v level) is double (zero) occupied. The
term

Hc−v = −
∑
μ,μ′

Uexcn̂cμ(1 − n̂vμ
′ ) (4)

accounts for the Coulomb attraction in the e-h pair. Hopt de-
notes the interaction between the control field and QD, whose
explicit expression will be specified later. The electrodes are
modeled by noninteraction electrons

Hres =
∑
αkμ

(εαk + μα)d̂†
αkμd̂αkμ, (5)

where d̂αkμ (d̂†
αkμ) denotes the creation (annihilation) operator

of an electron in the specified α-electrode spin-orbital state
|kμ〉 of energy εαk . The nonequilibrium chemical potential μα ,
with α = L,R, will arise in the presence of bias of voltage. The
zero-energy point is set at the equilibrium chemical potential
μ

eq
α = 0. The dot-electrode coupling is described by

Hdot−res =
∑
αkμ

(tcαkâ
†
cμd̂αkμ + tvαkâ

†
vμd̂αkμ + H.c.). (6)

It should be noted that due to the large effective mass of
holes, the transfer-matrix element for the conduction level
tvαk is much smaller than that of the valence level tcαk . In
the HEOM approach, the influence of electrodes on the QD
acts through the hybridization functions with the Lorentzian
form �βγ (ω) ≡ ∑

α �αβγ (ω) = π
∑

αk tαβkt
∗
αγ kδ(ω − εαk) =

�W 2/[(ω − μα)2 + W 2], where W is the bandwidth and μα

is the chemical potential of lead α. The details of the HEOM
formalism were developed in Refs. [18,19], and the final
HEOM can be cast into the compact form

ρ̇
(n)
j1···jn

= −
(

iL +
n∑

r=1

γjr

)
ρ

(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
j1···jr−1jr+1···jn

, (7)
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where the index j ≡ (σμn) corresponds to the transfer of
an electron to or from (σ = + or −) the impurity state and
the Grassmannian superoperators Aj̄ ≡ Aσ̄

μ̄ and Cjr
≡ Cσ

μνm

are defined via their fermionic actions on an operator Ô

as Aσ̄
μ̄Ô ≡ [âσ̂

μ,Ô] and Cσ
μνmÔ ≡ ησ

μνmâσ
ν Ô + (ησ̄

μνm)∗Ôâσ
ν ,

respectively, with σ̄ being the opposite sign of σ . The on-dot
electron interactions are incorporated in the Liouvillian of
impurities: L· ≡ [Hdot,·]. Here, ρ0(t) = ρ(t) = trresρtotal(t) is
the reduced density matrix, and {ρj1···jn

(t)n; n = 1, . . . ,L} are
auxiliary density matrices, with L denoting the truncation
level. Usually, a relatively low L (say, L = 4 or 5) is sufficient
to yield quantitatively converged results. Any observable Ô of
the dot system can be calculated in the form of Ō = tr(ρ0Ô).
The spectral functions of the impurity can be calculated based
on a linear response theory established in the HEOM Liouville
space [19]. For the ith impurity orbital, the spin-μ spectral
function Aiμ(ω) is evaluated via

Aiμ(ω) ≡ 1

2π

∫
dteiωt 〈{âiμ(t),âiμ(0)}〉

= 1 + e−ω/T

2π

∫
dteiωt 〈âiμ(t)âiμ(0)〉 (8)

and Ai(ω) = ∑
μ Aiμ(ω). The transient current through the

electrode α is determined by the first-tier auxiliary density
operators as

Iα(t) = e
i

h̄2

∑
iμ

trs{ρ†
αμ(t)âiμ − â

†
iμρ−

αμ(t)}, (9)

where the index i sums from c to v to count the contributions of
c and v levels. To simulate experiments, we choose parameters
which can produce the same energy-level structure as those
in experiments, i.e., εc = 2 meV, εv = −2 meV, Uc = Uv =
2 meV, Uexc = 1 meV, and a reverse bias V = μL − μR =
0.2 meV.

The HEOM method is nonperturbative. It treats quantum
impurity systems from the perspective of open dissipative
dynamics. In principle, the HEOM formalism is formally
exact for noninteracting electron reservoirs. It also resolves
nonperturbatively the combined effects of e-e interactions;
the HEOM theory is established based on the Feynman-
Vernon path-integral formalism, in which all the system-bath
correlations are taken into consideration. It is capable of
characterizing both static and dynamical electronic properties
under equilibrium and out-of-equilibrium conditions as well,
and the HEOM is a high-accuracy numerical approach. It has
the ability to achieve the same level of accuracy as the latest
high-level numerical renormalization group (NRG) method.
As for the disadvantages, the HEOM method works only at
finite temperature and cannot deal with the zero-temperature
case at present. In addition, the computational cost increases
dramatically as the system temperature decreases. For a very
low temperature, a higher truncation level is necessary to
ensure numerical convergence, leading to rapid growth of the
required computational resources.

III. RESULTS AND DISCUSSION

A. Initialization and maximum fidelity

In the initialization process, a resonant pulse with a π

pulse area is applied continuously for 10 ps. Its Hamiltonian
is Hopt = �(eiωt c

†
c↑cv↓ + H.c.), where h̄ω = 3 meV, � =

0.1 meV. The hybridization strengths are initially chosen to be
�E = 0.05 meV and �H = 0.0003 meV. The time evolution
of the occupation numbers of c and v levels is presented in
Fig. 2(a). As shown, the maximum electron number in the c

level is around 0.62 rather than unity, which is induced by
the fast electron tunneling from the neutral exciton |X0〉. At
t > 10 ps, electron and hole occupation numbers will decay
with different behaviors; that is, the former is exponential, but
the latter is approximately linear, resulting from their different
hybridization strengths to electrodes. The initialization will
be accomplished in t ∼ 70 ps, when the electron in the c

level has almost totally escaped into the electrodes (Nc ∼ 0)
and the single-hole in the v level is almost fully occupied
(Nv ∼ 1). Figure 2(b) depicts this photocurrent during the
initialization process. As shown, a peak of photocurrent forms
at the end of the pulse (t ∼ 10 ps), when the electron maximally
accumulates in the c level. Since the charge-photocurrent in
our theory is precisely conserved, the photocurrent shown in
Fig. 2(b) is much larger than that in experiments.

Before discussing fidelity, let us clarify its different
definitions. In experiments, the fidelity is convenient to
determine via the measurable photocurrent, which is defined

as F̃ = PCX+
cross

PCX+
cross+PCX+

co

[14,15], where PCX+
cross and PCX+

co are

the amplitudes of the X+ peaks in the cross- and copolarized
pulse spectra. In the present work, we use a more theoretical

definition, F̄ = 〈ψin|Û ˆρoutÛ |ψin〉 [28], which measures the
distance between the real evolution U and the target evolution
Ut to a given initial state |ψin〉. F̃ and F̄ may have different
values, although they describe the same physical process.
It should be noted that F̃ reflects the population difference
between up and down hole spins. However, the single-hole
spin space is only a subspace of the full Hilbert one during
the initialization. The tunneling process for electrons and
holes from conduction and valence bands to electrodes will
dynamically destroy the integrity of the hole spin, which will
decrease the fidelity in principle. That decoherence effect has
been well reflected in F̄ but not in F̃ , which may be still high
as long as the pulse is fast enough to avoid the up-down spin
mixing induced by transverse magnetic field.

In experiments, in order to achieve a high fidelity, an
AlGaAs barrier is applied to tailor the tunneling rate of
electrons and holes, which effectively adjusts the conduction-
and valence-level-electrode hybridization strengths �E and
�H . To check this effect theoretically, we investigate the
dynamics of fidelity F̄ during the excitation-tunneling process
at different �E and �H . The initial state is set at the ground
state |cgs〉, and the target one is the single-hole state |⇓〉, which
can be reached by the two-step process shown in Fig. 1(b): (a)
optically exciting |cgs〉 to a neutral exciton state |X0〉 and
(b) |X0〉 decaying to the single-hole state |⇓〉 through fast
electron tunneling. For an ideal spin qubit with high fidelity,
the ultrashort c-level electron lifetime and long v-level hole
storage time (against electron refilling from electrodes) are
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FIG. 2. Initialization process, with application of a σ+ circularly polarized pulse tuned on resonance pulse. The pulse area is π , and the
duration time 0 � t � 10 ps. (a) The time evolution of occupation numbers of c level and v level. (b) The real-time photocurrent, with a
maximum appearing at the end of the pulse (t ∼ 10 ps). (c) Fidelity F̄ as a function of time t at different hybridization strengths of the
hole �H with the excitation-tunneling process involved. (d) Fidelity F̄ as a function of hybridization strength of �E , with the maximum
fidelity occurring at �E � 0.05 meV. The inset shows the half Rabi cycle T/2 as a function of �E . (e) The spectral functions of electrons at
different �E .

both required. Figure 2(c) shows the time evolution of fidelity
with different �H . Notice that electrons in electrodes tend to
fill the hole through the whole process, even at the beginning
of the optical excitation. With �H decreasing, the hole storage
time increases accordingly. At �H = 0.0003 meV, F̄ ∼ 93%
is obtained. If we calculate F̃ in this case, we can reproduce
the high fidelity F̃ > 98%, in accordance with the observed
values [10].

It seems that a very high initialization fidelity can be ex-
pected by simply increasing the electron hybridization strength
�E . However, when �E is comparable to the frequency of the
laser that has been tuned in resonance with the neutral exciton,
it will inevitably bring damage to fidelity. One undesirable
consequence is tunneling-induced dephasing, which was ex-
tracted in hole spin initialization at low temperature by Ardelt
et al. [10]. We comment that the tunneling-induced dephasing
has been intrinsically involved in HEOM calculations without
additional parameter fitting. In Fig. 2(d), we depict the fidelity
F̄ as a function of �E . As shown, with �E increasing, the
fidelity increases to a maximum of 92.1% at �E = 0.052 meV
and then decreases. When �E � 173�H , it begins to damage
the fidelity and makes F̄ < 90% at �E > 0.12 meV. It should
be noted that �E can induce an energy-level shift [see
Fig. 2(e)]; correspondingly, in order to maximize the fidelity,
the frequency ω of the Rabi oscillation should be adjusted
to satisfy the resonance condition. The half Rabi cycle as a
function of �E is shown in the inset of Fig. 2(d).

To further explain the peak structure of F̄ shown in
Fig. 2(d), we calculate the single-particle spectral function
A(ω) of the c-level electron at �E = 0.02, 0.05, and 0.1 meV,
and present the results in Fig. 2(e). Due to large �E , A(ω)
experiences a linewidth broadening, which may make the
single-particle level invisible to optical excitation. The ground
state |cgs〉 is only partly pumped to |X0〉 within the adjacent
area around zero detuning. The level broadening results in
the broadening of photocurrent absorption spectra, which can
be directly observed in experiments [10]. Another feature

of A(ω) shown in Fig. 2(e) is the peak shift. At small �E

(�E = 0.02 meV), the peak is centered at ω � 2.0 meV, which
is exactly the single-particle excitation energy in the c-level
electron tunneling event. When �E increases to 0.1 meV, the
center of the peak shifts to 2.08 meV; meanwhile, the fidelity
drops to 90.6%.

B. Coherent control and readout

A U(1) rotation for the initialized hole spin state can be
achieved by applying a magnetic field Bx perpendicular to the
growth direction (the Voigt geometry). The down-spin state
|⇓〉 is a superposition of the hole spin eigenstates in the x

direction, which will perform Larmor precession about Bx at
the frequency fL determined by the hole Zeeman splitting. To
detect the single-hole spin, a co- or cross-circularly polarized
pulse with π pulse area is used to excite the single-hole to the
positive trion state |X+〉, which arrives following a time delay
of τd after the preparation pulse. The resonance frequency of
the detection pulse is positively detuned by comparison with
that of the initialization one due to the additional e-h pair
interaction Uexc. To demonstrate the photocurrent detection of
a hole spin, we depict the time evolution of the photocurrent
in Fig. 3(a), where σ+ and σ− denote the cocircular and cross-
circular excitations, respectively. The detection pulse arrives
following the time delay τd = π/fL, when the initialized
down-spin hole state |⇓〉 has precessed to the up-spin one |⇑〉.
At that time, the excitation of the cocircular detection pulse is
completely suppressed; nevertheless, the cross-circular one is
still optically active, as shown in Fig. 3(a).

In experiments, the polarization of a hole spin can be con-
veniently read out via observable photocurrent, S̃z = Iσ−−Iσ+

Iσ−+Iσ+
[13], where Iσ± is the value of the photocurrent peak for the
detection pulse σ±. In our theory, the exact z component of
the hole spin can be obtained through S̄z = tr(ρŜz), which
can be used to examine the accuracy of the photocurrent
readout technique. Figure 3(b) shows a comparison between
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FIG. 3. (a) The real-time photocurrent Iσ± in the presence of magnetic field Bx = 4.6 T. The initialization pulse ends at t = 10 ps. With a
cocircular excitation detection pulse applied at the time delay τd = π/fL, no detection photocurrent is produced, while with a cross-circular
pulse, detection current is produced. (b) Comparison of the z component of the single-hole spin calculated by S̄z and S̃z. (c) Schematic diagram
of SU(2) control of a hole spin. The hole spin is the initialization to an up-spin state and performs Larmor precession about the x axis. The
hole spin points along the +y direction on the arrival of the geometric-phase control pulse. (d) Photocurrent difference �I = Iσ+ − Iσ− of σ±
detection pulses as a function of precession time. The z-axis rotation control is achieved via a geometric-phase pulse, where the photocurrent
oscillation amplitude reflects the rotation angle.

S̃z and S̄z at �H = 0.0003 meV. The overall consistency
between them can be seen. Since our theoretical S̃z is in good
agreement with the experiment data in Ref. [13], the accuracy
of the photocurrent readout technique thus has been verified
in Fig. 3(b). When the Rabi frequency fR is comparable to
the Zeeman splitting energy of Bx , a small phase difference
between S̃z and S̄z appears, as shown in Fig. 3(b). The time
evolution of S̃z seems slightly behind that of S̄z. That phase
difference results from the delay of recording the photocurrent
to determine S̃z. As shown in Fig. 3(a), the photocurrent
reaches its peak value at the end of the pulse, when the
hole spin has already undergone a precession. By using the
parameters of Rabi frequency hfR = 0.1 meV and Zeeman
energy �EZ = 0.4 meV (Bx = 4.6 T and gh = 1.5) [29,30],
the phase delay is of the same magnitude as the half Rabi cycle
TR/2 ∼ 5 ps, as shown in Fig. 3(b).

In order to realize SU(2) control of the hole spin, a control
pulse is needed to rotate the spin along the second rotation
axis. Here, we adopt the geometric-phase approach, which was
first proposed in theory [26,31] and then successfully realized
in experiments [13,32,33]. The control pulse is shaped with
a hyperbolic secant envelope to rotate the hole spin about the
beam path of the laser (z axis). Hopt = �sech(σ t)(eiωt c

†
c↑cv↓ +

H.c.), where � denotes the Rabi frequency and σ is the
bandwidth of the pulse. The σ− polarized pulse with 2π

pulse area drives the Rabi rotation between the single-hole
spin state |⇑〉 and the trion one |X+

↑⇓⇑〉. In our calculations,
σ = � = 0.2 meV is fixed to guarantee no population transfers
to the trion state. The single-hole spin state returns to itself and
acquires a phase factor φz = arctan( 2σ�

�2−σ 2 ) about the z axis
via varying detuning � from the resonance between |⇑〉 and
|X+

↑⇓⇑〉 [31], as schematically illustrated in Fig. 1(b).
To be more concrete, the geometric-phase control pulse

is applied at the time delay τ = 27 ps when the hole spin
points along the +y axis. Since the rotation radius is equal

to that of the Bloch sphere, as shown in Fig. 3(c), the effect
of the pulse on the hole spin is the maximum. Carrying the
rotation angle φz, the hole spin continues to precess along the
x axis under the Bx magnetic field, with the rotation radius
being determined by φz. Since the detection photocurrent is
proportional to the z-axis projection of the hole spin, one can
use the photocurrent difference �I = I− − I+ between σ±
detection pulses to pick up information about φz. The hole
spin precession with different � is shown in Fig. 3(d), which
is very consistent with the experimental curves in Ref. [13]. In
Fig. 3(d), the σ± detection pulses scan through the precession
of the hole spin, and the values of detuning are set to � =
0,σ,16 meV, respectively. At � = σ , the rotation angle is π/2,
which aligns the spin along the +x axis. As a consequence,
the precession is maximally suppressed, characterized by
a near-constant photocurrent with little oscillation. � = 0
and 16 meV correspond to the rotation angle φ = 0 and π ,
respectively, and the precession radius reaches the maximum
values for both cases, which results in significant oscillations
of the photocurrent with a phase difference of π , as shown in
Fig. 3(d).

IV. SUMMARY AND CONCLUDING REMARKS

In summary, by accurately solving the extended Anderson
impurity model in the real-time domain with the HEOM
approach, we precisely simulated the whole process of single-
hole spin control, including initialization, SU(2) rotation, and
readout. Our theoretical results are in good agreement with
recent experimental observations, which demonstrates the
feasibility and accuracy of the HEOM approach to describe
the hole spin dynamics. Particularly, the influence of the
hybridization strength on electrodes is fully considered, and a
maximal fidelity in the initialization is predicted.
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We would like to compare our results with those of an
electron spin qubit. The coherence time T ∗

2 derived from our
model calculations (by fitting the decay of the single hole) is
about several nanoseconds, much longer than that of electron
spin qubits reported in the literature [34,35]. In experiments,
T ∗

2 may be further improved by more delicate setups. Besides
the long coherence time, another advantage of a hole spin
qubit is the convenience of readout via the photocurrent, as has
been demonstrated in experiments and our theory. Relatively,
the single-shot electron spin readout is rather challenging in
experiments. As for the fidelity, we have illustrated that it can

be optimized by adjusting experimental parameters. Finally,
we comment that almost all of the techniques developed for
electron spins can be used for hole ones since the physical
mechanisms underpinning ultrafast optical control of the latter
are essentially identical to those of the former.
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