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Bipartite fidelity and Loschmidt echo of the bosonic conformal interface
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We study the quantum quench problem for a class of bosonic conformal interfaces by computing the Loschmidt
echo and the bipartite fidelity. The quench can be viewed as a sudden change of boundary conditions parametrized
by θ when connecting two one-dimensional critical systems. They are classified by S(θ ) matrices associated with
the current scattering processes on the interface. The resulting Loschmidt echo of the quench has long time
algebraic decay t−α , whose exponent also appears in the finite size bipartite fidelity as L− α

2 . We perform analytic
and numerical calculations of the exponent α, and find that it has a quadratic dependence on the change of θ if
the prior and post-quench boundary conditions are of the same type of S, while remaining 1

4 otherwise. Possible
physical realizations of these interfaces include, for instance, connecting different quantum wires (Luttinger
liquids), quench of the topological phase edge states, etc., and the exponent can be detected in an x-ray edge
singularity-type experiment.
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I. INTRODUCTION

In (one-dimensional) quantum critical systems, the pres-
ence of the physical boundary and isolated impurity weakly
break the conformal symmetry. Simply put, the interface scat-
ters the otherwise independent modes and therefore demon-
strates novel boundary critical phenomena [1]. Operators close
to the boundary are interpreted as boundary condition changing
(bcc) operators [2,3] in the boundary conformal field theory
(CFT). Their correlation functions can exhibit different critical
exponents from their bulk counterparts [4]. One example is
the “Anderson orthogonality catastrophe,” where the core hole
creates a potential that acts as an impurity to the conduction
band. The x-ray absorption rate will then have a power
law singularity of a boundary exponent [3] at the resonance
frequency. There are numerous impurity problems of this kind
that have been studied in the last few decades, such as the
magnetic impurity in the spin chain [5], boundary and impurity
effects in Luttinger liquid [6], entanglement of the defects
[7–9], etc.

Recently, more attention has been paid to the nonequilib-
rium dynamics of quantum impurity [10–17]. The “cut-and-
join” quench protocol is a popular framework for investigating
the spreading of the influence from the localized impurity (or
boundary) across the system. As shown in Fig. 1 (left), the
system consists of two critical chains A and B, which were
prepared in the ground states. They will be joined at t = 0 and
evolve. Various quantities can be used to detect the information
in the quench process. For instance, Refs. [18,19] find a
logarithmic increase of entanglement entropy in subsystem A,
when both A and B are identical critical systems. The authors
ascribe such increase to the proliferation and propagation of
the quasiparticle excitations emitted at the joint. Reference
[20] takes A to be a normal lead and B to be a topological
superconductor in the topological phase. In this model, the
Majorana zero mode acts as a bcc operator and its conformal
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dimension appears in the exponent of the power law decay of
the Loschmidt echo.

In the path integral language, the “cut-and-join” protocol
corresponds to a space-time diagram as shown in Fig. 1 (right).
The separating ground states prepared before t = 0 are joined
to form a new type of interface between them. Before the
quench, the slit represents boundaries that are completely
reflective to the injecting particles. During the quench, the
joining turns on the transmission from one side to the other.
In the entanglement entropy and Loschmidt echo examples
cited above [18–20], the two sides of the CFTs are the same
(chiral fermion CFT in the case of Ref. [20]) and the boundary
becomes totally transparent after the joining.

In this paper, we generalize these ideas to an interface
that interpolates between the totally reflective and complete
transparent ones. This kind of interface can have many
realizations. As discussed in Ref. [21], one can connect two
different bosonic CFTs in the “cut-and-join” protocol, and
the interface is a domain wall between two free compact
boson theories with different compactification radii. Such a
permeable interface can also be implemented by noncompact
free boson/fermion on a lattice with a fine-tuned bond
interaction between the boundary sites (see Refs. [22,23] for
their entanglement property studies). In these models, there
is a parameter λ that is directly related to the transmission
coefficient. In the case of the compact boson, λ is controlled
by the ratio of the compactification radii, while for the free
lattice boson it is controlled by the ratio of masses. We expect
it to be tunable in a realistic experimental setting.

We compute the Loschmidt echo to extract information
in the dynamics of the quench process of these models. The
Loschmidt echo is the (square of the) overlap of the wave
functions before the quench and the wave function evolved for
some time t . It decays with a power law t−α for the lack of
length scale in the t → ∞ limit. The decay exponent α has
been calculated for various geometries and combinations of
normal boundary conditions of the same CFTs in Refs. [24,25].
We extend the analysis to the aforementioned parametric
interface of (possibly) different CFTs. We will see that there are
two categories of the scattering matrices S(θ ) of the interfaces,
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FIG. 1. Cut-and-join quench protocol. (Left) Prepare the ground
states of the two separated chains and join them at t = 0, then
time evolve with the whole chain Hamiltonian. (Right) Space-time
diagram of the cut-and-join protocol. The solid line represents the
boundaries of the two disconnected chains. It is totally reflective for
the incident particles on both sides. The dashed line is the world line
of the junction, which we will call interface. It could either be totally
transparent or partially permeable, depending on the types of theories
A and B.

whose scattering angle parameter θ is determined by the
transmission coefficients. Our analytic and numerical results
show that α has a quadratic dependence on the change of θ if
the prior and post-quench boundary conditions are of the same
type of S, while remaining 1

4 otherwise. The finite size fidelity
calculation further supports these results.

The rest of the paper is organized as follows. In Sec. II,
we introduce the general formalism for the permeable bosonic
conformal interface and its lattice realization. In Sec. III, we
analytically evaluate the free energy associated with the fidelity
and Loschmidt echo, and present the numerical results for
comparison. We discuss our results and related experimental
works in Sec. IV. Finally, we conclude in Sec. V.

This paper includes several appendixes for technical details.
In Appendix A, we present the leading order analytical
calculation of the free energy for the setups in Sec. III C.
In Appendix B, we illustrate an alternative approach with
one setup as an example. In Appendix C, we point out two
corrections to the free energy, which are complementary to
the argument made in the main text. Up to this point, we work
exclusively with the oscillator modes of the free bosons. In Ap-
pendix D, it is shown that the winding modes of the compacti-
fied bosons will not contribute to the free energy at the leading
order. Therefore, the results remain valid in the physical situa-
tion of connecting two compactified bosons of different radii.
In Appendix F, we prove one identity that will be used repeat-
edly in the analytical evaluation. We derive the scale invariant
interface for the free bosonic lattice in Appendix E. The details
of the numerical simulation are presented in Appendix G.

II. BOSONIC CONFORMAL INTERFACE

A. General formulation

The general constraint on an interface is the continuity
of the momentum flow across it. If we fold one side of
the system on top of the other, then the resulting interface
located on the boundary of the tensor theory (the crease of
the folding) becomes impenetrable and the momentum flow
should vanish there. This interface is naturally a conformal
invariant boundary state [1,4]. The interfaces in this paper are
boundary states living in the c = 2 boundary CFT.

Although the general classification of the boundary states is
still an open question [26], there are many successful attempts
to construct a subset of those bosonic boundary states. For
example, one may use the current operator rather than the
Virasoro generator to solve the zero-momentum flow condi-
tion. This idea dates back to the discovery of the Ishibashi state
[27] and has been applied to the multicomponent boson with a
general compactification lattice [26,28,29]. Additionally, the
fusion algebra has also been used to generate new boundary
states from the known ones, as shown in Refs. [26,30].

We here follow the presentation in Ref. [21], which imposes
the conformal invariant boundary condition on the classical
scalar fields and then quantize it to obtain the boundary state.
The interface obtained is the same as the one by using the
current algebra [26,28,29], but this viewpoint gives a more
intuitive scattering picture and has more transparent relation
to the discrete lattice model in Sec. II B.

Assuming two free boson fields φ1 and φ2 living on the
left and right half planes, respectively, the interface located at
x = 0 is characterized by the “gluing condition,”(

∂tφ
1

∂xφ
1

)
= M

(
∂tφ

2

∂xφ
2

)
. (1)

The derivatives here should be understood in the appropriate
left and right limits, for example, ∂xφ

1 is evaluated at x = 0−.
As argued before, the momentum components of the stress
tensor is continuous across the interface. As a consequence
M is an element of the Lorentz group O(1,1) and can be
parametrized as

M1(θ ) = ±
[
λ−1 0

0 λ

]
, M2(θ ) = ±

[
0 λ

λ−1 0

]
, (2)

where λ = tan θ for θ ∈ [−π
2 , π

2 ].
Several special choices of θ need to be noted.
(1) θ = 0, ± π

2 . In this case, λ (or λ−1) appears to be singu-
lar and the field on either side of the interface cannot penetrate.
The interface reduces to individual boundary conditions for the
boson on the left and right half planes: They are a combination
of the Dirichlet and Neumann boundary conditions. For
example, λ = 0 for M1 implies ∂xφ

1 = ∂tφ
2 = 0, which

means that the Dirichlet boundary condition is imposed on
the right and the Neumann boundary condition on the left.
Hereafter we shall denote this combination as “DN.” Similarly
M1(±π

2 ),M2(0),M2(±π
2 ) correspond to “ND,” “DD,” “NN,”

respectively.
(2) θ = ±π

4 . In this case, M1(θ ) characterizes a perfectly
transmitting interface. For example, there is effectively no
interface in the case of M1(π

4 ). We will denote it as “P” as
it corresponds to the traditional periodic boundary condition.
For the other three cases, despite picking up a phase, the two
counter-propagating modes are still fully transmitted across
the interface.

The physical significance of θ will be clear in the scattering
process described below. We rewrite Eq. (1) in the coordinates
t ± x and use ∂± = ∂t ± ∂x to extract the left- and right-going
modes. For example, ∂−φ2 will be a function of t − x and
hence represents a right-going mode on the right half plane.
This mode is one of the scattering modes that leave the
interface. On the other hand, ∂−φ1 and ∂+φ2 are modes that
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FIG. 2. Folding picture for the penetrable interface. (Left) World
line of the penetrable interface. ∂±φ1,2 denote the left- and right-going
modes in their respective domains. (Right) Folding operation that
sends φ2(x) to φ2(−x). The dashed line represents the impenetrable
boundary for the resulting tensor theory. The arrow represents the
incoming and outgoing particles scattered by the interface.

approach the interface from their respective domains. We can
therefore establish the scattering relation,(

∂+φ1

∂−φ2

)
= S

(
∂−φ1

∂+φ2

)
, (3)

and solve the S matrix for the two cases of M1 and M2,

S1(θ ) =
[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]
,

S2(θ ) =
[− cos 2θ sin 2θ

− sin 2θ − cos 2θ

]
. (4)

For generic values of θ , the interface is partially transmitting,
whose transmission coefficient is sin2 2θ .

We note that the S matrices are independent of the
wavelength, which agrees with the fact that the interface is
scale invariant.

We now work in the folding picture as shown in Fig. 2.
The boundary at x = 0 becomes impenetrable for the folded
system, and the resulting tensor theory admits a conformal
invariant boundary state. The folding sends φ2(x) to φ2(−x)
and hence the gluing condition becomes

∂t (sin θφ1 − cos θφ2) = 0, ∂x(cos θφ1 + sin θφ2) = 0,

(5)

for the case M = M1(θ ).
If we quantize the boson theory on the interface line x =

0, these gluing conditions become an identity for the boson
creation and annihilation operators. We shall interpret these
identities to be valid only when acting on the boundary states.
The mode expansion of free boson at x = 0 [31] is

φ(z,z̄) = φ0 − i

4πg
π0 ln zz̄

+ i√
4πg

∑
n�=0

1

n
(anz

−n + ānz̄
−n), (6)

where we take the following choice of the holomorphic and
antiholomorphic coordinates,

z = e
2πi(x−t)

T , z̄ = e
2πi(x+t)

T , (7)

with T being the time period. We end up with a set of operator
identities for each mode,

sin θa1
n − cos θa2

n = +(sin θā1
−n − cos θā2

−n

)
,

cos θa1
n + sin θa2

n = −(cos θā1
−n + sin θā2

−n

)
,

(8)

which is valid for the following boundary state,

|B〉 = exp

{
−
∑
n>0

1

n

(
a1

−n

a2
−n

)
S1(θ )

(
ā1

−nā
2
−n

)}|0〉, (9)

where S1(θ ) is precisely the scattering matrix in Eq. (3). The
calculation for the case M = M2(θ ) is completely analogous
and we just have a replacement of S1(θ ) by S2(θ ) in Eq. (3).

The boundary state expression in Eq. (9) will be used
extensively in the fidelity and Loschmidt echo calculation in
Sec. III.

So far the derivation is only for the noncompact bosons,
where the interface is determined by the “gluing conditions.”
For the case of connecting compact bosons of different radii,
we will need to generalize the relation in Eq. (8) to the
winding mode operator a0. Because the winding modes live
on a compactification lattice, not all θ can satisfy Eq. (8)
for a0. Appendix D reviews the derivation about how the
winding modes constrain the choice of θ . For example, the
S1(θ ) interface should satisfy

λ = tan θ = n2R1

n1R2
(10)

for coprime integer n1 and n2 and compactification radii R1

and R2 for the bosons on the two sides. This also suggests
that connecting two different CFTs will generate an interface
whose transmission coefficient are determined by the universal
parameters of the CFTs on both sides.

The winding modes, however, do not contribute to the
fidelity and echo exponent to the leading order, as shown in
Appendix D. So the derivations with the noncompact boson
boundary state in Eq. (9) holds true for the compact bosons.

B. A free boson lattice model

In this section, we consider a lattice model with the
bosonic interface at the center [9,22], which reduces to the one
considered in Sec. II A in the continuum limit [23]. Therefore,
it serves as a numerical tool to check our analytic results in
Sec. III.

We consider two harmonic chains with bosonic field φi

and conjugate momentum πi at the lattice site i. The left
and right chains are connected between site 0 and 1 with the
Hamiltonian,

H = 1

2

∑
i

π2
i + 1

2

∑
i �=0

(φi − φi+1)2

+ 1

2
(φ0,φ1)

[
1 + �11 �12

�21 1 + �22

](
φ0

φ1

)
, (11)
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where the 2 × 2 matrix � parametrizes the two-site interaction.
We performed the standard scattering analysis in Appendix E.
For modes with momentum k, the only possible scale invariant
S matrix is

S = −eika�, (12)

where a is the lattice constant. In the continuum limit a → 0,
the matrix � can be parametrized as

� = − lim
a→0

S =
[

λ2−1
1+λ2

−2λ
1+λ2

−2λ
1+λ2

1−λ2

1+λ2

]
, (13)

where λ ∈ R.
The lattice model in Eq. (11) with the bond interaction

defined in Eq. (13) will be used to check our analytic results
for both the Loschmidt echo and the fidelity.

III. BIPARTITE FIDELITY AND LOSCHMIDT ECHO

A. Definition

In this section, we define the fidelity and Loschmidt echo
and present their corresponding imaginary time path integral
diagrams. We will see that these path integrals are just the free
energy of boson with conformal interfaces (or boundaries).

Fidelity is the square of the overlap of the ground states of
the two Hamiltonians,

fidelity ≡ |〈ψ1|ψ2〉|2. (14)

For the systems we considered, |ψ1〉 is the ground state of the
two disconnected chains (of equal length L, hence “bipartite”)
and |ψ2〉 is that of the connected chains with the conformal
interface. Both of them can be produced by an imaginary
time evolution. Taking the horizontal axis as imaginary time
direction, the fidelity can be diagrammatically represented in
Fig. 3, where the slits represent the disconnected boundary
conditions, such as Dirichlet (D) and Neumann (N), and the
dashed line represents the conformal interface parametrized
by λ. The logarithmic fidelity is then (twice) the free energy
of this diagram,

F(fidelity) = − ln〈ψ1|ψ2〉2 = −2 ln |Z|. (15)

N

D

N
D λ

folding−−−→ L

DN λ

DN

FIG. 3. Fidelity of connecting two CFTs. The horizontal axis is
the imaginary time. Evolution along the two semi-infinite stripes
produces the ground states of the disconnected and connected chain
Hamiltonians. The right diagram is the result of folding the lower
part of the diagram up, so that all the boundaries are now boundary
states. The solid dot represents the boundary condition changing
(bcc) operator. Here D (Dirichlet), N (Neumman), and λ (permeable
interface parametrized by λ) are possible choices of boundary
conditions.

N

D

N
D

N
Dλ

folding−−−→ L

a
τ

b a

c

FIG. 4. Loschmidt echo of connecting two CFTs. Evolution along
the two infinitely extended sides produces the ground state of the
disconnected chain Hamiltonians. They sandwich the evolution of the
connected chains. In the folding picture on the right, a,b,c represent
the most general boundary conditions of the chains (for example, a

and c are DN according to the left figure).

The Loschmidt echo is also (square of) the overlap of the
two wave functions. One of them is the ground state of the
disconnected chains and the other is the ground state evolved
by the Hamiltonian of the connected chains,

L(t) ≡ |〈ψgnd|e−iH t |ψgnd〉|2. (16)

The imaginary time version L(τ ) = |〈ψgnd|e−Hτ |ψgnd〉|2 has a
path integral definition similar to Fig. 1, but to be consistent
with the fidelity diagram, we take the horizontal axis as
imaginary time and present it in Fig. 4. Viewing the diagram
as a partition function subject to the switching of boundary
conditions, the logarithmic Loschmidt echo is also the associ-
ated free energy. After obtaining the free energy in imaginary
time, we can analytically continue back to real time to get the
t dependence. For simplicity and comparison with the fidelity
result, we will take the length of both of the chains to be L

and set L 
 t , leaving t the only length scale in the echo
calculation (Fig. 6). The dependence on nonzero t

L
and the

asymmetry of the lengths of the chains will not be discussed
here (see the treatment in Ref. [25] for special values of λ).

If the interface is completely transparent, i.e., at the special
point of λ = 1, the tip of the slit can be regarded as a
corner singularity. According to Cardy and Peschel [32], the
singularity will contribute a term that is logarithmic of the
corner’s characteristic size, which is ln L in the fidelity and
ln τ in the Loschmidt echo. One would expect the fidelity and
echo to have power law decay with respect to these scales in
the long wavelength limit. In fact, the computations have been
done in Refs. [20,24,25,33,34] using either the Cardy-Peschel
formula or the integral version of the Ward identity. If the
slits’ boundary conditions are taken to be Dirichlet, we have
the universal behavior for the leading term [24,25],

F(fidelity) = c

8
ln L,

F(echo) = c

4
ln |τ | → c

4
ln |it + ε| ∼ c

4
ln t,

(17)

where we have performed analytic continuation τ → it + ε

with ε → 0 for the echo.
With the presence of the conformal interface, the tip of the

slit is no longer a corner singularity [32]. Its nature is clearer
in the folding picture shown in Figs. and 4 where the lower
half plane is flipped up on top of the upper half plane on both
the fidelity and echo diagrams. From the boundary CFT point
of view, the change of boundary conditions can be regarded
as inserting a bcc operator. The diagrams for the fidelity and
echo then become the one point or two point functions of
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the bcc operators, respectively, and the free energy’s leading
logarithmic term extracts their scaling dimensions.

B. Notation of boundary conditions

We use chemical reaction style to represent the change of
boundary conditions. Taking the example of the echo diagrams
in Fig. 4, there are three boundary conditions a,b,c in the
folding picture, which represents the status of the two ends
of the chain before and after the quench. The choice of a
uniform c boundary condition on the far end of the chain is
to isolate the effect coming from the bcc on the ab interface.
The process a + c → b + c represents the change of boundary
condition from the combination a/c prior to the quench to b/c
after the quench. Since each letter can take a general conformal
interface defined by the S matrix in Eq. (4), we denote it as

Sa(θa) + Sc(θc) → Sb(θb) + Sc(θc). (18)

In most cases of the following, we will consider taking a = c

to remove the bcc operator from a to c at infinity. And we will
use the shorthand notation,

Sa(θa) → Sb(θb), (19)

to remind ourselves that we are isolating the boundary
condition change only on the joint of the two chains.

In the “cut-and-join” protocol we considered, a should be
one of “DD,” “DN,” “ND,” and “NN,” b is taken to be S1(θ )
or S2(θ ). The physical situation of connecting two compact
bosons (and our numerical simulation) corresponds to the
choice of S1(θ ), and we reserve the notation λ for this type
of the boundary condition. For instance, the notation for the
process presented in Fig. 4 is

DN → λ. (20)

Another interesting case is to take a or c to be a completely
transmitting interface, i.e., S2(π

4 ). This S matrix corresponds to
the traditional periodic boundary condition and we use symbol
“P” to denote it.

C. Analytic evaluation

In this subsection, we relate the free energy to the ampli-
tudes between the boundary states, and present the analytic
results.

We notice that there is only one apparent length scale in
these diagrams—the finite size L for fidelity and imaginary
time τ for the Loschmidt echo. These are the characteristic
size of the corners at the tip of the slits. Regulators are
necessary in keeping track of the scale dependence, otherwise
a dilation transformation can rescale both L and τ to 1 and
drop those scales. The introduction of the regulators is also
physically sensible when considering the lattice realization of
the systems.

We thus add small semicircles around the points where the
bcc operators reside, and then apply a series of conformal
mappings.

For the fidelity case, the regulators as well as the conformal
maps are depicted in Fig. 5.

We add a small blue semicircle to the folded strip in Fig. 3
as the UV regulator and map it to the upper half plane using

L

a b

c

z ξ

a bc b

a(= c)

w

FIG. 5. Mapping from a strip to the upper half plane ξ = exp( πz

L
).

The two black dots represent possible locations of the boundary
condition changing (bcc) operators. The dot inside the blue semicircle
has coordinate ξ = 1, which is the image of the point connecting a

and b boundaries. The other dot ξ = 0 corresponds to the connection
between a and c boundaries at −∞. To evaluate the diagram, we add
the outer blue semicircle centered at ξ = 1 with radius Rξ to be the
IR cutoff and map it to the cylinder with w = ln(ξ − 1).

ξ = exp(πz
L

). Then both ξ = 0 and 1 can host bcc operators.
We assume a = c such that the only bcc operator on the real
axis is the one enclosed by the blue semicircle around ξ = 1.
In order to evaluate this diagram, we add another semicircle
centered around ξ = 1 with radius Rξ (this will introduce
a correction as explained in Appendix C), and map it to a
cylinder of height π on the right by w = ln(ξ − 1). Finally
the cylinder diagram can be viewed as an imaginary time path
integral amplitude between the boundary states b and a,

Zab = 〈a|e−πH |b〉. (21)

The two end points of the ε radius semicircle on the z plane
are mapped to

exp
(
±π

ε

L

)
∼ 1 ± π

ε

L
. (22)

The bigger blue semicircle intersects the real axis at 1 ± Rξ

and so the width of the cylinder is

ln Rξ − ln
πε

L
= ln L + constant. (23)

The Loschmidt echo can be evaluated in the same way.
Again, we introduce two semicircles (blue in Fig. 6) as
regulators and then perform the conformal transformation
shown in Fig. 6. From the z plane to the ξ plane, we use
ξ = z

τ−z
to map the two slits to half of an annulus, which is the

same as the fidelity case. With one more conformal mapping
w = ln ξ , the diagram again becomes the cylinder partition
function between the two boundary states.

0 τ

z

0

ξ w

FIG. 6. The dashed (solid) lines are gluing (completely reflective)
boundary conditions. Red arrows are the directions of Hamiltonian
flow that propagates the dashed line boundary state to the solid line
boundary state. (Left) Diagram of the Loschmidt echo that reduces to
a partition function with imaginary time in the horizontal direction.
The blue semicircles of radius ε are the UV regulators and they are
identified as periodic boundaries in the direction perpendicular to the
red arrow (equal time slice). (Middle) Image of the map ξ = z

τ−z
.

The two semicircles have radii (τ/ε)±1, respectively. (Right) Image
of w = ln ξ . It is a cylinder by identifying the blue lines and the
standard radial quantization procedure can be applied.
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The height of the cylinder is still π . In the ξ plane, the
coordinates of the two end points of the small semicircle are
±ε
τ∓ε

∼ ±ε
τ

, while those of the larger semicircle are ∓ τ±ε
ε

∼ ∓τ
ε

.
Hence the width of the cylinder is

ln
τ

ε
− ln

ε

τ
= 2 ln τ + constant. (24)

One subtlety of the above description is that the two
semicircles in the center diagrams of Figs. 5 and 6 are not
precisely concentric. This can be resolved by the following
observation. There exists a conformal map ζ (ξ ) that maps the
nonconcentric circles to the two standard concentric circles of
radii 1 and R (R > 1) on the ζ plane [35]. Then the logarithmic
map w = ln ζ produces a cylinder of width ln R. In our case,
since the height of the cylinder is always π , the width of the
cylinder is a conformal invariant that only depends on the
cross ratio of the half annulus. The four intersection points of
two standard concentric circles on the ζ plane are (±1,0) and
(±R,0), whose cross ratio is

η = (1 + R)2

(1 − R)2
. (25)

Hence the width of the cylinder is ln
√

η−1√
η+1 . Since conformal

transformation preserves the cross ratio, the result is the same if
we use the cross ratio of the slightly nonconcentric diagrams of
Figs. 5 and 6. The calculation in Eqs. (23) and (24) equivalently
use the leading order approximation to η in the respective
geometries and thus get the leading order term in the width
of the cylinders. The slight deviation to the precise concentric
geometry will only bring in ε

L
, ε
τ

corrections to η and the
width parameter, which will not affect the fidelity and echo
exponents.

For the rest of this section, we should denote the width of
the cylinder as β. After obtaining the partition function on
it, we should set β = 2 ln L or 4 ln τ because the fidelity and
Loschmidt echo are both square of the amplitudes.

The actual boundary conditions on the blue lines, which are
the regulators in Figs. 5 and 6, are not important in the leading
order. Taking Fig. 5, for example, rather than using Eq. (21),
we can alternatively view the right panel as the amplitude
between the two blue boundary states |1〉 and |2〉,

Zab = 〈1|e−βHab |2〉, (26)

where Hab is the Hamiltonian with boundary condition a and
b. Since β is taken to be large, we expect the imaginary time
evolution (which is horizontal in this case) to project out only
the ground state |0ab〉. Hence the free energy is

F = − ln Zab ∼ − ln〈1|0ab〉〈0ab|e−βHab |0ab〉〈0ab|2〉
= βEc − ln〈1|0ab〉 − ln〈0ab|2〉, (27)

where Ec is the ground state/Casimir energy of Hab. We see
that different choices of the boundary conditions only change
the term independent of β. Thus in the leading order we can
choose any boundary conditions. The one we pick is the
simplest one: the periodic boundary condition that identifies
the two blue lines.

With these simplifications, we now set up the partition
function calculation of the general process Sa(θ1) → Sb(θ2).
We define a set of bosonic operators related to the ai

ns in Eq. (6)

through

bi
n = ai

n√
n

(
bi

n

)† = ai
−n√
n

,

(28)

b̄i
n = āi

n√
n

(
b̄i

n

)† = āi
−n√
n

,

for n > 0,i = 1,2, and group them compactly with the vector
notation,

bi = (
bi

1,b
i
2, · · ·

)
, b̄i = (

b̄i
1,b̄

i
2, · · ·

)
,

b†
i = ((bi

1)†,(bi
2)†, · · · ), b̄†

i = ((
b̄i

1

)†
,
(
b̄i

2

)†
, · · · ). (29)

The boundary state in Eq. (9) is then

exp

{
(b†

1b†
2)Ra(θ )

(
b̄†

1

b̄†
2

)}
|0〉, (30)

where Ra(θ ) = −Sa ⊗ I. Using even a lazier notation b =
(b1,b2), we have

|a〉 = exp{b†Ra(θ )b̄†}|0〉. (31)

The matrix notation here should be understood as a bilinear
expression. For example, b†Rb̄† actually means

∑
ij b

†
i Rij b̄

†
j

where the dagger does not transpose the vector.
The Hamiltonian of the folding picture has the mode expan-

sion in terms of the bn (with periodic boundary conditions),

H = 2π

β
(L0 + L̄0) = 4π

β
L0

= 4π

β

∑
n>0
i=1,2

n
(
bi

n

)†
bi

n

= 1

π
(b†

1b†
2)(I2 ⊗ M)

(
b1

b2

)

= 1

π
b†(I2 ⊗ M)b, (32)

where L0 + L̄0 are the dilation operator in CFT and we have
used the condition L0 = L̄0 when restricted to the space of the
boundary states. The infinite dimensional matrix M is

M = 4π2

β
diag(1,2, · · · ). (33)

The partition function in Eq. (21) becomes

Zab = 〈b|e−πH |a〉
= 〈0| exp{bRb(θ )b̄} exp{−b†(I2 ⊗ M)b}

× exp{b†Ra(θ )b̄†}|0〉. (34)

In Appendix A, we obtained the leading order term in
the free energy associated with Eq. (34). This expression is
also obtained by an alternative Casimir energy calculation in
Appendix B for one set of the boundary conditions. A naïve
application of the result, however, will lead to an apparent
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contradiction. One notable example is that when a = b = P,
the free energy given by Appendix A is − 1

12β, which should
actually be zero because this is the (regularized) free energy
on a plane without any interface. Physically this corresponds
to the situation that the boundary condition does not change
after joining the two chains. Hence the Loschmidt echo will
stay at 1 and the free energy is 0. This motivates a shift to the
free energy,

F = − ln Zab(β) + 1
12β, (35)

where 1
12β is the value of ln Zab(β) when a = b = P. A more

careful inspection in Appendix C shows the origin of the shift:
Part of it comes from the outer semicircles in the middle
panels of Figs. 5 and 6, and another part comes from the
nonhomogeneous term in the conformal transformation of the
stress tensor from annulus to cylinder.

After incorporating this shift, for the process (c is assumed
to be the same as a),

Si(θ1) → Sj (θ2), (36)

the free energy is

F(β) =
{

1
2 (|x| − x2)β i = j

1
16β i �= j,

x = θ2−θ1
π

. (37)

We can then set β = 2 ln L and 4 ln t (after analytic continuing
to real time) to get the fidelity and echo exponent.

As analyzed in Sec. III, S2(θ ) interpolates between DD and
NN, and S1(θ ) interpolates between DN and ND. In the region
accessible to the numerical calculation in the lattice model, we
choose the process DD → λ to verify

F =
{

1
8 ln L fidelity
1
4 ln t echo.

(38)

The same results have already been obtained for λ = P
[20,24,25,33,34]. Another process DN → λ is used to verify

F =
{

(x − x2) ln L fidelity

2(x − x2) ln t Loschmidt echo,
(39)

where λ = tan θ and x = θ
π

.
We also use a more artificial process P → λ to check the

shift of the curve,

F =
⎧⎨
⎩
(|x − 1

4 | − (
x − 1

4

)2)
ln L fidelity

2
(|x − 1

4 | − (
x − 1

4

)2)
ln t Loschmidt echo.

(40)

D. Numerical results and comparison

We use the lattice model introduced in Sec. II B to check
the analytic results. Our numerical calculations are based on a
boson Bogoliubov transformation and the explicit form of the
ground states. The readers are referred to Appendix G for the
technical details. In all the figures, we present the coefficients
of the logarithmic terms F

ln L
and F

ln t
and call them fidelity and

echo exponents, respectively.

0.0 0.1 0.2 0.3 0.4 0.5
θ
π

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
ch

o
E

xp
on

en
t

analytical numerical

10−2 10−1 100 101 102 103t
10−1

100

L
o
sc

h
m

id
t

E
ch

o

t−0.25

FIG. 7. The Loschmidt echo decay exponent of the process in
DD → λ, with gluing condition S1(θ ). We work with the total system
size N = 30 000 sites, and parameters m = 10−8, k = 1. The lattice
constant is set to unity. The blue dots representing the numerical
results lie on the red analytic line. As predicted, the echo exponents
are all equal for different values of θ . (Inset) An example of Loschmidt
echo with θ = 0.02π shown in the log-log scale. The dashed line
denotes the expected power law of t−0.25. Finite size effect does not
emerge before t = 103, which sets the right boundary of the range
we fit. See main text for the curve fitting method.

We first consider the process DD → λ and show its
Loschmidt echo of system size 30 000 sites in Fig. 7. The
inset is a typical Loschmidt echo diagram, whose linearly
decreasing behavior in the log-log scale indicates the expected
power law decay. We also provide the analytic prediction
L(t) ∼ t−0.25 [cf. Eq. (38) as contrast]. The exponent (negative
of the slope of the line in the log-log plot) is calculated by fitting
such diagrams for θ = 0.01nπ , n = 1, . . . ,50. The fitting is
performed before the finite size revival surges and error is
estimated by assuming independent and identical Gaussian
distribution for each point. We see that the exponents all match
with the 1

4 theoretical line within error.
We also calculated the companion process NN → λ and

obtain identical exponents as in Fig. 7. We avoid the technical
subtlety of the zero mode by adding a small mass regulator
m = 10−8. While the short-time decay pattern is different from
the DD case, the long-time behavior and exponents remain the
same for both echo and fidelity. We therefore do not present
the result here.

Next, we analyze the more interesting θ dependent process
DN → λ in which the boundary condition after joining is
determined by S1(θ ). We worked with a system containing
35 000 sites. A direct calculation with the mass regulator does
not perform very well in the small θ regime: The exponent is
slightly larger than the theoretical prediction. We therefore turn
to another regulator that shifts the far end boundary condition
DN to S1(δθ ) and consider the following process [see the full
notation in Eq. (18)],

S1(0) + S1(δθ ) → S1(θ ) + S1(δθ ). (41)

Since DN = S1(0), taking smaller and smaller δθ should
correspond to the original process. This “shift” regulator works
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FIG. 8. The slope of the free energy for (a) the Loschmidt echo
and (b) the bipartite fidelity of the process DN → λ. The total system
size is N = 35 000 sites with the same parameters as in Fig. 7. The
numerical value of exponents follow a quadratic relation as predicted.
There is still visible deviation from the analytic results in (a) due to
the subtlety of the zero mode; see the discussion in the main text.
(a) (Inset) From the top to bottom, we show the power law decay
of the Loschmidt echo with θ = 0.02π,0.12π and 0.24π . Finite size
effect does not emerge before t = 104. We use the same curve fitting
method as described in Fig. 7.

very well for the fidelity calculation, where δθ = 0.001π ,
while moderately good for the Loschmidt echo, where δθ =
0.003π ; see Fig. 8. The inset shows the θ dependence of the
power law decay, and the corresponding exponents follow the
quadratic relation as predicted in Eq. (39).

We finally consider the process P → λ in Fig. 9. Since
P = S1(π

4 ), the zero mode now occurs at θ = π
4 . We therefore

apply the shift regulator there,

S2

(
π

4

)
+ S2

(
π

4
+ δθ

)
→ S2(θ ) + S2

(
π

4
+ δθ

)
, (42)

where δθ = 0.003π . The θ dependent exponents are now
symmetric about θ = π

4 and quadratic on each side, in
accordance with Eq. (40).

Finally, we also provide the data for the process,

DN + P → λ + P, (43)
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FIG. 9. The decay exponent of (a) the Loschmidt echo and (b) the
bipartite fidelity of the process P → λ. The parameters are the same
as those in Fig. 8. The plot is symmetric with respect to θ = 0.25π as
predicted. The deviation around π

4 in (a) is small but visible; see the
discussion in the main text. (a) (Inset) From top to bottom, we show
the power law decay of the Loschmidt echo with θ = 0.04π,0.08π ,
and 0.18π . Finite size effect does not emerge before t = 104. We use
the same curve fitting method as described for Fig. 7.

to evaluate the influence of the boundary condition c. It does
influence the scaling dimension, which is not captured by our
analytic calculation. We note that the exponent still follows
the quadratic relation with a deficit of 1

8 at large value of θ .
The deficit approaches zero at θ = 0 where the setups are the
same before and after quench.

IV. DISCUSSION

In the computations we have done, the results of the
fidelity can be converted to that of the Loschmidt echo by the
replacement recipe ln L → 2 ln τ . The numerical factor of 2
comes from the fact that the Loschmidt echo has two slit tips.
Other than that, we see that they probe the same finite size
effect of the free energy associated with the new interfaces.
The computation of the (simpler) fidelity is diagnostic and so
in the following we will mainly discuss the echo properties.

245409-8



BIPARTITE FIDELITY AND LOSCHMIDT ECHO OF THE . . . PHYSICAL REVIEW B 96, 245409 (2017)

In Sec. III C, we have presented the analytic results for
the general process Si(θ1) → Sj (θ2) (assuming the far end
boundary condition c is the same as prior-quench condition a).

We find that if the conformal interfaces are of different
types, i.e., i �= j , the (long time) free energy is always 1

4 ln t ,
regardless of the theta angles. The two types of conformal
interface do not talk to each other because they are imposed on
different fields. If we treat S1 as a combination of the Dirichlet
and Neumann boundary conditions on the rotated φ fields as
in Eq. (8), then S2 imposes one of them on the dual field of
φ. In the derivation of the M matrix, these two correspond
to the parts of the Lorentz group that cannot be connected
even by taking singular values of λ. It is then reasonable
to find a universal echo between them. The special value of
DD → P also agrees with the existing general CFT result of
the completely transparent interface [20,24,25,33,34].

For the more interesting case where the boundary condi-
tions are of the same type, we have verified the quadratic angle
dependence numerically for DN → λ. We can first understand
the values of several special points on this curve.

(1) θ = 0. This is where the boundary condition does not
change before and after the quench, so the Loschmidt echo
stays at 1 and hence the exponent is 0.

(2) θ = π
2 . This is the process DN → ND. The chain is still

disconnected after the change of the boundary conditions. We
can thus view the problem as changing the boundary conditions
for two independent chains in the left panel of Fig. 4, one from
D to N and the other from N to D. The Loschmidt echo can then
be viewed as the product of the boundary two point correlation
functions of the associated bcc operators φDN and φND, whose
dimensions are both � = 1

16 . From this,

L(τ ) ∼ |〈φDN(0)φND(τ )〉|2|〈φND(0)φDN(τ )〉|2

∼ 1

|τ |8�
= 1

|τ | 1
2

, (44)

we get the exponent to be 1
2 , which agrees with Fig. 8.

(3) θ = π
4 . This is the process DN → P. The exponent

3
8 agrees with Refs. [24,34], where the difference with the
exponent 1

4 of DD → P is interpreted as twice the dimension
of the bcc operator φDN (� = 1

16 ) that transforms D to N.
In general, the result gives the full spectrum of operator

dimensions in the DN → λ transition. In the bosonic CFT we
consider, the primary fields are the vertex operators exp(νφ).
Depending on the convention, its dimension is a numerical
constant times ν2

8π
. So if ν depends linearly on θ (or x), then

we will end up with a quadratic relation whose expression can
already be fixed by the three special points above. In a rational
CFT theory, the number of primary fields is finite. It requires
further exploration to identify these bcc operators with the
existing primary fields and their physical significance.

On the other hand, in our lattice boson model, θ

parametrizes the bond interaction between the boundary sites
of the chains. Consequently it characterizes the strength of
the local perturbation to the Hamiltonian: Smaller θ means
smaller change of the bond interaction matrix � thus a smaller
perturbation and vise versa. Therefore, we expect that a larger
perturbation will result in a faster decay of the Loschmidt
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FIG. 10. The decay exponent of the Loschmidt echo for the
process in Eq. (43). The boundary condition c, which is now different
from a, changes the scaling completely from the analytic quadratic
curve. The deficit to the analytic value is roughly 1

8 for θ > π

4 , It
becomes smaller and approaches zero for small θ .

echo, which is reflected by the monotonically increasing decay
exponent (the absolute value of the exponent) in the figures.

Our numerical study also shows that the far end boundary
condition c, which in the large system size limit should not
impact the system, does change the scaling dimension in a way
that is not captured by our analytic computation. The reason
is that the boundary condition on the far end may introduce
additional bcc operators and thus change the free energy. It
would be interesting to have a CFT calculation that reproduces
the better numerical result in Fig. 10 for the process in Eq. (43).

This set of the boundary conditions can be realized by
connecting two compact bosons. There are already numerous
theoretical and experimental works on the boundary conditions
of a Luttinger liquid [6,36–39], which is the universal compact
boson theory of the (bosonized) one-dimensional (1D) electron
gas [40]. For example, gate voltage [39] may be used to twist
the left and right modes of the boson to create a boundary
condition interpolating between the normal open and fixed
boundary conditions. The interface studied in this paper is a
generalization which (in the folding picture) twists the two
independent bosons (two left modes plus two right modes) on
their connecting ends. An x-ray edge singularity experiment in
a quantum wire system, which uses ions to switch on and off
the boson interfaces should be plausible to detect the exponents
found in this paper.

V. CONCLUSION

In this paper, we analyzed a class of boson conformal
interfaces by computing the Loschmidt echo and the bipartite
fidelity.

We began by classifying the boundary states by two types
of S matrices S1(θ ) and S2(θ ), where the parameter θ—the
scattering angle—is determined by the transmission coefficient
of the interface. The conventional “DD,” “NN” boundary
conditions are among the special choices of θ in S1, and “DN”
and P are among the special choices of S2. The generic value
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of θ then interpolates between those conventional boundary
conditions. A harmonic chain model allows us to realize part of
these partially transmittive boundary conditions in a concrete
lattice setting.

The dynamical behavior of the Loschmidt echo reflects
the change of the conformal interfaces during the process
described in Eq. (36). Its power law decay exponent is related
to the scaling dimension of the bcc operator that mediates the
interfaces. Analytic computation shows that the exponent is
always 1

4 when the change of boundary conditions is made
between different types of S matrices (i �= j ), regardless of
the choice of θ . On the other hand, the exponent depends on
the difference of angles θ1 − θ2 as a quadratic relation when the
change is made between the same type of S matrices (i = j ).

These two features are tested in three typical processes
in the numerical calculation of the harmonic chains. After
using suitable regulators for the zero-mode problem, the
numerical results agree with the analytic calculation within
error. Although tangential to the nonequilibrium dynamics,
the fidelity calculation is used as a diagnostic tool and shows
better agreement of the exponent, providing more confidence
about our analytic results.

We proposed that the Loschmidt echo exponent in prin-
ciple should be detectable in an x-ray edge singularity-type
experiment on the quantum wire systems.
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APPENDIX A: GENERAL BOUNDARY STATE
AMPLITUDE

In this Appendix, we calculate the amplitude between
general boundary states defined in Eq. (34),

Zab = 〈0| exp{bRb(θ )b̄} exp{−b†(I2 ⊗ M)b},
exp{b†Ra(θ )b̄†}|0〉, (A1)

where

M = 4π2

β
diag(1,2, · · · ), I2 = diag(1,1),

Ri = Si(θ ) ⊗ I. (A2)

Si(θ1)

Sj(θ2)

FIG. 11. Partition function between the two boundary states of
Si(θ1) and that of Sj (θ2).

The graphical representation of the partition function is shown
in Fig. 11. Using the identity Eq. (F7) proven in Appendix F,
we have

Zab = 1

det(1 − R
†
ae−I2⊗MRb)

. (A3)

From | det(RaR
†
b)| = 1, free energy becomes

F = − ln |Zab| = ln | det(RaR
†
b − e−I2⊗M )|. (A4)

There are two cases to be considered, and we only take out the
leading order term in β.

(1) Case 1. S1(θ1) → S2(θ2), the free energy is

F = ln | det(R1(θ1)R†
2(θ2) − e−I2⊗M )|

= ln

∣∣∣∣det

[− cos 2�θI − e−M − sin 2�θI

− sin 2�θI cos 2�θI − e−M

]∣∣∣∣
=
∑

i

ln[1 − e−2λi ]

= β

4π2

∫ ∞

0
dx ln[1 − e−2x] = − 1

48
β. (A5)

(2) Case 2. Si(θ1) → Si(θ2), where i = 1 or 2,

F = ln det

[
cos 2�θI − e−M sin 2�θI

− sin 2�θI cos 2�θI − e−M

]

=
∑

i

ln[1 − 2 cos 2�θe−λi + e−2λi ]

= β

4π2

∫ ∞

0
dx ln[1 − 2 cos 2�θe−x + e−2x], (A6)

where �θ = θ2 − θ1. This integral is an even function of �θ

and the �θ > 0 case reduces to the polylog and Bernoulli
polynomial,

F = β

4π2
[−Li2(e2i|�θ |) − Li2(e−2i|�θ |)]

= β

4π2
[−2π2B2(|x|)]

= −β

2
B2(|x|) = β

2

(
|x| − x2 − 1

6

)
, (A7)

where x = �θ
π

.
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λ

DN y
L
2

0

-L
2

N

D

λ

FIG. 12. Partition function of Hamiltonian with DN and λ

boundary conditions. We unfold the cylinder and the new stripe
has N and D boundary conditions on the top and bottom plus a λ

junction in the middle. The length L here is the height of the unfolded
cylinder 2π .

APPENDIX B: ALTERNATIVE APPROACH
TO DN → λ AMPLITUDE

In this Appendix, we calculate the amplitude for the setup
shown in Fig. 12. In particular, the unfolded configuration has
D/N boundary conditions at y = ±L

2 and conformal interface
λ at y = 0. The general solutions can be written as

f (k,y) =
{

A1e
ikt cos

(
ky + 1

2kL
)

y < 0

A2e
ikt sin

(
ky − 1

2kL
)

y > 0.
(B1)

As demonstrated in Sec. II A, if we denote f (k,y < 0) ≡ φ1

and f (k,y > 0) ≡ φ2, the boundary condition at the junction
becomes

∂xφ1

∂tφ1
= λ2 ∂xφ2

∂tφ2
= tan2 θ

∂xφ2

∂tφ2
, θ ∈

[
0,

π

2

]
, (B2)

which implies

k = 2π

L

(
n ± θ

π

)
, n ∈ Z. (B3)

It is evident that the momentum k is shifted from the integer
multiple of 2π

L
due to the λ boundary condition in the middle.

The normalized eigenfunctions in Eq. (B1) serve as an
orthonormal basis in the mode expansion; we thus have

H = 1

2

∑
n∈Z

|k|
(

a†
nan + 1

2

)
, (B4)

where the momentum k is defined in Eq. (B3), and the creation
and annihilation operators are defined as usual,

an = 1√
2

(√
|k|gφn + i√|k|gπn

)
,

a†
n = 1√

2

(√
|k|gφn − i√|k|gπn

)
. (B5)

The Casimir energy is the vacuum energy brought up by
the finite size of the setup. From Eq. (B4) and using x ≡ θ

π
in

Eq. (B3), we have

Ec = 1

4

∑
n∈Z

|k| = π

2L

(∑
n∈Z

|n + x| +
∑
n∈Z

|n − x|
)

= π

2L

⎛
⎝∑

n�0

(n + x) +
∑
n<0

(−n − x)

+
∑
n�0

(−n + x) +
∑
n>0

(n − x)

⎞
⎠

= π

2L

⎛
⎝2

∑
n�0

(n + x) + 2
∑
n>0

(n − x)

⎞
⎠. (B6)

We use the Hurwitz zeta function,

ζH(s,x) =
∞∑

n=0

1

(n + x)s
, (B7)

to regularize the sum,

Ec = π

L

⎡
⎣∑

n�0

(n + x)−s +
∑
n�0

(n − x)−s − (−x)−s

⎤
⎦
∣∣∣∣∣∣
s=−1

= π

L
[ζH(−1,x) + ζH(−1, − x) + x]

= 1

2

(
−x2 + x − 1

6

)
, (B8)

where in the last line we use L = 2π for the unfolded
geometry.

Thus the free energy in the large β limit is

F = βEc = −β

2
B2(x), (B9)

which agrees with the boundary state calculation in
Appendix A.

APPENDIX C: CORRECTIONS TO THE FREE ENERGY

In the course of deriving the free energy subject to
various boundary conditions, we use conformal transformation
to convert the space-time diagram with slits to a cylinder
diagram, where the boundary state calculation in Appendix A
(and ground-state energy calculation in Appendix B) is
applicable. However, the free energy is not invariant under
the conformal transformation since the boundaries partially
break the conformal symmetry. In this appendix, we point out
two corrections—one from the outer boundary regulator and
the other from the inhomogeneous Schwartzian term to get the
correct exponent of the fidelity and Loschmidt echo.

It is discussed in Cardy and Peschel’s work [32] that the
boundary will contribute a logarithmic term in the free energy,

F = − c

6

(∫
M

K(x)d2x +
∫

∂M

kgds

)
ln L, (C1)

where M is a two-dimensional (2D) smooth manifold, K(x)
is the Gaussian curvature, kg is the geodesic curvature of the
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boundary of the manifold, and L is the system’s characteristic
length.

The boundary term was not previous noticed in the litera-
ture, but is actually important even in the simplest example of
the disk free energy. Consider an annulus on flat space with
inner radius r1 and outer radius r2. Its free energy is

F (annulus) = − c

6
ln

r2

r1
. (C2)

On the other hand the free energy of a disk of radius r2 is

F (disk) = − c

6
ln

r2

a
, (C3)

where a is the short distance regulator. The disk free energy is
completely contributed by its outer boundary with other parts
being conformal invariant. In fact, K = 0, kg = 1

r
for the disk,

and so

F (disk) = − c

6

(∫
∂M

kgds

)
ln

r2

a
= − c

6
ln

r2

a
, (C4)

where a is the short distance cutoff.
One can then interpret the annulus free energy as additive

contributions from its outer and inner surfaces,

F (annulus) = − c

6
ln

r2

a
+ c

6
ln

r1

a
= − c

6
ln

r2

r1
. (C5)

An annulus becomes a disk when its inner radius is of order
a, and we can see that the contribution from the inner surface
c
6 ln r1

a
becomes negligible compared to the one from the outer

surface.
A similar outer surface logarithmic term also appears in the

middle panel of Fig. 5. The conformal map from the z plane to
ξ plane brings the strip (with the small blue semicircle) to the
upper half plane with the semicircle around z = 1 extracted.
This is in close analogy with the truncated corner calculation
in Ref. [32]. In order to evaluate this diagram, we manually
add the large blue semicircle as IR cutoff, at the price of
introducing an additional contribution − c

6 ln r2
a

of free energy
which should not be there.

The same thing happened in Fig. 6 with a slightly different
mechanism. In the slit diagram (left panel in Fig. 6), the
regulators all have radii that are at the order of the short
distance cutoff. They will have negligible contributions to
the free energy. However, in the new ξ plane, we implicitly
switch to a new short distance regulator such that only the blue
semicircle around 0 contributes negligibly. The outer surface
radius, despite being the image of a small semicircle on the
z plane, will contribute a − c

6 ln r2
a

term on the ξ plane that
should not be there.

Therefore in both cases we should compensate c
6 ln r2

a
.

Using the cylinder parameters in Appendix A, the ξ plane
and z plane free energy are related through

Fz = Fξ + c

6
β, (C6)

for both the fidelity and Loschmidt echo.
The annulus on the ξ plane is called the staircase geometry

in Ref. [32] due to its evolution in angular direction. The
traditional radial quantization, however, has radial direction to
be the time. One can show that the Hamiltonian of the staircase
and rectangle has a shift due to the Schwartzian [32] of the

conformal transform,

Hξ = Hw − c

24π
β. (C7)

After the evolution for 2π (in the folding picture, the evolution
is only π but there are two bosons), the difference in the free
energy is

Fξ = Fw − c

12
β. (C8)

Gathering the two terms, we obtain the missing correction c
12β

between the slit and cylinder diagram,

Fz = Fw + c

12
β. (C9)

APPENDIX D: WINDING MODES OF COMPACT BOSONS

In this Appendix, we address the issue of the winding modes
of the compact bosons. In the main text, we have exclusively
worked with the oscillator modes of the free bosons. Here, we
shall show that winding modes for the compactified bosons
will have no contribution to the fidelity or Loschmidt echo in
the leading order. Therefore, our results are ready to be applied
in the case where two compactified bosons of different radii
are connected by a conformal interface [41].

Our derivation follows the general multicomponent bo-
son constraints in Refs. [26,28]. A review of the detailed
parametrization of the states can be found in Ref. [23].

1. Mode expansion of compact boson

Suppose the boson is compactified as φ = φ + 2πR; using
the notation in Ref. [31], we have the following mode
expansion:

φ(z,z̄) = φ0 − i

(
n

4πgR
+ mR

2

)
ln z + i√

4πg

∑
n�=0

an

n
z−n

− i

(
n

4πgR
− mR

2

)
ln z̄ + i√

4πg

∑
n�=0

ān

n
z̄−n,

(D1)

where n,m are the momentum and winding mode quantum
numbers.

In Ref. [31], the quantization is performed on an equal
time space. The boundary state we need here, however, lives
on x = 0—an equal-space slice. We therefore compact the
theory in the time direction with period T , and identify the
holomorphic and antiholomorphic coordinates as

z = exp

(
2πi

t − x

L

)
, z̄ = exp

(
2πi

t + x

L

)
. (D2)

This corresponds to exchange the x and t in Ref. [31].
We further identify

a0 =
√

4πg

(
n

4πgR
+ mR

2

)
,

ā0 =
√

4πg

(
n

4πgR
− mR

2

)
,

(D3)
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to obtain the expression uniform for all the modes,

i∂zφ =
∑

n

1√
4πg

anz
−n−1. (D4)

2. Gluing condition for the winding modes

We recall that the gluing condition is written as(
∂+φ1

∂−φ2

)
= S(θ )

(
∂−φ1

∂+φ2

)
. (D5)

Upon folding φ2 to the negative axis, its ∂x derivative becomes
−∂x , so [

∂+φ1

∂+φ2

]
= S

[
∂−φ1

∂−φ2

]
. (D6)

In terms of the holomorphic coordinates defined in Eq. (D2),

∂+ = 4πi

T
z̄∂z̄, ∂− = −4πi

T
z∂z, (D7)

the S matrix establishes a relation between the modes,∑
n∈Z

(
ā1

nz̄
−n

ā2
nz̄

−n

)
= −S(θ )

∑
n∈Z

(
a1

nz
−n

a2
nz

−n

)
. (D8)

At the boundary x = 0, z̄ = z−1, we have

ai
n + (

S−1
ij

)
ā

j
−n = 0. (D9)

The solution of the n �= 0 constraints is exactly the boundary
state in Eq. (9).

We specialize to S = S1 to solve the n = 0 constraint. We
introduce the compactification lattice and its dual [26,28]

M = (m12πR1,m22πR2), M∗ =
(

n1

R1
,
n2

R2

)
, (D10)

to rewrite the zero-mode part as

ai
0 + S−1

ij ā
j

0 = 0 ⇒
(

M + 1

g
M∗
)

= S1

(
−M + 1

g
M∗
)

,

(D11)

which is basically the multicomponent boson winding con-
straints given in Refs. [26,28]. The solution gives the interface
parameter λ,

λ = tan θ = n2R1

n1R2
= −m1R1

m2R2
, (D12)

and the conformal boundary state,

gS1

∑
S1

ein1φ0−im1φ̄0 |n1,m1〉|n2,m2〉, (D13)

where
∑

S1
is the summation consistent with the constraint in

Eq. (D12). The g factor can only be determined by the Cardy
condition [1]. Since it is not important for what follows, we
shall not include the calculation here.

Since S = S2 is effectively S1 on the dual boson, we can
expect that it will end up in the same expression as in Eq. (D13),
but with a different constraint on the winding number,

M = cot θ

g

[
0 −1

1 0

]
M∗. (D14)

3. Winding mode contribution to the partition function

We now calculate the winding mode part of the partition
function as shown in Fig. 11,

Z = 〈Sj (θ2)|e−πH |Si(θ1)〉, H = 2π

β
(L0 + L̄0). (D15)

For boundary states, we can simply replace L0(L̄0) with
a0(ā0).

For the amplitude between the same boundary states
λ1 = λ2, we have the winding mode contribution as

Z0 �
∑
Si

g
Si
g

Sj
exp

{
−4π

β
2πg

(
n1

4πR1g
+ m1R1

2

)2}
,

(D16)
where the equality only is only taken when the two boundary
states are identical.

In the limit β → ∞, Eq. (D16) can be approximated by a
simple 2D integral,

Z0 ≈ g
Si
g

Sj
β

∫
dxdy exp

{
−8π2g

(
x

4πR1g
+ yR1

2

)2}
.

(D17)

The winding mode thus can contribute at most a ln β term to
the free energy. Compared to the result in Appendixes A and
B, we conclude that the winding mode contribution will not
present in the leading order of the large β limit.

APPENDIX E: CONFORMAL INTERFACE IN FREE
BOSONIC LATTICE

In this Appendix, we demonstrate how to realize the
conformal interface in a lattice harmonic chain defined in
Sec. II B,

H = 1

2

∑
i

π2
i + 1

2

∑
i �=0

(φi − φi+1)2

+ 1

2
(φ0,φ1)

[
1 + �11 �12

�21 1 + �22

](
φ0

φ1

)
, (E1)

where the matrix � parametrizes the two-site interaction
between site 0 and 1. We set up the plane wave scattering
problem across the interface with the following ansatz [the use
of (n − 1) in φB

n simplifies the calculation]

φn =
{
A−eiωt−inka + A+eiωt+inka n � 0
B−eiωt−i(n−1)ka + B+eiωt+i(n−1)ka n � 1,

(E2)

where a is the lattice constant. The solution on both semi-
infinite chains is gapless with the dispersion relation ω =
|2 sin ka

2 |. The S matrix connecting them can be found by
relating the incoming and outgoing amplitudes,(

A+
B−

)
= −

[
�11 + eika �12

�21 �22 + eika

]−1

×
[
�11 + e−ika �12

�21 �22 + e−ika

](
A−
B+

)
, (E3)
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and the explicit expression is

S = −1

det � + e−ikatr� + e−2ika

[
det � + �11e

−ika + �22e
ika + 1 −2i sin ka�12

−2i sin ka�21 det � + �11e
ika + �22e

−ika + 1

]
. (E4)

The reflection and transmission coefficients associated with
this interface contained in the S matrix and both of them have
to be k independent to form a conformal interface [22]. A
necessary condition is that |S12| must be k independent. If
�12 = �21 = 0, we have

S11 = − �11 + eika

�11 + e−ika
, (E5)

which is not scale invariant. The only remaining possibility is

det � = −1, tr� = 0, (E6)

which leads to a scale invariant S matrix,

S = 1

1 − e−2ika
(−2i sin ka)� = −eika�. (E7)

In this continuum limit where a → 0, the matrix � can be
parametrized as

� = − lim
a→0

S =
[

λ2−1
1+λ2

−2λ
1+λ2

−2λ
1+λ2

1−λ2

1+λ2

]
, (E8)

where λ ∈ R is the parameter for S1(θ ), as introduced in
Sec. III B.

We use this two-site interaction to model the S1(θ )-type
conformal interface, as they give the same S matrix in
the continuum limit. Therefore, the large t behavior of
its Loschmidt echo should match with our field theoretic
prediction.

APPENDIX F: A DETERMINANT IDENTITY FOR
THE BOUNDARY STATE AMPLITUDE

In this Appendix, we provide more details for calculating
the amplitude Zab in Sec. III. We start to prove the following
identity for a real symmetric matrix M ,

e−b†Mbeb†Rb̄† = eb†e−MRb̄†
e−b†Mb, (F1)

where b and b̄ are vectors of bosonic operators. The matrix
notation here should be understood as a bilinear expression as
explained below Eq. (31).

To prove Eq. (F1), we first consider the special case where
R = I. We diagonalize M = OT �O and rotate the two sets
of boson operators to the diagonal basis,

b†Mb = d†�d d = Ob d̄† = OT b̄†, (F2)

where we understand b̄† as a column vector independent of b†.
Thus the whole expression can be written as

e−b†Mbeb†b̄† = e−d†�ded†d̄† =
∏

i

e−λid
†
i di ed

†
i d̄

†
i . (F3)

We recall for [X,Y ] = sY ,

eXeY = eexp(s)Y eX, (F4)

which is a solvable case of the Baker-Campbell-Hausdorff
formula. Upon taking X = −λid

†
i di , Y = d

†
i d̄

†
i , we have

[−λid
†
i di,d

†
i d̄

†
i ] = −λid

†
i d̄

†
i , (F5)

and so s = −λi for each λi . This enables us to commute those
exponentials,

e−b†Mbeb†b̄† =
∏

i

ee−λi d
†
i d̄

†
i e−λid

†
i di = eb†e−M b̄†

e−b†Mb. (F6)

For the general case where R �= I, we take d̄∗ = OT Rb̄∗. This
will not change the commutation relation of d, and the role of
b̄ is decorative in Eq. (F5). Hence the rest of the proof follows
the same way.

A direct consequence of Eq. (F1) is the following:

Zab = 〈0|ebR∗
a b̄e−b†Mbeb†Rb b̄† |0〉 = 1

det(1 − R
†
ae−MRb)

,

(F7)
where |0〉 is the vacuum for b and b̄.

One can use the identity in Eq. (F1) to reduce Zab to

Zab = 〈0| exp{bR∗
a b̄} exp{b†e−MRbb̄†}|0〉, (F8)

then a direct application of the MacMahon master theorem,

〈0| exp{b1Xb2} exp{b†
1Yb†

2}|0〉 = 1

det(1 − XT Y )
, (F9)

proves Eq. (F7).

APPENDIX G: NUMERICAL COMPUTATION
OF BIPARTITE FIDELITY AND LOSCHMIDT ECHO

In this Appendix, we provide technical details about the
numerical calculation of the bipartite fidelity and Loschmidt
echo. Our strategy takes advantage of the symplectic structure
of the bosonic Bogoliubov transformation and explicitly con-
structs the “BCS”-like ground state. With slight modification
[42], one can work out its fermionic version and apply to
quadratic fermion models in Refs. [20,25].

During the course of derivation in this and other appendixes,
we will repeatedly use the combinatorial identity called the
McMahon master theorem,

〈0| exp
{

1
2biXij bj

}
exp

{
1
2b

†
i Yij b

†
j

}|0〉 = det−
1
2 (1 − XY ),

(G1)
for symmetric matrix X and Y and set of independent bosonic
creation operators b

†
i . One can prove it for (simultaneously)

diagonalizable matrices and then claim its legitimacy for its
combinatorial nature.
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1. Boson Bogoliubov transformation

We consider the following quadratic bosonic Hamiltonian:

Ĥ = 1

2
(b†,−b)M

(
b

b†

)
, M =

[
A −B∗

B −A∗

]
, (G2)

where b ≡ (b1, . . . ,bn)T is a vector of bosonic annihilation
operators. The matrix M consists of a n × n Hermitian block
A which plays the role of a single-particle Hamiltonian in
the fermionic case and symmetric block B of the pairing
interaction.

We want to do a Bogoliubov transformation, which uses a
2n × 2n matrix S to define a diagonal basis,

(a,a†) ≡ (b,b†)S, (G3)

of the Hamiltonian. The transformation is canonical, meaning
that it preserves the commutation relation,

J ≡
[

0 I

−I 0

]
=
[(

a

a†

)
,(a a†)

]
= ST

[(
b

b†

)
,
(
b b†)]S

= ST JS, (G4)

where we have used the compact notation of the sort
([b,b†])ij = [bi,b

†
j ] to denote the commutator matrix. The

appearance of J makes the symplectic nature of the problem
manifest and we find S is in the symplectic group Sp(2n,C)
[42,43]. Furthermore, the requirement that a† is a complex
conjugation of a leads to the block structure of S,

S =
[
u v∗

v u∗

]
. (G5)

And the blocks are constrained by the symplectic property,

u†u − v†v = I, (G6)

uT u − vT v = 0. (G7)

With these conditions, the Hamiltonian in basis a becomes
[the use of (b†,−b) rather than (b†,b) can be appreciated in
this step]

H = 1

2
(a†, − a)(SM(S)−1)

(
a

a†

)
. (G8)

Quiet unusually, the diagonalization is performed by the
symplectic group element.

To proceed, we introduce the real basis,(
b

b†

)
= C

(
φ

π

)
= 1√

2

[
1 i

1 −i

](
φ

π

)
, (G9)

in which the Hamiltonian is

Ĥ = 1

2
(φ π )

[
Re(A − B∗) −Im(A) + Im(B)

Im(A) + Im(B) Re(A + B)

](
φ

π

)

= 1

2
(φ π )M

(
φ

π

)
. (G10)

It is not hard to check that M is real and symmetric.
The general solution of the diagonalization problem is hard

[44], however, the positive definite M (and hence M) case can
be solved by Williamson’s theorem [44–47], which states the

existence, uniqueness (up to reordering of eigenvalues), and
explicit construction of the matrix S ∈ Sp(2nR) such that

M = S
[

d

d

]
ST , (G11)

where the diagonal matrix d are positive eigenvalues of iJM.
After some algebra, we have

M = J (C−1)T SCT J−1

[
d

−d

]
CST C−1. (G12)

One can show that

S ≡ CST C−1

is the required symplectic matrix in the complex basis.
We will not elaborate on Williamson’s theorem and its proof

(see proofs in Refs. [45–47] and also a recent application in
the entanglement entropy context [48]). Instead we will show
in Appendix G 5 that for the problem of the harmonic chain
we are interested in, the diagonalization can be easily done
without using the general recipe in the Williamson theorem.

2. Ground state in b Basis

Suppose we have obtained the required matrix S, the ground
state will be the vacuum of the annihilation operators defined
in Eq. (G3) and in the b basis it satisfies:

(biuij + b
†
i vij )|0〉a = 0. (G13)

If the matrix u is invertible, then we can introduce a matrix
T = vu−1 to rewrite Eq. (G13) as

(bi + b
†
j Tji)|0〉a = 0. (G14)

The constraint Eq. (G7) on the blocks of u and v (followed by
the symplectic constraint of S) implies that T is a symmetric
matrix. With the observation of

exp
{− 1

2b
†
j Tjkb

†
k

}
bi exp

{
1
2b

†
j Tjkb

†
k

} = bi + Tij b
†
j , (G15)

we solve the ground state,

|0〉a = det
1
4 (1 − T †T ) exp

{− 1
2b

†
j Tjkb

†
k

}|0〉b, (G16)

where the normalization is given by the McMahon master
theorem Eq. (G1). Apply constraint in Eq. (G6), it simplifies
to the top left corner of the symplectic matrix,

det
1
4 (1 − T †T ) = |det(u)|− 1

2 . (G17)

Equation (G16) takes a similar form as the superconducting
ground state, with the pairing wave function Tij determined by
the Bogoliubov transformation. In the next section, we will see
that the normalization factor gives the fidelity and Loschmidt
echo.

3. Boson fidelity

Fidelity is defined as the (squared) overlap of ground states
of two different bosonic Hamiltonians.

We start with a quadratic bosonic Hamiltonian Ĥ0 in the b
basis, as in Eq. (G2). From the discussion in Appendix G 1,
we are able to diagonalize it in the a basis for positive definite
M . At t = 0, the Hamiltonian becomes Ĥ1, which is still
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written in the b basis, but is diagonalized in a new basis c.
The corresponding Bogoliubov transformations read

(b,b†)S0 = (a,a†), (b,b†)S1 = (c,c†), (G18)

and so

(a,a†) = (c,c†)
(
S−1

0 S1
)−1

. (G19)

One realizes that Eq. (G19) is another Bogoliubov transforma-
tion and so the corresponding matrix has the block structure,

S−1
1 S0 =

[
u1 v∗

1

v1 u∗
1

]
. (G20)

Thus |0〉c is related to the |0〉a in the same way as in Eq. (G16).
Their overlap is therefore given by the normalization factor,

|a〈0|0〉c|2 =
∣∣a〈0| exp

(− 1
2a

†
j T

jka
†
k

)|0〉a
∣∣2

|det(u1)| = 1

|det(u1)| .
(G21)

4. Boson Loschmidt echo

The Loschmidt echo is defined as the (squared) overlap of
the evolved state,

|0〉a(t) ≡ e−iĤ1t |0〉a, (G22)

with |0〉a the ground state of the Hamiltonian Ĥ0 before the
quench. We introduce a dynamical basis,

ai(t) = e−iĤ1t aie
iĤ1t , (G23)

which annihilate the evolved state at time t : ai(t)|0〉a(t) =
0. Upon using the diagonal basis Ĥ1 = ∑

i Eic
†
i ci , the

Bogoliubov transformation at time t can be represented as
a chain of symplectic transformation,

(a(t),a†(t)) = e−iH t (a,a†)eiHt

= (a,a†)S−1
0 S1diag(eiEt ,e−iEt )S−1

1 S0. (G24)

It is evident that the evolved state |0〉a(t) is related to the |0〉a
in the same way as in Eq. (G16). The overlap, as we have seen

in the fidelity case, is the normalization factor of the “BCS”
ground state. It is related to the top left block of the Bogoliubov
transformation in Eq. (G24),

L(t) = |a〈0|0〉a(t)|2 = |det(u†
1e

iEtu1 − v
†
1e

−iEtv1)|−1. (G25)

5. Harmonic chain

In this subsection, we explicitly construct the matrix S for
the case of the harmonic chain introduced in Sec. II B. In the
basis defined in Eq. (G9), the Hamiltonian for 1D harmonic
chain is

Ĥ = 1

2
(φ π )M

(
φ

π

)
= 1

2
(φ π )

[V
I

](
φ

π

)
, (G26)

where V is real symmetric matrix that can be diagonalized
as V = OD2OT . The matrix V depends on the boundary
condition, but positive definiteness is the only requirement
here.

The matrix S that diagonalizes M,

M = S
[
D

D

]
ST , (G27)

is given by the following real symplectic matrix:

S ≡
[OD1/2

OD−1/2

]
. (G28)

Thus the Hamiltonian is diagonalized as

M = S−1

[
D

−D

]
S, (G29)

where the Bogoliubov transformation take the desired block
form,

S = CSC−1 =
[
O(D1/2 + D−1/2) O(D1/2 − D−1/2)

O(D1/2 − D−1/2) O(D1/2 + D−1/2)

]
.

(G30)
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