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Quasiparticle entropy in superconductor/normal metal/superconductor proximity junctions
in the diffusive limit
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We discuss the quasiparticle entropy and heat capacity of a dirty superconductor/normal metal/superconductor
junction. In the case of short junctions, the inverse proximity effect extending in the superconducting banks
plays a crucial role in determining the thermodynamic quantities. In this case, commonly used approximations
can violate thermodynamic relations between supercurrent and quasiparticle entropy. We provide analytical and
numerical results as a function of different geometrical parameters. Quantitative estimates for the heat capacity
can be relevant for the design of caloritronic devices or radiation sensor applications.
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I. INTRODUCTION

Recently a growing interest has been put on the inves-
tigation of thermodynamic properties of nanosystems where
coherent effects can be both of fundamental interest and useful
for applications [1–5]. In particular, superconductor junction
systems have attracted interest as they exhibit phase-dependent
thermal transport enabling coherent caloritronic devices [3,6–
11] and have properties useful for cooling systems in solid-
state devices [12–15]. Reciprocally, they enable conversion
between thermal currents and electric signals, leading to
applications in electronic thermometry [3,16,17], bolometric
sensors, and single-photon detectors [18–25]. In such applica-
tions, detailed understanding of the thermodynamic aspects
of hybrid superconducting/normal metal (SN) structures is
crucial, in particular, the interplay between the energy and
entropy related to quasiparticles and supercurrents.

The entropy S of noninteracting quasiparticles at equilib-
rium is determined generally by their density of states (DOS).
In the superconducting state, it is modified by the appearance
of an energy gap in the spectrum. In extended Josephson junc-
tions, such as superconductor/normal metal/superconductor
(SNS) structures, the modification of the DOS depends both on
the formation of Andreev bound states inside the junction and
the inverse proximity (IP) effect in the superconducting banks,
both being modulated by the phase difference ϕ between the
superconducting order parameters [26,27]. Reflecting the fact
that the Andreev bound states carry the supercurrent I across
the junction, a thermodynamic Maxwell relation,

dS

dϕ
= − h̄

2e

dI

dT
= − d2F

dT dϕ
(1)

connects the entropy and the supercurrent to the temperature
T and phase derivative of the free-energy F . The entropy
in superconductors can be expressed in terms of the DOS
[28] or in terms of Green’s functions [29,30]. Moreover,
the phase-dependent part of S can be obtained from the
current-phase relation (CPR) I (T ,ϕ) [26,31] by applying
Eq. (1), a contribution important in short junctions [32,33].
The different expressions are mathematically equivalent (see,
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e.g., Refs. [34,35]). Such equivalences however can be broken
by approximations: in particular, the rigid-boundary condition
(RBC) approximation [26,31] in which the inverse proximity
effect in the superconductors is neglected, invalidates DOS-
based expressions for entropy. This approximation predicts
successfully many properties of weak-link structures with
large superconducting banks compared to the junction region,
but as we discuss below, it can be misleading for evaluating
thermodynamic quantities of short junctions.

Heat capacity [36–38] and free-energy boundary contribu-
tions [35,39–41] in SN systems were considered in several
previous works also experimentally [42,43] close to the
critical temperature Tc. The inverse proximity effect in the
superconducting banks of diffusive SN structures also is
studied well [26,31,41,44]. The entropy and heat capacity
in diffusive SNS junctions were discussed in Refs. [45,46]
but neglecting the inverse proximity effect, which limits the
validity of the results to long junctions only.

In this paper, we discuss the proximity effect contributions
to the entropy and heat capacity in SNS structures of varying
sizes. We also point out reasons for the discrepancies that
appear with the RBC approximation in the quasiclassical
formalism. We provide analytical results for limiting cases
and discuss the crossover regions numerically.

The paper is organized as follows. In Sec. II we introduce
the theoretical formalism, based on the Usadel equations and
all basic definitions. In Sec. III we discuss the origin of
inconsistencies in the RBC approximation. In Sec. IV we
present quantitative results for the entropy inside the inverse
proximity region and the total entropy. We also show results for
the heat capacity in Sec. V and the effect of inverse proximity
contributions on this quantity. Section VI concludes with a
discussion.

II. THE MODEL AND BASIC DEFINITIONS

Here we consider a Josephson junction as schematically
depicted in Fig. 1(a) where two superconducting (S) banks
are in clean electric contact with a normal (N) diffusive wire
of length LN . The S and N parts are characterized by cross
sections AS,N and electrical conductivities σS,N , respectively.
Microscopically, the two diffusive regions are characterized
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FIG. 1. (a) Schematic of a SNS junction consisting of two
superconducting (S) leads in clean electric contact with a normal (N)
diffusive nanowire of length LN . The S and N parts have cross sections
AS,N and conductivity σS,N . At distances LS � ξS from the interface,
the properties of the leads approach that of bulk superconductor (S′).
(b) Normalized DOS N (E,x) for σSAS/σNAN = 1, LN/ξN = 1, and
phase difference ϕ = 0.

by the diffusion coefficients DS,N and DOS per spin N0,S

and N0,N at the Fermi level. These quantities are related to
conductivities via σj = 2e2DjN0,j where the factor 2 takes
into account spin degeneracy.

The presence of superconducting leads induces supercon-
ducting correlations in the electrons in the normal metal. The
correlations at energy E are associated with a characteristic
coherence length ξE , which in general may differ from the
superconducting coherence length ξN,S ≡ √

h̄DN,S/|�|. The
superconductors have order parameter � with phase difference
ϕ across the junction. We also assume that the superconductor
material has critical temperature Tc in bulk.

The entropy density S and thus the total entropy S(T ,ϕ) =∫
dx S(x,T ,ϕ) can be written in terms of the quasiparticle

spectrum,

S(x,T ,ϕ) = −4N0

∫ ∞

−∞
dE N (E,x,ϕ)f (E,T ) ln f (E,T ),

(2)

where N (E,x,ϕ) is the (reduced) local density of states and
f (E,T ) = 1/(eE/T + 1) is the Fermi distribution function.
The normal-state result, without the proximity effect, is found
by setting N (E,x,ϕ) = 1 in the above expression, giving
Sn(T ) = 2π2N0T/3. The entropy density S(x,T ,ϕ) can also
be written as

S(x,T ,ϕ) = Sn(x,T ) − dFs(x,T ,ϕ)

dT
, (3)

where Fs = F − Fn is the difference in the free-energy
density between superconducting and normal states.

A functional for the free-energy density difference can
be expressed in terms of isotropic quasiclassical Green’s
functions ĝ in the dirty limit [30,47–49],

Fs = N0|�|2 ln
T

Tc

+ πTN0

∑
ωn

[ |�|2
ωn

+ L(iωn)

]
, (4)

L = tr

{
ωn[sgn(ωn) − τ3ĝ] − (�τ+ + �∗τ−)ĝ + D

4
(∇̂ĝ)2

}
,

(5)

where τj ’s indicate Pauli matrices in the Nambu space and
τ± = (τ1 ± iτ2)/2. The above expression assumes the quasi-
classical constraint ĝ2 = 1. The long gradient ∇̂X = ∇X −
i[Aτ3,X] contains the vector potential A = (Ax,Ay,Az). The
superconducting order parameter is � = |�|eiφ and ωn =
2πT (n + 1

2 ) are the Matsubara frequencies. The reduced den-
sity of states reads N (E,x,ϕ) = 1

2 Re tr τ3ĝ(E + i0+,x,ϕ).
Here and below, e = h̄ = kB = 1 unless otherwise specified.

The quasiclassical Green’s functions can be determined by
the Usadel equation [47], which is a Euler-Lagrange equation
δF
δĝ

= 0 for the free-energy F = ∫
dx F , under the constraint

ĝ2 = 1. Explicitly we have

D∇̂ · (ĝ∇̂ĝ) − [ωnτ3 + �τ+ + �∗τ−,ĝ] = 0. (6)

The supercurrent I along the x axis at a given position x0 can
be expressed in terms of the above functional as

I (x0) = δF

δAx(x0)
= 2e

h̄

dF

dϕ
, (7)

where ϕ is an order parameter difference between external
leads connected at x = ±∞. Note that the current generally
is conserved only if the order parameter � is self-consistent
[50], δF/δ� = δF/δ�∗ = 0 [51]. In non-self-consistent cal-
culations, I is conserved only in the N region where �(x) = 0.
Below, when we show non-self-consistent results for I, x0 is
in the N region. The second equality in Eq. (7) follows from
the gauge transformation

F [eiχτ3/2ĝe−iχτ3/2,�,Ax, ϕ] = F [ĝ, �e−iχ , Ax − 1
2∂xχ,

ϕ − χ (∞) + χ (−∞)]. When computing I (x0) from a phase
derivative of F for non-self-consistent �(x), it is necessary to
note that a gauge transform ∂xχ = 2Ax(x) eliminating Ax(x)
does not only adjust ϕ, but also adjusts � �→ �e−iχ . Below,
we take this phase factor into account in phase derivatives so
that Eq. (7) also applies in non-self-consistent results.

From Eq. (1) and known current-phase relations [31],
the entropy associated with Andreev bound states can also
be obtained up to a ϕ-independent term. From the Kulik-
Omel’yanchuk (KO) result [52] for short junctions in the
diffusive limit,

I (T ,ϕ) = 4πT

eRN

∑
ωn

� cos(ϕ/2)

n

arctan
� sin(ϕ/2)

n

, (8)

S(T ,ϕ) − S(T ,ϕ = 0)

= − h̄

2e

∫ ϕ

0
dϕ′ dI

dT
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= πh̄

2e2RNT 2

∫ |�|

|�||cos ϕ

2 |
dE E sech2

(
E

2T

)

× ln
|�|∣∣sin ϕ

2

∣∣ +
√

E2 − |�|2 cos2 ϕ

2√
|�|2 − E2

, (9)

where RN = LN/(σNAN ) is the resistance of the normal re-
gion and 2

n = ω2
n + |�|2 cos2(ϕ/2). The temperature depen-

dence of �(T ) is ignored, which is valid at low temperatures.
The ϕ = 0 term can be determined to be S(ϕ = 0) = 0 (see
below). This result assumes RBC, and including the inverse
proximity effect in it would qualitatively result in an increase
in LN by a multiple of the coherence length [26].

For simplicity, in this paper we assume transparent SN
interfaces, described by the quasi-one-dimensional (quasi-1D)
boundary conditions (e.g., at the left SN contact x = 0)
[53,54],

ĝ|x→0− = ĝ|x→0+ , σSASĝ ∂xĝ|x→0− = σNANĝ ∂xĝ|x→0+ ,

(10)

and similarly on the right SN interface at x = LN . The
cross-sectional areas appear in the above equations from
conservation of the matrix current ĝ∇ĝ [54]; for AS 
= AN

such a quasi-1D approximation ignores details of the current
distribution at the contact, which requires that the cross-
sectional size is small compared to superconducting coherence
length ξS,N .

The rigid SN boundary condition approximation is given
formally by the limit ASσS → ∞ where there is no inverse
proximity effect and the Green’s function inside S approaches
that of bulk superconductor S′. In the RBC approximation
we then consider the Usadel equation with the boundary
condition,

ĝ|x=0,LN
= ĝ|BCS, (11)

where the BCS bulk Green’s function reads ĝ|BCS = (ωnτ3 +
�τ+ + �∗τ−)/

√
ω2

n + |�|2.
For reference, we show in Fig. 1(b) the behavior of the

density of states N (E,x,ϕ) at ϕ = 0, computed numerically
from ĝ using the approach outlined in this section without the
RBC approximation. The result assumes a non-self-consistent
�(x) = |�| in the S regions. Far from the N region (|x| �
LS), the DOS approaches the BCS form with energy gap |�|,
whereas towards the N region (|x| � LS), a minigap Eg [55]
becomes clearly visible. Note that, even assuming constant
|�|, the density of states N (E,x) inside S is modified by the
proximity of N.

III. RIGID-BOUNDARY CONDITIONS

According to Eq. (1), supercurrent and entropy are con-
nected by an exact Maxwell relation,

∂I

∂T
= −2e

h̄

∂S

∂ϕ
. (12)

This relation does not hold between Eqs. (2) and (7) within the
RBC approximation as one can observe from simple scaling
considerations valid in the short-junction regime LN � ξN .
Within these approximations, the phase-dependent part of the

FIG. 2. Inconsistency of the Maxwell relation with the rigid-
boundary condition approximation using Eqs. (2) and (7). (a) The left-
and right-hand sides of Eq. (12) vs ϕ at fixed temperature T = 0.5Tc

for σSAS = σNAN and LN = ξN . (b) The same vs temperature at
ϕ = π/2. (c) The relative discrepancy P (see the text) as a function
of the length of the normal region LN/ξN .

entropy S is localized in the N region; hence, the volume
integral of Eq. (2) scales as ∂ϕS ∝ LN . In contrast, the
supercurrent (8) obtained under the same approximation scales
as dI

dT
∝ L−1

N . Therefore one immediately recognizes that
the left- and right-hand sides of Eq. (12) have different
dependences on LN , demonstrating the inconsistency between
supercurrent and entropy within these approximations.

The discrepancy between the DOS expression (2) and
the supercurrent (7) evaluated in the RBC approximation
extends beyond the short-junction limit as shown in Figs. 2(a)
and 2(b). The left- and right-hand sides of Eq. (12) do not
match as functions of phase difference ϕ and temperature T .
Figure 2(c) shows the dependence on LN/ξN of the relative
discrepancy,

P = max
(ϕ,T )

∣∣∣∣∣∂T I + 2e
h̄
∂ϕS

∂T I

∣∣∣∣∣. (13)

It decreases with increasing junction length LN and remains
significant up to LN several times the coherence length ξN . As
one would expect, the discrepancy becomes negligible only
for long junctions (LN � ξN ).
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Note that in the exact calculation (i.e., without approx-
imations) Eqs. (2) and (7) must be compatible. This is,
however, not immediately apparent from the form of the
equations. To understand this compatibility we consider now
the mathematical relation among Eqs. (2)–(4) [and thus (7)].
Consider a modified Eilenberger functional Lζ = L|ωn �→ωn+iζ

in which the ωn’s appearing explicitly in L are extended to
the complex domain by ωn + iζ (cf. Ref. [56]) and define the
corresponding Green’s functions ĝζ satisfying δF/δĝ|ĝζ

= 0
and keep � fixed. Recall that the analytic continuation of
the sign function is given by sgn z = z/

√
z2 = sgn Re z. The

stationary value of the functional then satisfies for real ζ ,

d

dζ
Fs,ζ |ĝζ ,� = πTN0

∑
ωn

tr[sgn(ωn) − τ3ĝζ (iωn)]

= −N0

∫ ∞

−∞
dE[Nζ (E) − 1] tanh

E

2T
. (14)

The second line follows by standard analytic continuation,
where

Nζ (E) = 1
4 tr τ3[gζ (E + i0+) − gζ (E − i0+)]. Suppose

now that the boundary conditions are energy independent,
i.e., invariant under transformation ωn �→ ωn + iζ of explicit
frequency arguments. In this case ĝζ (iωn) = ĝ(iωn − ζ ) and
Nζ (E) = N (E − ζ ) coincide with the energy-shifted
Green’s function and the corresponding DOS. It is
worth noting that Fs,ζ → const(T ) for ζ → ∞ whereas
ĝ(iωn − ζ ) → τ3 sgn(ωn). Moreover, recalling the relation,∫ 0

−∞
dζ

d

dT
tanh

E + ζ

2T

= −2{f (E,T ) ln f (E,T ) + [1 − f (E,T )]

× ln[1 − f (E,T )]}, (15)

it follows that ∂TFs = −Ss . The Maxwell relation then follows
for any fixed � independent of T . Finally, setting � to
its self-consistent value �∗ for which d

dT
Fs[T ,�∗(T )] =

∂T Fs[T ,�∗(T )], we find Eqs. (2) and (4) are equivalent—
under the assumption that the boundary conditions do not
depend on energy.

The boundary value ĝBCS(iωn) however is strongly energy
dependent, which breaks the above argument and causes the
discrepancy among Eqs. (2), (4), and (7). It is interesting to note
that a similar issue does not occur in an NSN structure under
an analogous approximation (also inspected numerically; not
shown) because in that case the value of ĝN = τ3 sgn ωn

imposed in the boundary condition is invariant under ωn �→
ωn + iζ . This happens also for insulating interfaces (n̂ · ∇̂ĝ =
0) or for periodic boundary conditions or semi-infinite leads,
which are functionals of ĝ with no explicit dependence on ωn.

The apparent thermodynamic discrepancy can be elimi-
nated by properly taking into account the IP effect, for exam-
ple, replacing the rigid superconducting boundary condition
(11) by S wires of length LS as depicted in Fig. 1(a). Below, we
adopt such a S′SNS S′ geometry with the boundary conditions
ĝ|x=−LS

= ĝ|x=LN +LS
= ĝ|BCS and consider LS � ξS . The

difference with the exact solution for the semi-infinite leads
approaches zero in the limit LS → ∞.

FIG. 3. Maxwell relation including the inverse proximity effect
with LS = 5ξN . (a) The left- and right-hand sides of Eq. (12) vs ϕ

for T = 0.5Tc, σSAS = σNAN, LN = ξN . The entropy contributions
from the N and S regions S = SS + SN also are shown separately. (b)
The same vs temperature at ϕ = π/2.

We show results for such a S′SNS S′ structure in Fig. 3.
In them, the Maxwell relation (12) between Eqs. (2) and
(4) applies for any LN . Since we expect the relation applies
independently of the form of �(x), this calculation assumes a
constant � in the leads for simplicity. The phase derivative
however is to be understood as in Eq. (7). Finally, note
that the entropy contribution from the superconductor regions
dominates for the parameters chosen (i.e., relatively short
junction).

IV. INVERSE PROXIMITY EFFECT

Let us consider the inverse proximity effect in more detail.
We define the entropy difference δSS due to the inverse
proximity effect in the superconducting region as

δSS = SS − SBCS = −4
∫ ∞

−∞
dE

∫
S

dx N0,SδN

× (E,x,ϕ)f (E,T ) ln f (E,T ), (16)

where SBCS is the entropy of a bulk BCS superconductor and
δN (E,x,ϕ) = N (E,x,ϕ) − NBCS(E) is the difference in the
local density of states from the BCS expression. Moreover, we
define dimensionless parameters,

a = σSAS/(σNAN ), l = LN/ξN (17)

for the discussion below.
Analytical solutions can be obtained in the limiting

cases of short-junction l  1 at phase differences ϕ = 0
and ϕ = π . A solution to the Usadel equation in a semi-
infinite superconducting wire with uniform � = ±|�| is
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given by

ĝ = τ3 cosh θ + iτ2 sinh θ, (18)

where (cf. Ref. [57])

θ (x) = θS − 4 artanh

(
e−√

2(x−LN )/ξE tanh
θS − θ (LN )

4

)
,

(19)

and ξE = (1 − E2/|�|2)−1/4ξN and θS = artanh |�|
E+i0+ . The

spatially integrated change in the superconductor DOS can be
evaluated based on this solution,∫

S

dx δN(x,E)

=
√

2 Re

[
ξE cosh θS

(
cosh

θS − θ (LN )

2
− 1

)

− ξE sinh θS sinh
θS − θ (LN )

2

]
. (20)

For LN  ξE , the Usadel equation in the N region can
be approximated as ∂2

x θ (x) = 0. Matching to the boundary
condition σNAN∂xθN = σSAS∂xθS at the two SN interfaces
results in

θ (LN ) =
{

θS for ϕ = 0,√
2 ξE

ξN
al sinh θS−θ(LN )

2 for ϕ = π,
(21)

from which θ (LN ) can be solved. For the entropy at ϕ = 0, this
gives a trivial solution δSS = 0. On the other hand, at ϕ = π ,
we have for temperatures T  |�|,

δSS(ϕ = π ) � 4π2

3
TN0,SASξN ×

{
1 for al  1,

π
2al

for al � 1.

(22)
The full temperature dependence for l → 0 reads

δSS(ϕ = π ) = − 16√
2
N0,SAS

∫ ∞

−∞
dE f (E,T ) ln f (E,T )

× Re

[(
cosh

θS

2
− cosh θS

)
ξE

]
. (23)

For crossover regions, the boundary condition matching would
need to be solved numerically.

The behavior in the RBC limit (i.e., a → ∞) can be
understood based on the above result. For the entropy, the
short-junction rigid-boundary limit l → 0, a → ∞ is not
unique, but the results depend on the product al. Generally,
the entropy is proportional to h̄/(e2Rtot), where Rtot is the
resistance of the ξS-length superconductor segment in series
with the normal wire as can be expected a priori [26].

Figures 4(a) and 4(b) show the geometry dependence of
the proximity effect contribution δSS to the entropy for ϕ = 0
and ϕ = π . Generally, δSS(ϕ = 0) decreases with decreasing
junction length and approaches the limit of δSS(ϕ = 0) → 0
for l → 0. The temperature dependence of δSS(0) is affected
largely by the presence of a minigap in the spectrum S(0) ∼
e−Eg/T with Eg ∼ min[h̄DN/L2

N,|�|] [see Fig. 1(b)]. For
ϕ = π , on the other hand, the entropy contribution δSS

of the superconductors increases with decreasing length, in

FIG. 4. Behavior of the entropy variation δSS of the supercon-
ducting leads. (a) Temperature dependence at ϕ = 0 for a = 1 and
different l’s. (b) The same at ϕ = π . Result (23) for l = 0 also is
shown (the dashed line). (c) Dependence of δSS(ϕ = π ) on l and
a at T/TC = 0.1. Limiting behavior from Eq. (22) is indicated (the
dashed line). Here, LS = 10ξN .

accordance with the increase in the Josephson energy with
decreasing junction resistance. For very short junctions, l �
a−1, δSS saturates as indicated in Eq. (22). The behavior
of δSS(ϕ = π ) as a function of the product al is shown in
Fig. 4(c). It is interesting to note that the results essentially
converge to the short-junction limit l  1 already at l = 1.

V. HEAT CAPACITY

The heat capacity,

C = T
dS

dT
(24)

can be obtained from the entropy discussed in the previous
sections. In Fig. 5 we compare full numerical results obtained
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FIG. 5. Modulation of the heat-capacity �C(T ,ϕ) = C(T ,ϕ) −
C(T ,ϕ = 0) in a SNS junction for a = 500, l = 0.1, LS = 10ξN . (a)
Numerical results comparing the full calculation including the inverse
proximity effect (the solid line) with the results from Eq. (9) (KO,
the dashed-dotted line) at different temperatures. (b) Comparison
between the IP curves from panel (a) and the results from (2) and
(11) (RBC, the dashed line) on a logarithmic scale.

from Eqs. (2), (6), and (10) taking the inverse proximity
effect into account (the solid lines) with the heat capacity
obtained from the KO result (9) (the dashed-dotted lines)
and from the numerically computed DOS using the RBC
approximation (11) (the dashed lines). In the full numerical
calculation, the order parameter �(x,T ) is computed to
satisfy the self-consistency relations δF/δ� = δF/δ�∗ = 0.
For the selected short-junction lengths l  1 and al � 1, the
numerical results obtained by taking the inverse proximity
effect into account match relatively well with Eq. (9) weakly
overestimating the heat capacity. Note that a self-consistent
� does not cause significant qualitative deviations. On the
other hand, calculations within the RBC approximation using
Eq. (2), shown in Fig. 5(b), underestimate the heat capacity
by several orders of magnitude. In fact, as pointed out in
Sec. III, such an approach is accurate only for long-junctions
LN � 5ξN .

To summarize, although N (E) − NBCS(E) → 0 inside
large superconducting banks (a → ∞), the quasiparticle
heat-capacity contribution of the proximized S leads: δC ∝
a

∫
dx[N (x,E) − NBCS(x,E)] is not negligible. As a conse-

quence, obtaining quasiparticle heat capacity from the DOS
requires proper consideration of the inverse proximity effect.
The phase dependence of the quasiparticle heat capacity
can also be obtained equivalently from the temperature
dependence of the super-current-phase relation IS(T ,ϕ). This
turns out to be more robust vs neglecting the inverse proximity

effect as apparent in Fig. 5(a). However, the heat capacity
at ϕ = 0 cannot be obtained from this, and it generally will
depend on device parameters.

VI. SUMMARY AND DISCUSSION

The entropy in SNS junctions roughly consists of two
contributions—a phase-dependent part associated with the
bound states contributing also to the supercurrent and a phase-
independent part. Generally, the two behave differently as a
function of the junction length. Moreover, the phase-dependent
contribution in short junctions, if expressed in terms of the
local density of states, largely originates from the proximity
effect in the superconducting banks. Approximations that
neglect this can produce thermodynamically inconsistent
results. The results also reiterate as is clear from the connection
to the CPR that the junction heat capacity has a part not
directly related to the junction volume. A proper quantitative
calculation of entropy and thermodynamic quantities taking
into account the inverse proximity effect is thus of importance
both for fundamental and for application purposes.

Finally, we can consider factors important for an experi-
mental measurement of the heat capacity of a single nanoscale
SNS junction. For example, the heat capacity of the junction
can be inferred by measuring the temperature variation after
a heating pulse as a function of the phase difference, which
can be manipulated by means of an external field. For such an
experimental realization, two points have to be considered with
care. First, the device should be thermally well isolated in order
to avoid heat dispersion outside of the device volume itself.
Second, the bulk superconductor mass should be made as small
as possible. The total heat-capacity C is an extensive property,
so its variation as a function of phase difference �C(ϕ)/C

increases by increasing the ratio of critical current and device
volume. However, this target will also be constrained by the
requirement of large superconducting leads in order to ensure
the phase bias of the junction, and thus an optimal trade-off
has to be considered in a proper device design.

To summarize, we discussed entropy and heat capacity in
SNS structures numerically and analytically and point out that
inconsistencies appear if inverse proximity contributions are
not included properly. The results obtained can be used in
designing superconducting devices concerning caloritronic,
heat, and photon sensors and are, in general, relevant for other
devices based on thermodynamic working principles.
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