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Phonon impact on optical control schemes of quantum dots:
Role of quantum dot geometry and symmetry
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Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the
electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a
spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing
simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we
show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon
influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved
dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced
impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped
quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot,
which is important for the use of phonons for the communication between different dots.
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I. INTRODUCTION

In the optical control of semiconductor quantum dots (QDs)
the coupling to phonons plays a vital role [1,2]. Nowadays,
the optical control of excitons and biexcitons in single QDs
can be performed experimentally by various techniques and
the results clearly demonstrate the influence of phonons.
Examples are the phonon-induced damping of Rabi rotations
in the case of resonant driving of the QD [3], chirp-dependent
phonon damping of the adiabatic rapid passage induced by
chirped laser pulses [4–6], phonon-assisted state preparation
by detuned excitation [7–11], and the polarization decay in
four-wave mixing signals [12,13]. Also, for QDs coupled
to a quantized cavity light field, phonons play an important
role [14–18]. To theoretically simulate the phonon influence
different theoretical approaches have been developed, iden-
tifying the coupling to longitudinal acoustic (LA) phonons
as typically being the dominant mechanism. Without optical
excitation, the system can be described by the independent
Boson model, which is exactly solvable. In the phonon-free
case, the optically driven QD can also be exactly solved
using the semiconductor Bloch equations. When both light
field and phonons are active, an exact solution cannot be
found anymore and approximations or numerical methods
have been developed. Examples are different types of master-
equation approaches [19–22], time-convolutionless methods
[23,24], correlation expansion techniques [25–28], and path
integral formulations [29–31]. The methods rely on different
levels of approximations coming with different advantages
and disadvantages. In particular, the computational costs of
the different methods can greatly vary. In order to reduce
the computational costs, in many cases, the approximation
of a spherical QD has been made. However, fabrication
techniques like, e.g., the Stranski-Krastanov growth mode
for self-assembled QDs typically lead to rather lens-shaped
geometries, as has also been confirmed by many experimental
measurements [32,33]. Nevertheless, various recent combined
experimental-theoretical studies on single QDs, in which the
theoretical calculations have been based on a spherical dot

approximation, have shown an excellent agreement between
theory and experiment [3,5–7]. In this paper, we analyze
the impact of the approximation of spherical symmetry for
simulations of the phonon influence on the dynamics of
optically excited QDs.

For a spherical QD, the electron-phonon coupling matrix
element only depends on the modulus of the phonon wave
vector, which allows one to exploit symmetry arguments to
reduce the number of independent variables and thereby the
computational cost. In contrast, for a lens-shaped QD, at least
two directions have to be taken into account, which often
increases the number of variables and the computational cost
considerably. In this paper, we provide a direct comparison
between a lens-shaped and a spherical QD using the same
approximations in the theoretical model. To be specific,
we here explicitly compare calculations performed for a
spherical and a lens-shaped QD within a correlation expansion
[26,27,31] and show that the optically induced electronic
properties of the lens-shaped system are perfectly reproduced
by a model involving spherical symmetry. As an example we
compare the occupation under resonant and chirped excitation.
We furthermore show that for each spectral density we can find
a spherically symmetric effective confinement potential, which
reproduces the spectral density resulting in the same effects on
the electronic properties. In addition, we show that the same
spectral density can be well approximated by rather simple
spherical models with only very few parameters.

On the other hand, when considering the phonon system,
the symmetry properties of the QD have a great impact. Using
the correlation expansion, we calculate the dynamics of the
phonons created during and immediately after the optical
excitation [34,35]. The rapid generation of the exciton leads to
the formation of a wave packet leaving the QD region [12,36].
For a spherical QD, the generated wave packet retains the
spherical symmetry of the QD. For a lens-shaped QD, the wave
packet generation reflects the QD symmetry [37], the strongest
wave packet emission being in the direction of the smallest
size.
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II. THEORETICAL BACKGROUND

To study the influence of phonons on the QD exciton
system, we make use of the standard two-level model of a
strongly confined QD consisting of the ground state |g〉 at
energy 0 and the exciton state |x〉 at energy h̄ω [1,27]. The
Hamiltonian for the electronic part of the system can be written
as

Hel = h̄ω|x〉〈x| − E · P. (1)

The second term describes the coupling of the polarization

P = M|g〉〈x| + M∗|x〉〈g|, (2)

M being the dipole matrix element, to the light field E, which
is treated in dipole and rotating wave approximation.

The phonon part of the system consists of the free phonon
part and the electron-phonon interaction described by

Hph = h̄
∑

q

ωqb
†
qbq + h̄|x〉〈x|

∑
q

(gqbq + g∗
qb

†
q), (3)

with bq (b†q) being the annihilation (creation) operator for a
phonon with wave vector q. We consider LA phonons with
linear dispersion ωq = cLAq (cLA being the sound velocity).
gq = ge

q − gh
q is the coupling matrix element for deformation

potential coupling given by

ge/h
q =

√
q

2Vρh̄cLA
De/hF

e/h
q (4)

for electrons (e) and holes (h). The constants are the normal-
ization volume V , the mass density ρ, and the deformation
potential coupling constant De/h for electrons/holes. The
spatial confinement of the carriers enters via the form factors

Fe/h
q =

∫
d3r |ψe/h(r)|2 eiq·r (5)

depending on the envelope function ψe/h(r) of electrons/holes.
For the QD, we assume a harmonic confinement potential.
Considering a lens-shaped QD with the localizations length
a

e/h
z in the z-direction and a

e/h
r in the (x,y)-plane (with a

e/h
z <

a
e/h
r ), the form factor reads

Fe/h
q = exp

{ − 1
4

(
q2

z

(
ae/h

z

)2 + q2
r

(
ae/h

r

)2)}
, (6)

where qz is the wave vector component in z direction, qr is
the modulus of the in-plane wave vector, and q = √

q2
r + q2

z .

In the case of a spherical QD, we have a
e/h
z = a

e/h
r = ae/h

simplifying the form factor to

Fe/h
q = exp

[ − 1
4q2(ae/h)2]. (7)

Here, we already see that the numerical implementation of a
spherical QD relies only on the modulus of the wave vector
q, while for a lens-shaped QD, a discretization of both qz

and qr is required. If not denoted otherwise, we use standard
GaAs parameters (see Table I), which, assuming the same
confinement potential for electrons and holes, give the ratio of
the localization length between electron and hole to ah/ae =
(me/mh)1/4 = 0.87 [38].

Using the Hamiltonian given above the equations of motion
are set up. In the density matrix formalism, starting from

TABLE I. Material parameters.

Longitudinal sound velocity cLA 5.1 nm ps−1

Mass density ρ 5.31 g cm−3

Electron deformation potential De 7 eV
Hole deformation potential Dh −3.5 eV
Effective electron mass me 0.067m0

Effective hole mass mh 0.110m0

Free electron mass m0 9.1 × 10−31 kg

the basic electronic and phononic variables, exciton occupa-
tion f = 〈|x〉〈x|〉, excitonic polarization p = 〈|g〉〈x|〉, coher-
ent phonon amplitudes Bq = 〈bq〉, and phonon occupations

nq,q′ = 〈b†qbq′ 〉, the many-body nature of the carrier-phonon
coupling leads to an infinite hierarchy of equations of motion.
In the higher orders, phonon-assisted quantities appear like
〈b†q|x〉〈x|〉 or 〈b†qb†q|x〉〈x|〉. In the correlation expansion, the
correlations of the phonon-assisted quantities are neglected
at a certain order. Obviously, the dimension of q is directly
related to the dimension of the phonon-assisted quantities.
Hence the restriction to a one-dimensional q goes along with
an immense saving of computational cost. In the following,
we will employ a fourth-order correlation expansion, which
has proven to simulate experimental results very well [1,5,6].

III. SPECTRAL DENSITY

The phonon spectral density provides a measure for the
coupling efficiency between the phonons and the carriers. It is
defined as

J (ω) =
∑

q

|gq|2δ(ω − ωq) . (8)

For a spherical QD with ae = ah = a, an analytical expression
for the spectral density is available [39,40], which has the form

J (ω) = Aω3 exp
(−ω2/ω2

c

)
, (9)

where ωc is the cutoff frequency determined by the size of
the QD and A is a measure for the coupling strength. For the
coupling given in Eq. (4) these parameters are given by

A = (De − Dh)2

4π2ρh̄c5
LA

, ωc =
√

2
cLA

a
.

The spectral densities of differently shaped QDs are com-
pared in Fig. 1. In Fig. 1(a), we keep the in-plane localization
length of the electrons fixed to ae

r = 5.0 nm and vary the
size in z-direction ae

z . The corresponding localization lengths
of the holes are taken to be ah = 0.87ae. All curves exhibit
a nonmonotonic behavior with a pronounced maximum.
Phonons with energies E = h̄ωq in the region around the
maximum bear the major impact on the carrier dynamics.
For ae

z = 5 nm, the QD is spherical and the maximum is
at about 1.2 meV. The dashed curve shows the analytical
equation (9), the fit parameters are A = 0.036 ps2 and ωc =
1.52 ps−1. Though the considered dot does not fulfill ae = ah,
the analytical formula leads to an excellent agreement with
the phonon spectral density of the spherical QD. The cutoff
frequency of the fit corresponds to a localization length of
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FIG. 1. Phonon spectral density for (a) a QD with an in-plane size
ae

r = 5.0 nm and different heights ae
z = 1.5, 3.5, and 5.0 nm. The

dashed line is the spectral density according to Eq. (9). (b) Phonon
spectral density for QDs A, B, and C as explained in the text.

4.75 nm, which is between the values for electrons (5 nm)
and holes (4.35 nm). With decreasing height, the QD becomes
more lens-shaped. In the spectral density, the maximum shifts
to higher energies with 1.4 meV for ae

z = 3.5 nm and 2.0 meV
for ae

z = 1.5 nm. Also, the high-energy part of the spectral
density changes and becomes extended to larger energies.
This widening reflects the fact that the wave functions are now
narrower in the z direction. Note that on the low-energy side the
spectral density is the same for all three curves, because here
the behavior is dominated by the cubic dependence resulting
from the coupling matrix element and the phonon density of
states, reflecting the superohmic nature of the carrier-phonon
coupling.

We are now looking for a spherical QD, which gives the
same spectral density as for an arbitrary lens-shaped dot.
Because the phonon spectral density is a one-dimensional
quantity depending only on the frequency ω, it is possible to
reproduce an arbitrary phonon spectral density by a spherically
shaped QD even with equal localization lengths of electrons
and holes. To show this, we assume equal and isotropic form
factors Fe

q = Fh
q = Fq . Then the spectral density reads

J (ω) =
∑

q

q

2Vρh̄cLA
(De − Dh)2F 2

q δ(ω − ωq)

= ω3

4π2ρh̄c5
LA

(De − Dh)2F 2
ω

cLA
. (10)

Taking the spectral density J (ω) of an arbitrary QD as given,
we thus obtain a spherically symmetric form factor

Fq =
[

4π2ρh̄c2
LA

q3(De − Dh)2
J (cLAq)

]1/2

,

which reproduces exactly the given spectral density. Using
Eq. (5), we obtain the square modulus of the corresponding
wave function by inverse Fourier transformation via

|ψ(r)|2 = 1

(2π )3

∫
d3q Fq e−iq·r =

∫ ∞

0

q sin(qr)

2π2r
Fq dq.

Note that we here took into account already the spherical
symmetry. Considering the ground state, the wave function
does not have nodes and we can assume ψ(r) =

√
|ψ(r)|2 =

r−1u(r). The function u(r) satisfies a radial Schrödinger
equation (

− h̄2

2me

d2

dr2
+ V (r)

)
u(r) = E u(r) (11)
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FIG. 2. Spherically symmetric effective potential (red line) ob-
tained from Eq. (12) for a lens-shaped QD with ae

r = 5 nm and
ae

z = 1.5 nm. For comparison the parabolic electron potentials are
shown for the in-plane (blue line) and out-of-plane (green line)
directions.

with an effective potential V (r). Setting the energy E to zero,
the potential follows from

V (r) = h̄2

2me

1

u

d2u

dr2
. (12)

Equation (12) allows us to calculate for a given phonon
spectral density of a nonspherical QD a fictitious spherically
symmetric effective potential. By construction, the wave
function of this fictitious QD exactly reproduces the phonon
spectral density of the original nonspherical QD. It should be
noted that the choice of the electron mass me in Eqs. (11) and
(12) is arbitrary; one might also choose the hole mass or any
other mass, which would simply scale the potential.

Already for lens-shaped dots with harmonic confinement,
an analytical solution of Eq. (12) is lengthy and not very
instructive. Figure 2 shows the numerically calculated effective
potential V (r) reproducing the phonon spectral density of
the lens-shaped QD with ae

r = 5 nm, ae
z = 1.5 nm, and

ah/ae = 0.87 of Fig. 1(a) (blue curve). The thick red line is the
effective potential calculated by the procedure outlined above.
Obviously, the exciton potential is not anymore harmonic, but
is essentially composed of two parts that exhibit a harmonic
shape. For comparison, the in-plane (blue) and out-of-plane
(green) potentials of the lens-shaped QD are marked by thin
lines. (Note that the potentials for electrons and holes are the
same.) For r → 0, the effective potential is dominated by the
potential in z-direction showing a steep harmonic behavior.
For larger distances, the in-plane harmonic potential dominates
the effective potential. In between, the potential is continuous
with a local maximum around the region where the harmonic
potentials cross.

While the procedure described above allows us to construct
a spherically symmetric QD, which exactly reproduces the
phonon spectral density of an arbitrarily shaped QD, we
will now show that for lens-shaped QDs with harmonic
confinement potentials the spectral density can even be
well approximated by spherically symmetric Gaussian wave
functions for electrons and holes. In the following, we will use
the most strongly lens-shaped QD in Fig. 1(a) (blue curve) as
a reference and call this QD A. In Fig. 1(b), we compare this
QD with two spherically symmetric ones, QD B and QD C.
The parameters of these three dots are
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QD A: ae
r = 5.0 nm, ae

z = 1.5 nm, ah/ae = 0.87;
QD B: ae

r = ae
z = 3.6 nm, ah/ae = 0.87;

QD C: ae
r = ae

z = 4.7 nm, ah/ae = 0.40.
QD B is a spherical dot with the standard localization
length ratio ah/ae = 0.87 and a radial localization length
ae = 3.6 nm chosen in such a way that it has the same
Huang-Rhys factor [41–43] as QD A, i.e., the same value for

S =
∫

J (ω)

ω2
dω. (13)

The Huang-Rhys factor determines the polaron shift and is a
measure for the total coupling strength.

Figure 1(b) shows that the agreement is not very satisfying.
While for energies up to the maximum the spectral density
is well reproduced, this spherical QD completely fails in
reproducing the high-energy tail of the spectral density.

However, when we allow the confinement ratio ah/ae to
vary, we find a rather good agreement, as shown for QD C
using ae = 4.7 nm and ah/ae = 0.40. This QD, modeled by
just two isotropic Gaussian wave functions, is able to reproduce
both the rise of the spectral density to the maximum at 2.0 meV
and the long tail up to around 8 meV. Only small differences
in the high-energy tail of the spectral density between QD A
and QD C are visible.

IV. PHONON INFLUENCE ON THE
ELECTRONIC SYSTEM

In the next step, we compare the influence of the QD shape
on the optically excited exciton occupation of a QD using the
lens-shaped QD A and the spherical QDs B and C. Note that
a spherical QD confined by the effective potential calculated
via Eq. (12) exactly reproduces the results of the lens-shaped
QD A (not shown).

The standard example for optical excitations are Rabi
rotations, which recently have been measured for a pulse
area up to 12π [3,44]. Here we consider the excitation with
a Gaussian laser pulse described by the instantaneous Rabi
frequency (pulse envelope)

�(t) = �√
2πτ

exp

(
− t2

2τ 2

)
(14)

with pulse area �, pulse length τ = 4 ps, and frequency ω

being resonant with the exciton transition. In Fig. 3(a), the
Rabi rotations for the three QDs A, B, and C are shown.
For pulse areas up to about 12π , we observe a damping
of the Rabi rotations with increasing pulse area, which is
essentially the same for all three QDs. Subsequently, the
amplitude of the rotations increases again, which is more
pronounced for QD B, while QDs A and C remain to
be in almost perfect agreement. This growth of the amplitude
indicates the regime of the reappearance of Rabi rotations,
which has been theoretically predicted [31,45], however, not
yet clearly seen experimentally, mainly because of the very
high pulse areas necessary to enter this regime.

More insight in the pulse area dependence of Rabi rotations
for the different QDs can be obtained in the dressed state
picture. The dressed states are the eigenstates of the coupled
QD-light system [1,35]. In the dressed state picture, phonons
give rise to transitions between the dressed states [6,35,46] if
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FIG. 3. (a) Final occupation of the exciton state as a function of
the pulse area for resonant excitation with a 4-ps Gaussian laser pulse
for dot A (blue line), dot B (green line), and dot C (red dashed line). (b)
Instantaneous eigenenergies E+ and E− for excitation with a resonant
Gaussian 10π pulse (solid lines) and 20π pulse (dashed lines). (c)
Energy splitting 
E = E+ − E− of the eigenenergies for the 10π

pulse (solid line) and 20π pulse (dashed line); the green-shaded area
highlights the strength of the phonon spectral density as a function of
the energy 
E. (d)–(f) Same as left panel, but for excitation with a
negatively chirped laser pulse with α = −0.5 ps2 and τ0 = 80 fs. In
(d) and (f), the curves refer to pulse areas of 3π (solid lines) and 10π

(dashed lines).

the actual splitting is comparable to the energy range covered
by the phonon spectral density. The dressed states as function
of time for the Gaussian excitation with a pulse area of 10π and
20π are presented in Fig. 3(b), while Fig. 3(c) shows the energy
splitting 
E = E+ − E−. The green-shaded area highlights
the strength of the phonon spectral density of QD A as a
function of the energy 
E with its maximum at about 2 meV.
For the Gaussian pulse, the splitting also takes a Gaussian curve
with a maximum at the time of the pulse maximum. Before and
after the laser pulse the eigenenergies are degenerate. Hence
phonons from a large energy spectrum starting from 0 up to the
maximal splitting contribute to the damping. For a pulse area
of 10π , the splitting reaches the maximum value of the spectral
density [see Fig. 3(c)]. Therefore, up to such pulse areas, the
damping of the Rabi rotations increases. Up to the maximum,
the phonon spectral densities of the three dots are very similar
leading also to a very similar behavior of the Rabi rotations.
For a pulse area of 20π , the splitting reaches values where the
spectral density is already considerably reduced compared to
its maximal value leading to the observed increased amplitude
of the Rabi rotations. In this energy range, the spectral density
of QD B is much smaller than for QDs A and C explaining
why QD B exhibits larger Rabi rotations than the other dots.
However, from Fig. 3(c), we also note that even if the energy
splitting at the pulse maximum is already far beyond the
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maximum of the spectral density, due to the degeneracy before
and after the laser pulse, there is always a time where the energy
splitting of the dressed states passes by the maximum of the
phonon spectral density, which yields the main contribution to
the phonon-induced damping of the Rabi rotations.

The second example is an excitation using a chirped laser
pulse [47,48], which turned out to be very sensitive to the
phonon influence and for which excellent agreement between
theory and experiment has recently been shown [5,6]. It is well
established that at low temperatures only negatively chirped
pulses exhibit a damping due to phonons [4–6,27], hence we
concentrate on this case here. The theory for the description of
the chirped pulses can be found, e.g., in Refs. [6,27]. Following
Ref. [6], we take a resonant Gaussian pulse [Eq. (14)] with
initial pulse length of τ0 = 80 fs and apply a chirp filter with co-
efficient α = −0.5 ps2. As a result, the central frequency of the
laser pulse changes linearly with time, while the pulse length
is stretched to τ = 6.1 ps, the pulse envelope being given by

�(t) = �√
2πττ0

exp

(
− t2

2τ 2

)
. (15)

The resulting exciton occupations are shown in Fig. 3(d) for
QDs A, B, and C.

For QD A, we find that the occupation rises to a maximum
at a pulse area around 1π . Then, the damping sets in resulting
in a minimum of the occupation around 2.5π . After the
minimum, the occupation rises again and reaches values up
to one, i.e., almost perfect exciton generation, showing clearly
the reappearance of the ARP effect [6]. The spherical QD C
reproduces this behavior well, but some slight deviations from
the lens-shaped QD A are seen, which can be attributed to the
small differences in the spectral density. Around the minimum,
the occupation of dot C is slightly below the occupation of dot
A, which is a result of the mismatch of the phonon spectral
densities around 4 meV, which promotes a slightly stronger
phonon coupling of dot C. On the other hand, the phonon
spectral density of dot A exceeds the one of dot B for energies
above 6 meV, which leads to a slightly stronger coupling of
high energy phonons that slightly reduces the recovery of the
occupation to 1 of dot A for � > 5π .

Dot B is not able to reproduce the found behavior at all,
instead the minimum is at a much lower pulse area and also the
reappearance occurs at much lower pulse areas. The behavior
can again be understood by looking at the dressed states. Due to
the transformation to the frame rotating with the instantaneous
frequency of the pulse, the energy of one of the eigenstate
changes linearly with time while the other remains fixed. The
light pulse now leads to an avoided crossing of the two states
resulting in a finite splitting between the dressed states at
any time [Fig. 3(d)]. Indeed, due to this fact, the low-energy
phonons below the minimal splitting (determined by the
amplitude of the light at the pulse maximum) cannot contribute
to the damping of the ARP at all and the phonon impact is
restricted to the high-energy tail of the phonon spectral density.
Comparing this to Fig. 1(b), where we indeed found the largest
difference for higher energy phonons, it is clear why the ARP
is much more sensitive to the QD shape than the Rabi rotations.
In Fig. 3(f), the energy splitting for pulse areas of 3π and 10π

is plotted together with the energy dependence of the phonon

spectral density (green shaded area). We clearly see that for the
10π pulse the energy region of a nonvanishing phonon spectral
density is never reached, explaining why here we obtain an
essentially perfect exciton generation via the ARP process.
The main reason for the different behavior of resonant and
chirped excitation in the reappearance regime is thus the fact
that for resonant excitation the splitting starts from zero and
always passes through the region of strong phonon coupling
while for chirped excitation the splitting starts from very large
values and, for sufficiently strong pulses, never reaches the
region where phonon coupling is efficient.

Altogether, the dot shape has an impact on the carrier-
phonon coupling. However, the decisive quantity that describes
the phonon coupling is the phonon spectral density. Math-
ematically speaking, the phonon spectral density is a one-
dimensional function depending only on the frequency, where
information about the full three-dimensional phonon coupling
is lost. Hence it is always possible to find a spherical dot that
has the same or a similar phonon spectral density compared to
a more realistic lens-shaped QD. Often this is even possible by
using rather simple wave functions obtained, e.g., by using the
localization length ratio ah/ae as a fit parameter. This can be
very beneficial by considerably reducing computational costs.
This is also of importance when considering systems with
more than two states involving, e.g., biexcitons.

We remark that our considerations also hold for other
electron-phonon coupling mechanisms like the Fröhlich cou-
pling to optical phonons and the piezoelectric coupling to
acoustic phonons. Also, in these cases, the spectral density can
be reproduced by a spherically symmetric model. While in the
case of Fröhlich coupling the bulk coupling matrix element
is again isotropic, such that the formalism can be directly
transferred, in the piezoelectric case already the bulk coupling
matrix element is anisotropic. Here, introducing an isotropic
model requires in addition a suitable angular averaging of the
bulk coupling matrix element.

V. PHONON DYNAMICS

We now turn to the dynamics of the phononic system.
Though a lens-shaped QD can be substituted by an adapted
spherical dot to calculate the carrier dynamics, the phonons
generated during the optical control are largely affected by
the geometry of the QD. The phonon properties nowadays
receive much attention [36], also because new schemes make
use of phonons to control QDs. For example, the optical
output of a QD can be controlled by surface acoustic waves
[49,50] or the lasing properties of QDs can be modulated by
strain waves [51]. As an example of the influence of the QD
shape on the phonon dynamics, we discuss the properties of
the phonon wave packets emitted during the optical excitation
of a QD [34,35,37]. For that purpose, we consider the relative
volume change, i.e., the divergence of the mean displacement
field 〈u(r)〉,

δV

V
(r) = div〈u(r)〉

=
∑

q

√
h̄

2ρV ωq
(〈bq〉eiq·r + 〈b†q〉e−iq·r), (16)
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FIG. 4. Relative volume change δV/V after an excitation with a
2π pulse for (a), (b) for the lens-shaped QD A and (c), (d) for the
spherical dot QD C. (a) and (c) show the wave packet at t = 2.5 ps
and (b) and (d) at an advanced time t = 5 ps.

which describes the change of the lattice unit cells due to the
coherent phonon modes. Figure 4 shows the relative volume
change of the lattice after the optical excitation of the QD
by a Gaussian pulse for the lens-shaped QD A (left) and the
spherical QD C (right). The pulse length is chosen to 0.5 ps,
which enables an efficient coupling to the phonons [35]. For
the pulse area, we take a 2π pulse, resulting in the creation and
immediate annihilation of the exciton. Whenever an exciton is
present in the dot, the surrounding lattice atoms react on the
changed charge configuration by the formation of a polaron,
i.e., a static lattice deformation. Because we consider long
times after the excitation and de-excitation of the exciton,
the polaron has already vanished. However, the rapid creation
and destruction of the polaron leads to the emission of a
phonon wave packet. The details of the phonon emission can be
understood by considering the formation of the polaron [35].

When the polaron is created, a contraction of the lattice unit
cells in the QD region occurs, i.e., a negative relative volume
variation. The strain that comes along with this contraction
is transferred to surrounding lattice cells, which are in turn
stretched. Hence the leading edge of the emitted phonon wave
packet features a positive volume variation. Afterwards, a front
of a negative volume variation follows indicating a lattice
contraction similar the polaron. Finally, the trailing edge of the
phonon wave packet exhibits again a positive volume variation
that is a fingerprint of the destruction of the polaron, i.e.,
the lattice atoms in the QD area return back to their initial
positions, so that the lattice unit cells are stretched again.

Both the spherical and the lens-shaped QD exhibit the same
sequence of positive and negative volume variation. However,
the emitted wave packet reproduces the symmetry of the QD.
In the case of a lens-shaped QD, the symmetry is broken,
so that the preferred direction points towards the smallest
extension of the dot. Accordingly, in Figs. 4(a) and 4(b),
we observe the emission of a phonon wave packet, but it
is clearly visible that the amplitude is much stronger in z

direction than in the in-plane direction. This can be related
to the coupling strength for the phonons, which becomes
stronger the smaller the confinement is. For the spherical
QD in Figs. 4(c) and 4(d), we see a ring moving outwards,
reflecting the spherical shape of the QD. We note that for the
case of piezoelectric coupling the anisotropic bulk coupling
matrix element introduces an additional anisotropy in the
phonon emission besides the anisotropy introduced by the QD
geometry [37]. For the Fröhlich coupling to optical phonons,
on the other hand, an anisotropic polaron will build up for an
antisymmetric QD, however, due to the vanishing group veloc-
ity, no phonon wave packet will be emitted into the surrounding
material.

The usage of stronger pulses or sequences of pulses can
result in the creation of wave packet trains [35] or even
squeezed phonons [34], which would be emitted into a
direction that is determined by the QD geometry. This shows
that by tailoring the QD geometry one gains control over the
phonon generation.

VI. CONCLUSION

By explicitly comparing the electron-phonon coupling of a
spherical QD and a lens-shaped QD using the same theoretical
approach, we draw two conclusions. For the electronic system,
it is sufficient to use the spherical symmetry even if the QD
shape is more involved. This can be traced back to the fact
that the decisive quantity in this case is the phonon spectral
density, which is a one-dimensional function, and hence can be
exactly reproduced by a radial QD symmetry that is adapted to
the properties of the lens-shaped dot. For the phonon system,
the actual shape plays an important role in determining the
properties of the created phonons. A directed emission of
phonons can only be modeled by including the actual shape
of the QD. The strongest emission is along the smallest
axis of the QD. By performing a direct comparison, we shed
new light on the question regarding the influence of the QD
geometry on the optical state preparation of self-assembled
QDs.
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