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Despite much anticipation of valleytronics as a candidate to replace the aging complementary metal-oxide-
semiconductor (CMOS) based information processing, its progress is severely hindered by the lack of practical
ways to manipulate valley polarization all electrically in an electrostatic setting. Here, we propose a class of
all-electric-controlled valley filter, valve, and logic gate based on the valley-contrasting transport in a merging
Dirac cones system. The central mechanism of these devices lies on the pseudospin-assisted quantum tunneling
which effectively quenches the transport of one valley when its pseudospin configuration mismatches that of
a gate-controlled scattering region. The valley polarization can be abruptly switched into different states and
remains stable over semi-infinite gate-voltage windows. Colossal tunneling valley-pseudomagnetoresistance
ratio of over 10 000% can be achieved in a valley-valve setup. We further propose a valleytronic-based logic
gate capable of covering all 16 types of two-input Boolean logics. Remarkably, the valley degree of freedom
can be harnessed to resurrect logical reversibility in two-input universal Boolean gate. The (2 + 1) polarization
states (two distinct valleys plus a null polarization) reestablish one-to-one input-to-output mapping, a crucial
requirement for logical reversibility, and significantly reduce the complexity of reversible circuits. Our results
suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based
information processing and reversible computing.
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I. INTRODUCTION

Valleytronics is an emerging device concept [1–3] based
on the manipulation of valley degree of freedom in certain
condensed matter systems such as semiconductor quantum
well [4], silicon [5], bismuth [6], diamond [7], carbon nanotube
[8], graphene [9], Dirac semimetal [10], and transition-metal
dichalcogenide (TMD) monolayer [11]. In these materials,
electrons can populate multiple low-energy states that are well
separated in momentum space, known as valley. The electron’s
“valley address,” or the valley degree of freedom, provides an
additional quantum index which can be harnessed for new
paradigm of classical and quantum information processing
[12]. Valleytronics, alongside with spintronics [13], photonics,
and plasmonics [14], has been proposed as a candidate system
to replace the aging CMOS technology [15].

Despite recent success in optical manipulation of valley
in TMDs [11,16], the experimental progress of generating
valley polarization via dc approach remains stagnant due
to the lack of practical valley filter, a device that produces
valley-polarized current. In general, valley filters can be
classified into two types: (i) gauge-field based (GF); and
(ii) electrostatic-field based (EF). GF filter [17–31] utilizes
an external magnetic field and/or a pseudomagnetic field
induced by mechanically straining the crystal [32] to break the
valley transport symmetry whereas EF filter mostly relies on
energy filtering in properly designed nanostructures [1,33,34]
or by forming one-dimensional (1D) topological edge state
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in a domain wall [35–43]. In terms of building compact
valleytronic device, EF filter is more advantageous than GF
filter as the electrical output of an EF filter is intrinsically
compatible with its electric-based controlling knob for valley
polarization. This is in contrast to GF filter in which cascading
multiple filters would require the formidable tasks of on-chip
electricity-to-magnetic or electricity-to-strain conversions to
be tamed.

Albeit the practical usefulness of EF valley filter, only a
small subset of filters are capable of all-electric control due to
the difficulty in breaking valley transport symmetry solely via
electrostatic field. Moreover, these filters are severely plagued
by stringent conditions such as the need of high-precision
structural control of nanostructures or ultralow operating
temperature to prevent bulk current from flooding the subtle
valley signal carried by 1D topological edge state [42,43].
Thus far, the search for an easy-to-implement, all-electric-
field-controlled valley filter remains an ongoing challenge.
Beyond valley filters, valley beam splitter, operating via
an electron-optics approach [44], has been explored as an
alternative building block of valleytronics [45].

In this work, we propose a class of all-electric-controlled
valley filtering based on the pseudospin-assisted valley-
contrasting quantum tunneling in quasi-two-dimensional sys-
tem with merging Dirac cones (2MDS) which can be created
in a wide class of systems including honeycomb lattice of
cold atoms [46], graphene [47,48], few-layer black phosphorus
[49–55], Weyl semimetal [56], and antimonene (single layer of
antimony [57]). The valley polarization is fully gate controlled
and is robust against gate voltage fluctuation. By arranging
two filters into valley valve, this pseudospin-assisted filtering
effect can produce a colossal valley-pseudomagnetoresistance
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ratio of well over 10 000%. This colossal ratio dwarves
the tunneling magnetoresistance in conventional magnetic
tunnel junctions [58] and the pseudomagnetoresistance in
graphene-based pseudospin valve [59], and is on par with
the colossal tunneling electroresistance effect in state-of-art
ferroelectric tunnel junctions [60]. We further propose a
concept of valleytronic logic gates which encompasses all 16
types of two-input Boolean logics.

More remarkably, the valley degree of freedom, which
manifests macroscopically in a (2 + 1) fashion (two valley
polarizations plus a null polarization state), can be harnessed
as a built-in “‘valley pigeonhole” for input information
storage. This offers a unique possibility of implementing
logically reversible universal Boolean gate, a precursor of
dissipationless classical reversible computer [61,62], in a
valleytronic system. Our results reveal a concrete architecture
of valleytronic-based digital information processing. The
synergy of valleytronic and Boolean logic may provide a
viable new route towards reversible computation which is
ultimately required to minimize waste heat generation in
classical computer.

A. Concept of pseudospin-assisted valley filter

The central operating mechanism of the valley filter lies on
the pseudospin-assisted valley-contrasting quantum tunneling
which effectively quenches the transport of one valley when
its pseudospin mismatches that of a gate-controlled scattering
region (Fig. 1). In the following, we shall use 2MDS in
few-layer black phosphorus as a model structure to illustrate
the valley-filtering effect. It is proposed that the band gap
of two-dimensional black phosphorus can be engineered via
perpendicular electric field, surface doping, pressure, or laser
irradiation [49–55]. Band-gap tuning [53], band-gap closure,
and band inversion [49] of few-layer black phosphorus have
been realized in recent experiments. The band inversion regime
offers a particularly interesting platform for valleytronic
applications due to the emergence of two well-separated Dirac
cones. In the low-energy regime |εk| < �0, where �0 is a
band-gap parameter, the energy spectrum is composed of two
Dirac cones, denoted as D+ and D− valleys, with opposite
chirality: the pseudospin vector near the Dirac point is locked
to the quasiparticle wave vector, and its winding configuration
is opposite between the two valleys [Fig. 1(a)]. For |εk| > �0,
the two valleys merge into a single Fermi surface. In this
case, although the valleys are no longer well defined, the
pseudospin of forward propagating states still orientates in
a fashion that resembles the pseudospin chirality of D+ valley
for εk > �0 and of D− valley for εk < −�0. This creates
two well-separated energy windows in which only electrons
from a valley of matching chirality are favorably transported
due to the conservation of pseudospin [63]. In a device sense,
such unusual band topology can be harnessed to construct
a valley filter via a “source-channel-drain” transistor setup
[Fig. 1(b)]. By gate tuning the Fermi energy εF of the channel
between the windows of εF > �0, εF < −�0, and |εF | < �0,
the valley polarizations of the transmitted electrical current can
be switched between D+, D− valleys, and null polarization,
respectively. Apart from being all-electric controllable, the
valley polarization remains remarkably stable over the semi-
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FIG. 1. Concepts of all-electric-controlled valley filter. (a) Band
diagram of pseudospin-assisted valley-contrasting quantum tunneling
structure in a two-dimensional merging Dirac cone system. The
matching and mismatching of pseudospin configuration between the
incident and the scattering regions allow the valley polarization of
the transmitted current to be all-electrically tuned. The isoenergy
contours are shown alongside with the pseudospin vectors of
forward (towards-right) propagating states. Backward (towards-left)
propagating states are grayed out. (b) Schematic drawing of a valley
filter based on a transistor setup.

infinite energy windows of εF > �0 and εF < −�0 which
can be particularly useful for device applications. The merging
transition of 2MDS in few-layer black phosphorus has been
experimentally demonstrated to occur with a sizable energy
window of ≈−200 meV [49]. Such wide energy window may
prove a suitable platform for the manipulation of valley in
2MDS provided that the stability and device-fabrication issues
of few-layer black phosphorus can be overcome.

B. Concept of reversible valleytronic gate

The presence of valley degree of freedom adds a new
dimension to the Boolean operation in terms of logical
reversibility. The reversibility of Boolean logical operation is
illustrated in Figs. 2(a)–2(d) by using Boolean loop, a graphical
representation of Karnaugh map [64] [see Fig. 1(c)], in which
the four vertices represent all 22 possible input configurations
[the two inputs are represented by (A,B) where A = 0,1 and
B = 0,1] and the output state is encoded as follows: empty
and filled nodes denote “0” and “1” output state, respectively.
Traditional Boolean gate, such as NAND gate [Fig. 2(a)],
is logically irreversible due to the simultaneous presence of
multiple filled nodes, i.e., the input is mapped into output
via a many-to-one fashion. As the outputs cannot be fully
unambiguously reversed back to their corresponding input,
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FIG. 2. Reversibility and Boolean loop representations of logic
gates. The four vertices of the Boolean loop represents various
(A,B) input configuration. Filled (emptied) node denotes “1” (“0”)
output. Letter “R” emphasizes logical-reversibility. (a) Traditional
irreversible NAND. (b) Reversible CNOT. (c) Reversible NAND
based on Toffoli gate by holding C = 1. (d) Valleytronic-based
reversible NAND.

part of the input information is inevitably lost. Such logical
irreversibility has a profound practical implication: the energy
efficiency of Boolean-based computer is ultimately capped at
the Landauer’s limit, an irreducible waste heat generation of
kBT ln 2 per bit of information erased [65].

One potential route to break Landauer’s limit is envisaged
to be provided by reversible computation which processes
information reversibly [61]. Its precursor, universal logic gate,
has been actively searched for since early 1970s [66–68].
Controlled-NOT (CNOT) gate, an XOR gate supplemented
by an extra output bit identical to one of its input, represents
a classic reversible gate [69]. The supplementary bit serves
as an information pigeonhole to host two distinct “colors”
[denoted by slashed nodes in Fig. 2(b)] that can be used to fully
remove the double ambiguity of XOR operation. Universal
reversible gate, such as Toffoli gate which provides reversible
NAND operations on (A,B) by holding “C” input in “1” state,
requires two supplementary bits to generate 22 distinct colors
in order to fully remove the triple ambiguity in the output state.
Thus, three out of the 22 colors [denoted by filled, slashed,
and crossed nodes in Fig. 2(c)] are required to simultaneously
preserve both universality and logical reversibility of two-input
Boolean gate.

In contrast, the valleytronic-based reversible logic gate
proposed in this work operates in a fundamentally different
way. The output current produced by the valleytronic system
is additionally dressed by (2 + 1) distinct “valley colors,”
i.e., two possible states of valley polarizations plus a null

polarization state. These built-in valley colors [denoted,
respectively, by red, blue, and green nodes in Fig. 2(d)] can
be readily utilized to establish one-to-one mapping between
input and output states of a NAND gate. Logical reversibility
and universality can thus be simultaneously achieved without
the need of adding supplementary bits. More importantly, this
allows the valleytronic-based reversible logic gate to retain the
simple two-input architecture of conventional Boolean gate
and is in stark contrast to the more complicated three-input
architecture of Toffoli and Fredkin gates [66,67].

II. MODEL

The merging transition of the two Dirac cones in 2MDS
can be modeled by an effective Hamiltonian proposed by
Montambaux et al. [47]:

ĤK =
(

h̄2K2
x

2m∗ + �̃

)
σx + vF Kyσy, (1)

where K = (Kx,Ky) is the wave vector, m∗ is the effective
mass along Kx direction, vF is the Fermi velocity along Ky

direction, σ = (σx,σy) is the Pauli pseudospin matrix, and �̃ is
a band-gap parameter. For simplicity, we transform Eq. (1) into
a dimensionless form via the following definitions: k ≡ K/k0

and Ĥk ≡ ĤK/ε0 where k0 = 2m∗vF /h̄ and ε0 = 2m∗v2
F

are defined as the characteristic wave vector and energy,
respectively. The dimensionless Hamiltonian takes the form
of Ĥk = (k2

x + �)σx + kyσy , where � ≡ �̃/ε0. The energy

dispersion is εk = s
√

(k2
x + �)

2 + k2
y where s = ±1 denotes

conduction and valence band, respectively. Such dispersion
exhibits a “semi-Dirac” behavior, i.e., εk along kx axis, and
ky axis exhibits nonrelativistic parabolic and ultrarelativistic
linear dispersion, respectively [51]. The band topology is
crucially determined by the sign of � [Fig. 3(a)]. For � > 0,
the system is a band insulator. The band gap gradually closes
as � → 0. Band inversion, accompanied by the emergence of
two Dirac cones situated along the kx axis at k = (±

√
|�|,0),

occurs for � < 0. In this case, the Fermi surface is made
up of two distinct Dirac pockets of opposite chirality in the
low-energy regime of |εk| < |�| (see Appendix A). The Dirac
pockets merge into a single Fermi surface for |εk| > |�|.

We now focus on the x-directional transport with � < 0
where the electron transport exhibits dramatic valley filtering
effect. In the presence of a scattering potential U (x), kx is
replaced by kx → −i∂/∂x . The eigenstate can be solved from
the Schrödinger equation Ĥkψ = εkψ to yield an eigenstate

of ψ (λη)(εk,ky) = [1,(λ
√

ε2
k − k2

y + iky)/εk]
T
eik

(λη)
x x , where T

denotes transpose, k(λη)
x = λ

√
η(ε2

k − k2
y)1/2 − �, λ = ±1 and

η = ±1 label the four eigenstates. Figures 3(b) and 3(c)
illustrate the pseudospin texture, given by S = (Sx,Sy) =
ψ (λη)†σψ (λη), along several isoenergy contours with εk > 0
and εk < 0, respectively. Two unusual features are observed.
First, the Sy component Sy = ky/εk is identical between the
two valleys while the Sx component Sx = (k(λη)2

x + �)/εk
is strongly kx dependent which leads to valley-contrasting
transport occurring along the x direction. Second, the two
valleys exhibit opposite pseudospin winding configurations
and their forward propagating states carry Sx > 0 and Sx < 0,
respectively, for D+ and D− valleys [denoted by red and
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FIG. 3. Band topology, pseudospin configuration, and valley-
contrasting transport in merging Dirac cone system. (a) Topological
transition of the band structure for � > 0, � = 0, and � < 0. (b)
Pseudospin texture for εk > 0 and for (c) εk > 0. Forward and
backward propagation is denoted by solid and dashed contour lines,
respectively. Blue and red colors denote quasiparticle states with
Sx < 0 and Sx > 0, respectively. For (b) and (c), � = −1 is used.
The innermost, intermediate, and outermost contour lines represent
εk = (0.5,1,1.6) and εk = (−0.5,−1,−1.6), respectively, in (b) and
(c). (d) Diagram of 〈ψk′,s′ |ψk,s′ 〉 for s = +1 (left and right bars
correspond to D′ = ±1). Empty region denotes 〈ψk′,s′ |ψk,s′ 〉 = 0.
Filled and horizontally striped regions denote 〈ψk′,s′ |ψk,s′ 〉 = 1 with
D′ = ±1, respectively.

blue arrows in Figs. 3(b) and 3(c)]. More importantly, once
the two Dirac pockets merge into a single Fermi surface when
|εk| > |�|, the forward propagation becomes dominated by
Sx > 0 for εk > |�| and Sx < 0 for εk < −|�|. Thus, the
transmission of D− and D+ valley states becomes strongly
preferred within the semi-infinite energy windows of εk > |�|
and εk < −|�|, respectively.

This valley-contrasting transport can be further illustrated
via a 1D scattering model (i.e., ky = 0) in which an initial state
|ψk,s〉 is scattered into a final state |ψk′,s ′ 〉 by a pseudospin
nonflipping potential V̂ , as characterized by 〈ψk′,s ′ |V̂ |ψk,s〉 =
V 〈ψk′,s ′ |ψk,s〉 with k′ 
= k and V is a k-independent po-
tential strength. The transition amplitude can be obtained
as 〈ψk′ |ψk〉 = (1 + ss ′DD′)/2 where D = sign(k2

x + �) and
D′ = sign(k

′2
x + �) represent the valleys of |ψk,s〉 and |ψk′,s′ 〉,

respectively. Note that the valleys are labeled by D and D′
as follows. For (s,s ′) = +1, the D± valley is represented by
(D,D′) = ±1. For (s,s ′) = −1, the D∓ valley is represented
by (D,D′) = ±1. For simplicity, we only consider an initial

state with s = 1. For a final state with εk′ < |�|, D′ can be
either ±1 due to the presence of two distinct Dirac branches. In
this case, 〈ψk′ |ψk〉 = 1 occurs when the condition s ′DD′ = 1
is fulfilled. Such condition can be translated as follows: the
scattering of |ψk,s〉 into |ψk′,s ′ 〉 is allowed either via intraband
(s ′ = +1, D = D′) or via interband (s ′ = −1, D = −D′)
pathway for any valley index (i.e., D ± 1) of the initial
state. This corresponds to an “all-pass” scenario where both
valleys can simultaneously exhibit unity transition amplitude.
In contrast, for a final state with εk′ > |�|, the convergence of
two Dirac branches leads to the only possibility of D′ = +1.
This results in a more stringent condition of s ′D = 1 for
〈ψk′,s ′ |ψk,s〉 = 1 that corresponds to an exclusively one-valley
scattering process of either D = +1 via intraband (s ′ = 1)
pathway or D = −1 via interband (s ′ = −1) pathway. Various
possibilities of 〈ψk′,s ′ |ψk,s ′ 〉 are summarized in Fig. 3(d).
Here, the quasiparticle scattering can be valley-selectively
controlled by switching the final state band index s ′. This
valley-selective scattering effect forms the central operating
mechanism of the valleytronic devices proposed in this
work.

III. VALLEYTRONIC TRIO: FILTER, VALVE, AND
REVERSIBLE LOGIC GATE

In this section, we show that the highly nontrivial band
topology and the pseudospin texture in 2MDS can be harnessed
to create a trio of all-electric valleytronic devices: valley filter,
valve, and reversible logic gate (see Appendices B and C
for details of device modeling). In the following, the device
modeling is performed using band structure parameters of few-
layer black phosphorus with merging Dirac cones calculated
from first principles by Baik et al. [50], i.e., ε0 ≈ 1.3 eV
and k0 ≈ 1.1 nm−1 [70]. We model the valleytronic devices
using a Landauer’s ballistic transport formalism [71] for
two-dimensional (2D) nanostructures. The ballistic transport
picture has been widely used in the modeling of valley-
filtering effect in nanostructures [1,17–29,31,34]. In realistic
device, the inevitable presence of impurities, defects, and
many-body effects can quantitatively change the results, but
the valley-filtering effect shall qualitatively remain robust
as recently demonstrated for the case of strained graphene
[30].

A. Chiral valley-filtering effect

As a proof of concept, we first demonstrate the pseudospin-
assisted valley-selective quantum tunneling, with band di-
agram shown in Fig. 4(a), by calculating the same-valley
transmission probability T

(±)
± as a function of incident energy

εk and gate voltage Vg [Figs. 4(b) and 4(c)]. The D → D′

transmission probabilities are denoted as T
(D)
D′ where D,D′ =

±1 represents different valley states. The intervalley scattering
effect is intrinsically included in this model. Its scattering
probabilities T

(±)
∓ are strongly suppressed and remain neg-

ligibly small for all Vg (see Appendix B). For intravalley
scattering T

(±)
± , a potential barrier (Vg > 0) is nearly opaque

for D+ electrons [Fig. 4(b)] but highly transparent for D−
electrons [Fig. 4(c)]. In contrast, the valley preference of
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FIG. 4. Operation of valley filter. (a) Band diagram of the valley filter. � is constant throughout regimes I, II, and III. The band alignment
of regime II is gate tunable via U (0 < x < d). Transmission probabilities T

(+)
+ for (b) potential barrier and for (d) potential well. (c), (e)

Same as (b) and (d) for T
(−)
− . Valley-polarized conductance in (f) D+ and (g) D− channels. Blue, green, and red curves correspond to

εF /|�| = (0.1,0.2,0.5), respectively. (h) Valley polarization efficiency η. � = −0.1 and d = 75 are used.

a potential well (Vg < 0) behaves in an opposite fashion:
transmission of electrons in D+ valley is preferred [Fig. 4(d)]
while that of D− valley is strongly suppressed [Fig. 4(e)].
This valley-selective transport is a direct consequence of the
matching and mismatching of the pseudospin configurations
as discussed above [Fig. 1(a)] and immediately suggests that
the proposed device can be operated as a gate-tunable valley
filter.

Macroscopically, such valley-selective quantum tunneling
effect manifests in the transport measurement by exhibiting
valley-polarized electrical conductance. To illustrate this,
we separate the contribution from D± valleys by defining
a valley-dependent electrical conductance as G±(εF ,Vg) =
G0

∑
D′=±

∫
dkyT

(D′)
± (ky,εF ,Vg) where εF is the Fermi level

of the sample, G0 ≡ Wg0k0/2π , g0 ≡ 4e2/h, and W is
the sample width. The Vg dependence of G± is shown in
Figs. 4(f) and 4(g). Apart from the expected conductance
oscillations due to Fabry-Pérot interference, it can be seen that
G± dominates well-separated regime of Vg . For Vg < 0 and
Vg > 0, electrical conduction occurs almost exclusively via
G+ and G−, respectively, thus demonstrating a gate-tunable
valley polarization of the electrical current. Only at the vicinity
of Vg = 0, G+ and G− mixes due to the presence of both D±
transmission pathway. The sharp dip of G± when Vg ≈ εF

corresponds to the case when εF is situated at the Dirac point
which has a vanishing density of states.

The valley-filtering effect can be characterized by the valley
polarization efficiency

η(εF ,Vg) = G+(εF ,Vg) − G−(εF ,Vg)

G+(εF ,Vg) + G−(εF ,Vg)
, (2)

which exhibits two remarkable behaviors [Fig. 4(h)]. First,
high degree of valley polarization persists over a semi-infinite
Vgwindow, indicating high robustness against noise fluctua-
tions of Vg . Second, the valley polarization can be switched
“off” into a stable null-polarization state by setting the gate
voltage to −(|�| − εF ) � Vg � (|�| + εF ). Together with the
two D± polarization states, this forms (2 + 1) stable valley
states which can be used to implement universal reversible
Boolean logics as shown below.

B. Valley valve and colossal valley pseudomagnetoresistance

We now propose a valley valve capable of performing
current on-off switching. The valley valve is composed of
two gates VG1 and VG2 that serve as the functional core of
the valve, and a third “selector” gate Vs which, in analogy to
the role of “analyzer” in an optical polarizer-analyzer system,
switches the valley valve into D+ and D− modes by providing
an additional stage of filtering [Fig. 5(a)].

The tuning of VG1 and VG2 creates four quadrants of
parallel and antiparallel configurations as denoted by Q1 to
Q4 in Fig. 5(b). The D+ and D− conduction dominates Q3
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FIG. 5. Operation of valley valve and colossal valley-pseudomagnetoresistance effect. (a) Schematic drawing of valley valve. (b) Parallel
and antiparallel configurations and their respective quadrant in the VG1-VG2 space. (c) Valley-dependent conductance G± and the corresponding
η. (d), (e) Same as (c) but operated in D+ and D− modes, respectively, via Vs = −0.2 and 0.2. (f) VPMR ratio of Q1� Q2 (denoted by red
squares) and Q3� Q2 (denoted by blue circles) is shown. The VPMR ratios of Q1� Q4 and Q3� Q4 are approximately identical to this plot
and hence are not shown. The following parameters are used: � = −0.1, εF /|�| = 0.1, the barrier width corresponding to VG1,2,s is set to
dgate = 75 and are separated by dinter = 20.

and Q1, respectively, and the current can be switched off by
operating the valve in Q2 and Q4. Figures 5(c)–5(e) show the
numerical results of G±(εF ,VG1,VG2) and the corresponding
η. The conductances exhibit Fabry-Pérot oscillations due to
interference of wave function. The G+ and G− plateaus occur
in a semi-infinite regime defined by Vg1,g2 < (|�| + εF ) and
VG1,G2 > −(|�| − εF ), respectively. The intersections of G+
and G− plateaus form a central null-polarization “square” (i.e.,
η ≈ 0) as bounded by −(|�| − εF ) < VG1,G2 < (|�| + εF ).
A valley valve operating in D+ mode can be obtained by
switching VG2 between Q2� Q3 while fixing VG1 at a negative
value, or by switching VG1 between Q3� Q4 while fixing VG2

at a negative value. Similarly, a D− mode valley valve can be
obtained via the switching of VG1 (VG2) with Q1� Q2 while
fixing VG2 at a positive value, or equivalently via the switching
of VG2 with Q1� Q4 while fixing VG1 at a positive value.
In Figs. 5(d) and 5(e), the D− and D+ conduction blocks
are selectively suppressed by setting Vs = −0.2 and 0.2,
respectively. This switches the valley valve into an exclusively
D+ or D− mode.

The valley valve can be characterized by a tunneling
valley-pseudomagnetoresistance (VPMR) ratio, analogous to
the tunneling magnetoresistance (TMR) in magnetic tunnel
junction, which is defined as

VPMR = ḠP
total − ḠAP

total

ḠAP
total

, (3)

where ḠP
total and ḠAP

total represent the total conductance averaged
over a range of VG1,2 in parallel and antiparallel configurations.
The VPMR for D− conductance block on-off switching, i.e.,
Q1� Q2, that of the D+ conductance block, i.e., Q3� Q2,
is shown in Fig. 5(f) with Vs = 0. For εF → |�|, the VPMR

of Q3� Q2 gradually stabilizes at ∼400% while the VPMR
of Q1� Q2 is severely degraded due to the disappearance of
D− conductance block when the two Dirac cones merge.
Remarkably, the VPMR exhibits a colossal value of well
over 10 000% at small εF . This value greatly exceeds the
pseudomagnetoresistance (PMR) of ∼100% in graphene-
based pseudospin valve [59] and TMR ∼ 1000% in traditional
magnetic tunnel junction [58], and is on par with state-of-art
tunneling electroresistance (TER) of up to TER ∼ 10 000%
in ferroelectric tunnel junctions [60]. This colossal VPMR
originates from the pseudospin-assisted tunneling described
above, which effectively quenches the conduction current
when there is a mismatch of pseudospin.

C. Universal reversible valleytronic logic gate

We now show that the existence of D± blocks and the
central null-polarization square in the conductance spectrum
in Figs. 5(c)–5(e) allows the valley valve device to be operated
as a two-input Boolean combinational logic gate. We first
translate this conductance spectrum into a simplified valley-
transport phase diagram (VPD) [Figs. 6(a)–6(c)]. In Fig. 6(a),
selector voltage is set to Vs = 0, i.e., both D± channels are
opened. In this case, both the D+ (red) and the D− (blue)
blocks of conductance plateau are present and their intersection
forms a central green block of null polarization. The VPDs in
Figs. 6(b) and 6(c) correspond the case of D+ and D− modes
by, respectively, setting Vs = −0.2 and 0.2.

To demonstrate the logical operation of the proposed
valleytronic gate, we employ a graphical Boolean loop analysis
based on the Karnaugh’s map approach [64]. Such method
provides a simplified tool as it directly maps abstract Boolean
logical operations onto the conductance spectrum of a physical
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(a) (b)

(d) (e) (f)

(c)

FIG. 6. Valley-transport phase diagrams (VPD) and universal reversible valleytronic logic gates. (a) VPD of the valley filter. (b) VPD for
D+ mode and (c) D− mode. One-input NOT operation is indicated by a single Boolean line in (a). The larger and the smaller loops in (a)
represent Class-2A and Class-3 operations, respectively. In (b) and (c), the larger and smaller loops represent Class-1 and Class-2B operations.
Physical implementation of (d) NOT, (e) reversible NAND, and (f) reversible OR gates.

system. For example, NOT can be represented by a one-
dimensional Boolean line where the node at its two edges
represents the two-input state of 0 and 1, whereas the output
state is denoted by empty and filled nodes for 0 and 1 output
states, respectively, i.e.,

(0) (1)

NOT

, (4)

which can be located at the lower quadrant of VPDs in
Fig. 6(a). The physical implementation of NOT can be
determined as follows: the Boolean line is horizontally aligned
along a constant level of negative VG2 and the switching of VG1

from zero to positive value changes the conductance from D+
block to “OFF” state. Correspondingly, by fixing gate G2 at
a negative reference voltage and feeding the input signal into
gate G1, NOT operation is obtained [see Fig. 6(d)].

We now employ this graphical method to extract the
permissible two-input Boolean operations, represented by
Boolean loops, from the VPDs. We use the designation of
“Class X” to catalog all 16 types of Boolean logical operations
where X = 0,1,2,3,4 denotes the number of filled nodes in the
Boolean loop. We first define Class-0 and Class-4 logic where
the four nodes at the vertices are either all empty or all filled.
This corresponds to the trivial operations of “always-ON” and
“always-OFF”:

(0,0)

(0,1) (1,1)

(1,0)

Always-OFF

,

Always-ON

,
(5)

which can be implemented by drawing a Boolean loop lying
completely outside and inside the D± conductance blocks,
respectively. Note that the input address (A,B) is explicitly
marked in the always-OFF Boolean loop and is omitted in the
following discussion for simplicity.

Class-1 logics, in which the Boolean loop contains only one
filled node, can be implemented via the large Boolean loops
shown in the VPDs of D+ [Fig. 6(b)] and D− [Fig. 6(c)]
modes:

NOR

�
IMPLY

�
AND

�
C-IMPLY

,
(6a)

AND

�
IMPLY

�
NOR

�
C-IMPLY

,
(6b)

Importantly, the universal NOR gate falls into this class
and can be implemented in D+ mode. Moreover, the exotic
implication-type operations, such as the negations of impli-
cation (N-IMPLY) and of converse-implication (NC-IMPLY)
can also be obtained via circular permutations of the Boolean
loop in VG1-VG2 space [denoted by ‘�’ in Eq. (6)] and
can be physically implemented by properly inverting and/or
combining reference voltages with the voltage signals [see
Figs. 6(d)–6(f) for examples].

The smaller Boolean loops shown in Figs. 6(b) and 6(c)
represent Class-2A logics of two consecutive filled nodes:

NOT-A

�
B

�
A

�
NOT-B

(7a)

A

�
NOT-B

�
NOT-A

�
B

,
(7b)

which are rather trivial logical operations. Class-2B logics, in
which the two filled nodes are separated, provides more useful
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operations of XOR and XNOR. This class is obtainable from
the larger Boolean loop shown in Fig. 6(a):

XNOR

�
XOR

(8)

Interestingly, the two logical “ON” output states contain
opposite valley polarizations as denoted by blue and red nodes.
Such valley-color labeling manifests in a more remarkable way
for Class-3 logics where three nodes are filled. This class is
represented in the smaller Boolean loop in Fig. 6(a), i.e.,

C-IMPLY

R �
NAND

R �
IMPLY

R �
OR

R .
(9)

Equations (4)–(9) demonstrate that the valleytronic logic gates
proposed here are capable of hosting all 16 types of two-input
Boolean combinational logics. The Class-3 logics in Eq. (9)
includes exotic implication (IMPLY), converse-implication
(C-IMPLY) operations, and the conventional OR and NAND.
NAND can be obtained via one circular permutation, i.e., by
inverting one input and subsequently referencing it with a
negative reference voltage as shown in Fig. 6(e). For OR gate,
three circular permutations are required, which correspond to
inverting the first input and referencing the second input with
a negative voltage [Fig. 6(f)].

Class-3 logics are logically reversible as each of the
three filled nodes is unambiguously labeled by (2 + 1) valley
polarization states. By reading out the valley polarization,
any output can be unambiguously reverted back to their
corresponding initial input. More remarkably, this reversible
class of logics includes the all-important universal NAND gate.
This reveals a remarkable potential of the valleytronic logical
gate proposed here as a building block of classical reversible
computer.

A general scheme of valleytronic-based reversible Boolean
circuits is illustrated in Fig. 7(a). The three inputs (A, B, C)
are computed reversibly into a final output X2 in this example.
A direct current I0 is fed into each of the two-input valley
gates and is modulated by the two inputs to yield an output
current of a particular state of valley polarization. For valley
gate #1, A and B yield an intermediate output current X1 of
valley polarization V1. X1 is subsequently cascaded into valley
gate #2 and its combination with the third input C produces the
final output current X2 of valley polarization V2. For a given
X2, the initial input states can be unambiguously recovered
from the V1 and V2. Based on this general scheme, reversible
half-adder (R-HA) can be implemented as shown in Fig. 7(b).
From its truth table, it can be seen that the output state of
“1” that corresponds to ambiguous input states of (A,B) =
{(1,0),(0,1)} can be uniquely distinguishable from the valley
polarization of the output [represented by V in the truth table of
Fig. 7(b)]. Two units of R-HA can be cascaded into a reversible
full-adder (R-FA) [Fig. 7(c)]. In this case, the input states of
(CIN,A,B) = {(1,0,0),(0,1,0),(0,0,1)} can be unambiguously
distinguished via the valley polarization V of the intermediate
C output.

It should be emphasized that the valleytronic-based re-
versible circuit is fundamentally different from that of the

FIG. 7. Examples of valleytronic-based reversible Boolean cir-
cuit. (a) General scheme of a valleytronic-based reversible circuit.
Three inputs (A, B, C) are operated by two gates to yield a final current
output X2. The input states can be unambiguously recovered via the
two valley polarizations V1 and V2. (b) Reversible half-adder and (c)
reversible full-adder with their truth table. Ambiguous operations are
emphasized by dashed boxes. In these devices, the logical reversibility
is established via the valley colors V .

traditional approach. Traditional reversible gates, such as
Fredkin and Tofolli, achieve logical reversibility via multiple
supplementary bits [66,67] which inevitably introduce ancilla
inputs and garbage outputs, bits unrelated to computation
results and are only required for logical reversibility, into
the circuits. In contrast, the reversible valleytronic logic gates
proposed here harness the built-in valley degree of freedom
for information storage. Extraction of information encoded in
the valley is performed via an on-demand fashion, i.e., valley
polarization is read out only when it is absolutely needed
for logical reversibility. More importantly, the valleytronic
reversible gate retains the conventional two-input format
without involving any ancilla inputs. Thus, the combination of
(i) reduced garbage outputs; (ii) complete absence of ancilla
inputs; and (iii) the retaining of conventional two-input format
suggests that the valleytronic approach for reversible computa-
tion can potentially be more advantageous than the traditional
approach. We further note that although logical reversibility
can break the Landauer’s limit, it does not warrant the full elim-
ination of energy dissipation. Energy dissipation in a reversible
computer shall remain finite due to the inevitable physical-
irreversibility of electronic devices and circuits [72,73].
Finally, we remark that it remains a technological challenge
to fabricate the proposed valleytronic devices at current stage.
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The search for an ideal merging Dirac cone condensed matter
system shall form an ongoing task before the full potential of
valleytronic-based logic gate architecture proposed here can be
tapped.

IV. CONCLUSION

In summary, we study the pseudospin-assisted valley-
contrasting quantum tunneling in 2MDS and show that
such effect can be harnessed to create valley filter, valve,
and logic gate. These valleytronic devices exhibit multiple
unusual characteristics including (i) all-electric controllable;
(ii) stable valley polarization that persists over semi-infinite
gate voltage windows; (iii) colossal VPMR effect of well over
10 000%; (iv) flexibility to be permuted into any two-input
Boolean gates; and (v) capable of performing reversible
Boolean classical computation with reduced garbage and
total absence of ancilla bits. The union of valley degree
of freedom and digital computing offers an exciting solid-
state platform for valleytronic-based information processing
and for reversible computing which is ultimately required
to lower hardware power consumption beyond the bound
of Landauer’s limit [74]. As logical reversibility is a pre-
requisite for quantum gate [75], we anticipate the uni-
versal reversible valleytronic logic gates proposed here to
play a role in quantum [76] and quantum-classical hybrid
computers [77].
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APPENDIX A: CHIRALITY OF THE MERGING DIRAC
CONES

In this appendix, we show that the two Dirac split cones
predicted by the universal Hamiltonian [Eq. (1) of main text]
for � < 0 contain opposite chirality. We first expand the
Hamiltonian around the two Dirac points, i.e., k → k̃ where
k̃ = (D

√
|�| + δkx,δky), δk ≡ (δkx,δky) is a small shift of

wave vector and D = ±1 denotes the two Dirac cones. By
keeping terms first order in (δkx,δky), the dimensionless
Hamiltonian becomes can be decoupled for each of the Dirac
cone, i.e.,

Ĥ(D)
δk =

(
0 D

√|�|δkx − iδky

D
√|�|δkx + iδky 0

)
(A1)

which coincides with the gapless Dirac Hamiltonian of
graphene except that the “Fermi velocity” is anisotropic be-
tween δkx and δky directions. The chirality operators can be de-
fined as χ̂D = ( KD/| KD|) · σ̂ where KD ≡ (D

√|�|δkx,δky)
is an “anisotropic wave vector.” By defining a phase factor as
φδk ≡ tan−1 (δky/

√|�|δkx), the eigenenergy and eigenstate
can be solved, respectively, as εδk,s = s| KD| and |ψδk,D〉 =
(1,seiDφδk )

T
eiδk·r, where r ≡ (x,y) and s = ±1 is the band

index. χ̂D commutes with Ĥ(D)
δk and follows the eigenvalue

equation: χ̂D |ψδk,D〉 = χD |ψδk,D〉, where the chirality eigen-

value is χD = sD. This demonstrates that χD has opposite sign
between D = ±1 valleys.

APPENDIX B: DERIVATION OF TUNNELING
CONDUCTANCE OF CHIRAL VALLEY FILTER

We consider quantum tunneling across a 1D square poten-
tial along the x direction:

U (x) = Vg[(x) − (x − d)], (B1)

where Vg ≡ eVg/ε0 is a dimensionless potential barrier/well
height determined by the gate voltage Vg and d = k0d0 is the
dimensionless width parameter that corresponds to the barrier
width d0. By replacing kx → −i∂/∂x , the Schrödinger can be
written explicitly as

(
0 − ∂2

∂x2 + � − iky

− ∂2

∂x2 + � + iky

)
ψ(x)

= [εk − U (x)]ψ(x) (B2)

which can be decoupled as

(
∂4

∂x4
− 2�2 ∂2

∂x2

)
φA,B = (

[εk − U (x)]2 − k2
y − �2)φA,B,

(B3)

where the ψ(x) = (φA,φB)T is the pseudospinor wavefunc-
tion. The solutions of the first pseudospinor component with
U (x) = 0 can be solved as φ

(λη)
A = exp (ik(λη)

x x), where λ =
±1, η = ±1,

k(λη)
x = λ

√
η
(
ε2
k − k2

y

)1/2 − �, (B4)

and the energy eigenvalue is given as

εk = ±
√(

k
(λη)2
x + �

)2 + k2
y. (B5)

For � < 0 and (ε2
k − k2

y) < |�|, all eigenstates are propagating
states with purely real kx . The corresponding group velocity
is given as v

(λη)
x = ∂εk/∂k

(λη)
x = λη(ε2

k − k2
y)

1/2
/εk By com-

paring v
(λη)
x with k

(λη)
x , the eigenstate can be determined as

electronlike (holelike) if the product (λη/εk) has the same
(opposite) sign as λ which signifies group velocity being
(anti)parallel with the wave vector. The group velocity and
the electron/hole nature of the (λ,η) branches are shown in
Fig. 8. This corresponds to the low-energy regime in which
the energy dispersion splits into two distinct Dirac cones.
For (ε2

k − k2
y) > |�|, the two branches of η = −1 merge and

the corresponding eigenstate becomes evanescent due to the
merging of Dirac cones.

The second pseudospinor component can be solved as

φ
(λη)
B =

η

√
ε2
k − k2

y + iky

εk

eik
(λη)
x x . (B6)
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FIG. 8. Energy dispersion of merging Dirac cone system at ky =
0. The (λ,η) index of various branches is marked. The arrows denote
the direction of the group velocity v(λη)

x . Electronlike (v(λη)
x parallel

with kx) and holelike (v(λη)
x antiparallel with kx) quasiparticles are

denoted by green and yellow circles, respectively.

Correspondingly, the normalized eigenstate outside the barrier
and that inside the barrier are given, respectively, as

ψ (λη)(x) = 1√
2

(
1

η
√

ε2
k−k2

y+iky

εk

)
eik

(λη)
x x, (B7a)

ψ̃ (λη)(x) = 1√
2

(
1

η
√

ε2
k−k2

y+iky

εk−Vg

)
eiq

(λη)
x x, (B7b)

where q
λη
x = λ

√
η[(εk − U0)2 − k2

y]1/2 − �. The pseudospin
vector S = (Sx,Sy) can be determined as

S = ψ (λη)†σψ (λη) =
(

k2
x + �

εk
,
ky

εk

)
. (B8)

k
y
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FIG. 9. Pseudospin texture of a merging Dirac cone system.
(a), (b) Shows, respectively, the x-component pseudospin and y-
component pseudospin textures of a merging Dirac cone system for
εk < 0. (c), (d) Same as (a) and (b) but for εk > 0.

In Fig. 9, the x and y components of the pseudospin are
plotted with � = −1. At the vicinity of the Dirac points
k = (±√|�|,0), Sx and Sy behave in a contrasting way. The Sy

component is identical for both valleys while the Sx component
exhibits a sign change between the two valleys. Thus, D+ and
D− valleys are indistinguishable for ky-directional transport
while a strong valley contrast manifests in the kx-directional
transport and the two valleys have opposite chirality.

The total wave functions in regions I, II, and III are
given as

�I(x) = ψ (DD)(x) +
∑
η=±

r
(η)
D ψ (−ηη)(x), (B9a)

�II(x) =
∑
η=±

a(−ηη)ψ̃ (−ηη)(x) + b(ηη)ψ̃ (ηη)(x), (B9b)

�III(x) =
∑
η=±

t
(η)
D ψ (ηη)(x), (B9c)

where t
(D′)
D and r

(D′)
D are the transmission and reflection,

respectively. The index D,D′ = ±1 denotes the two valleys.
The transmission and reflection coefficients can be solved by
matching �I, �II, and �III at the boundaries of x = 0 and d

via

�I(x = 0) = �II(x = 0), (B10a)

�II(x = d) = �III(x = d) (B10b)

and

d�I(x)

dx

∣∣∣∣
x=0

= d�II(x)

dx

∣∣∣∣
x=0

, (B11a)

d�II(x)

dx

∣∣∣∣
x=d

= d�III(x)

dx

∣∣∣∣
x=d

. (B11b)

This forms a system of equations given as

(
K̃(0) −Q̃(0) −Q(0) O4×2

O4×2 −Q̃(d) −Q(d) K(d)

)⎛
⎜⎜⎜⎝

R(D)

A(D)

B(D)

T(D)

⎞
⎟⎟⎟⎠

=
(−K(D)0)

O4×1

)
, (B12)

where OM×N is a M × N zero matrix, the 4 × 2 matrices K,
K̃, Q, and Q̃, are defined as

K(x) ≡ e

(
ψ (++)(x) ψ (−−)(x)

k(++)
x ψ (++)(x) k(−−)

x ψ (−−)(x)

)
,

K̃(x) ≡
(

ψ (−+)(x) ψ (+−)(x)
k(−+)
x ψ (−+)(x) k(+−)

x ψ (+−)(x)

)
, (B13a)

Q(x) ≡
(

ψ̃ (−+)(x) ˜ψ (+−)(x)
q(−+)

x ψ̃ (−+)(x) q(+−)
x ψ̃ (+−)(x)

)
,

Q̃(x) ≡
(

ψ̃ (++)(x) ψ̃ (−−)(x)
q(++)

x ψ̃ (++)(x) q(−−)
x ψ̃ (−−)(x)

)
(B13b)

and K(D)(x) ≡ (ψ (DD)(x),k(DD))
x ψ (DD)(x))

T
with D = ±1 in-

dicates the valley index of the incident electron. The transport
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coefficients are compactly contained in

R(D) =
(

r
(D)
D

r
(D)
−D

)
, T(D) =

(
t

(D)
D

t
(D)
−D

)
,

(B14)

A(D) =
(

a
(D)
D

a
(D)
−D

)
, B(D) =

(
b

(D)
D

b
(D)
−D

)
.

Finally, the probability current conservation can be
written as

1 =
∑
D′=±

(
−v(−D′D′)

x

v
(DD)
x

∣∣r (D)
D′

∣∣2 + v(D′D′)
x

v
(DD)
x

∣∣t (D)
D′

∣∣2

)
, (B15)

where the velocity expectation value is defined as

v(uu′)
x ≡ ψ (uu′)† ∂Ĥk

∂kx

ψ (uu′). (B16)

The reflection and tunneling probabilities can then be solved
as

R
(D)
D′ = −v(−D′D′)

x

v
(DD)
x

∣∣r (D)
D′

∣∣2
, T

(D)
D′ = v(D′D′)

x

v
(DD)
x

∣∣t (D)
D′

∣∣2
. (B17)

The D-polarized ballistic tunneling current, under bias voltage
VB , is given as

J (D)(VB,T ) = 4eε0k0

(2π )2h̄

∫
dkxdky

(
∂εk

∂kx

)
× T (ky,εk,Vg)f (εk,T ), (B18)

where f (εk,T ) is the Fermi-Dirac distribution function.
At low temperature and small bias voltage, f (εk,T ) →
(eV/ε0)δ(εk − εF ). The ballistic conductance G(D) =
J (D)/VB becomes

G(D)(εF ,Vg) = G0

∫
dkyT (ky,εF ,Vg), (B19)

where G0 ≡ Wg0k0/2π and g0 ≡ 4e2/h.
Before closing this section, we briefly discuss the interval-

ley scattering probabilities T
(±)
∓ , which follow the following

symmetry:

T
(±)
∓ (εk,Vg) = T

(∓)
± (εk,Vg). (B20)

ε k
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FIG. 10. Intervalley transmission probabilities T
(±)
∓ , plotted with

(a) Vg = 0.2 and (b) Vg = −0.2 (d = 75, � = 0.1). Note that
T

(±)
∓ = T

(∓)
± .

- +

FIG. 11. Tunneling band diagram of valley valve device.

The numerical results of T
(±)
∓ are shown in Fig. 10. It can be

seen that due to the mismatching of pseudospin, intervalley
scattering is negligibly small and is only slightly raised at
large |ky | due to the presence of a narrow “strip” of forward
propagation branch at large |ky | that matches the chirality of
opposing valleys [see pseudospin winding configuration in
Figs. 3(b) and 3(c)].

APPENDIX C: MODELING OF TUNNELING
CONDUCTANCE IN A VALLEY VALVE

The chiral valley valve is modeled using the following
potential profile (see Fig. 11 for the tunneling structure):

U (x) =

⎧⎪⎨
⎪⎩

VG1, 0 < x < d1

VG2, d2 < x < d3

Vs , d4 < x < d5

0, otherwise

(C1)

where VG1,2 ≡ eVG1,2/ε represents the dimensionless form
of the first and second gate voltage VG1,2, and Vs ≡ eVs/ε0

represents the that of the selector voltageVs . The barrier widths
corresponding to these gates are d1, (d3 − d2), and (d5 − d4),
respectively. Similarly, the transport coefficients can be derived
by matching the wave functions at each boundary, i.e., x =
0,di (where i = 1,2,3,4,5) via Eqs. (B10) and (B11). This
leads to a system of 24 equations which are numerically solved
to obtain the transmission coefficients. The corresponding
transport probabilities and valley-polarized conductance are
calculated via Eqs. (B17) and (B19), respectively.
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FIG. 12. Conductance-voltage characteristic of NOT gate with a
fixed VG2 = 0.2. Insets show the Boolean line of NOT operation in
the VPD with Vs = 0, and the gate configurations.
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APPENDIX D: SWITCHING CHARACTERISTICS OF
VALLEYTRONIC-BASED NOT-GATE

As a proof of concept, we explicitly show the conductance-
voltage characteristics of a valleytronic-based NOT gate in
Fig. 12. The total conductance as a function of input voltage
VIN is calculated as Gtotal(VIN) = G+(VIN) + G−(VIN) and the
VG2 = −0.2 is a fixed reference voltage. The input signal is fed
into the gate via VIN. For VIN � 0, the output total conductance
is switched into a stable oscillation between Gtotal(VIN � 0) ≈

0.007G0 and Gtotal(VIN � 0) ≈ 0.009G0 while for VIN � 0.15
the output conductance is switched off with Gtotal in the
order of Gtotal(VIN � 0.15) ≈ 10−6G0. This suggests that
the implementation of NOT requires a minimum high/low
input voltage difference of �VIN ≈ 0.15, which corresponds
to a well-achievable value of approximately 150 meV. The
switching time delay can be obtained via a full simulation that
takes into account detail device geometry, and is beyond the
scope of this work.
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