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Exciton-polaritons in cuprous oxide: Theory and comparison with experiment
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The observation of giant Rydberg excitons in cuprous oxide (Cu2O) up to a principal quantum number of
n = 25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014)] inevitably raises the question whether
these quasiparticles must be described within a multipolariton framework since excitons and photons are always
coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O. To this end we extend the
Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell
corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201
(2017)], for finite values of the exciton momentum h̄K . We derive formulas to calculate not only dipole but also
quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been
proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of
K along the axes [001], [110], and [111] of high symmetry are obtained and a strong mixing of exciton states is
reported. The main focus is on the 1S ortho-exciton-polariton, for which pronounced polariton effects have been
measured in experiments. We set up a 5 × 5 matrix model, which accounts for both the polariton effect and the
K-dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We
especially discuss the dispersions for K being oriented in the planes perpendicular to [11̄0] and [111], for which
experimental transmission spectra have been measured. Furthermore, we compare our results with experimental
values of the K-dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The
results are in good agreement. This proves the validity of the 5 × 5 matrix model as a useful theoretical model
for further investigations on the 1S ortho-exciton-polariton.
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I. INTRODUCTION

Excitons are Coulomb-bound pairs of a positively charged
hole in the valence band and a negatively charged electron in
the conduction band of a semiconductor. Hence these elemen-
tary excitations of a semiconductor are often regarded as the
hydrogen analog of the solid state. It is now more than 80 years
since Frenkel [1–3], Peierls [4], and Wannier [5] formulated the
concept of excitons. After the experimental discovery of these
quasiparticles in cuprous oxide (Cu2O) by Gross and Karryjew
in 1952 [6], excitons in bulk semiconductors became an
important topic in solid-state physics from the late 1950s to the
1970s (see, e.g., Refs. [7–12] and further references therein).

Very recently, new attention has been drawn to the field of
excitons by an experimental observation of the yellow exciton
series in Cu2O up to a large principal quantum number of
n = 25 [13]. This discovery has opened up the research field of
giant Rydberg excitons and led to a variety of new experimental
and theoretical investigations [13–36]. Furthermore, it may
pave the way, e.g., to a deeper understanding of interparticle
interactions in the solid [13] and to applications in quantum
information technology [27].

Even though the spectrum of Rydberg excitons in Cu2O
can be described quite well in a first approximation by the
hydrogenlike model of Wannier, one must keep in mind that
excitons are complex many-body states of the solid and, hence,
that there are significant limitations to the hydrogenlike model
and to the atomlike description of these quasiparticles [37].

Some essential corrections to the hydrogenlike model
comprise, e.g., the inclusion of the complete cubic valence-

band structure [38–43], which leads to a complicated fine-
structure splitting, the central-cell corrections, which account
for deviations from the hydrogenlike model in the limit of a
small exciton radius [7,44–50], and the exchange interaction
[7,47,48,51,52]. Furthermore, interactions with other quasi-
particles, like, e.g., phonons have to be considered [53–55].
All of these effects have already been discussed recently for
the excitons in Cu2O [15,18,20,21,25,28].

Above all, there is another fundamental difference between
atoms and excitons as regards their interaction with light. By
analogy with the interaction of atoms with light, one may sup-
pose that absorption of light in a crystal can be described as the
excitation of an exciton with the simultaneous disappearance
of a photon [7]. Indeed, in the weak-coupling limit, the incident
light acts only as a perturbation on the different energy states
or excitations of the solid like, e.g., excitons [47]. However,
since the excited states in the solid are connected with a
polarization and since an oscillating polarization emits again
an electromagnetic wave acting back onto the incident wave,
there is an interplay between light and matter. If the frequency
of light is within the range of the resonance frequency of
an excitation, the coupling is strong and thus anomalous
dispersion can be observed [7]. Due to this coupling, excitons
and photons cannot be treated as independent entities or good
eigenstates, but new quasiparticles must be introduced, which
are called polaritons and which represent the quanta of the
mixed state of polarization and electromagnetic wave [56–63].

In this regard the 1S orthoexciton of Cu2O, in particular,
is of interest as for this state characteristic polariton effects
like propagation beats and the conservation of coherence
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over macroscopic distances have already been demonstrated
experimentally [64]. Furthermore, the threefold degeneracy of
this state is lifted for finite momentum of the center of mass
h̄K , and its oscillator strengths [65] as well as its dispersion
are anisotropic [20,66–68]. All of these effects and the number
of experimental results for, e.g., the oscillator strength, the
K -dependent spectra, and the group velocity [65], with which
theoretical results can be compared, make the 1S orthoexciton
an ideal candidate for theoretical investigations.

In this paper we present the theory of exciton-polaritons
in Cu2O. We extend the Hamiltonian of Ref. [28], which
accounts for the complete valence-band structure, the ex-
change interaction, and the central-cell corrections, for a finite
momentum h̄K of the center of mass. The corresponding
Schrödinger equation can then be solved using a complete
basis. This method allows us not only to calculate dipole
and quadrupole oscillator strengths but also the size of
the nonanalytic exchange interaction. As the splitting due
to the nonanalytic exchange interaction at K = 0 is identical
to the longitudinal-transverse splitting (LT splitting) when
treating polaritons, this interaction needs to be considered for
a correct treatment of the complete problem. We show how
to calculate the polariton dispersion for the complete exciton
spectrum.

Due to the presence of the complete valence-band structure,
the exchange interaction, and the central-cell corrections, we
obtain very complex polariton dispersions for the excitons
in Cu2O, which by far exceed previous investigations on the
polariton dispersion using a simple hydrogenlike model [26].
The main emphasis in this paper is on the only exciton state
for which a pronounced polariton effect has been observed
in several experiments: the 1S orthoexciton state. At first,
we discuss the effects of a finite momentum h̄K of the
center of mass on the spectrum. The K-dependent splitting,
which has been discussed in Refs. [20,66–68], is now treated
using the K-dependent Hamiltonian in explicit form and
including the central-cell corrections. The calculated splittings
are in the same order of magnitude as the splittings observed
experimentally [66–68].

Previous publications on the 1S orthoexciton polariton
[26,64,65,69] were confining the polariton problem to situ-
ations where the K vector is parallel to one of the principal
symmetry axes of the crystal. This ensures that the polarization
of the exciton is always parallel to the electric field vector
and perpendicular to the wave vector. What is still missing
is a proper treatment of the general polariton problem with
an arbitrary orientation of the K vector, which considers the
K-dependent splitting and the polariton effect simultaneously.
The challenge is the anisotropy of the exciton-photon inter-
action, leading to a polarization that is neither parallel to the
electric field nor orthogonal to the wave vector. Solving this
very complex problem is a significant step ahead in a proper
treatment of the exciton polariton problem. We are able to
show that the general polariton problem can be reduced to
solving an eigenvalue problem involving two photon states and
three exciton states; thus giving rise to five distinct polariton
branches. The general case leads to polariton states with
transverse and longitudinal polarization components. These
hybrid polaritons states can therefore be regarded as a mixture
between a transverse polariton and a longitudinal exciton.

Using the 5 × 5 matrix model for the anisotropic dispersion
of the 1S ortho-exciton-polariton, we are able to calculate the
group velocity, the oscillator strengths, and spectra for different
orientations of K and to compare them with experimental
results [64,65,67,69]. We especially discuss the two cases of
the polariton spectra in the planes perpendicular to [11̄0] and
[111]. In the first case, the vector K is oriented in one of the
six mirror planes of the cubic group Oh so that the polariton
states can be classified according to two different irreducible
representations of the group Cs. As regards the second case,
there is no such symmetry left and five polariton branches are
obtained independently from the polarization of light. We are
able to compare our results with experimental transmission
spectra. The good agreement between theory and experiment
not only emphasizes the special nature of the 1S ortho-exciton-
polariton but also proves the validity of the 5 × 5 matrix model
as a useful theoretical model for further investigations on this
polariton.

Our investigations with respect to the exciton-polariton
problem in Cu2O are gaining additional importance by recent
second harmonic generation (SHG) measurements performed
by J. Mund et al. [70]. The experiments were carried out
with a laser generating ultra short pulses having a band width
covering several meV. The resonant excitation of the 1S

orthoexciton by means of a two-photon absorption process
generates exciton polaritons that are giving rise to SHG
radiation. The polariton nature of the quadrupole exciton
explains why it is possible to generate SHG in a crystal with
inversion symmetry.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian of excitons in Cu2O when considering a
finite momentum h̄K of the center of mass and show how to
solve the corresponding Schrödinger equation in a complete
basis. In Sec. III, we present formulas to calculate dipole
and quadrupole oscillator strengths. Having introduced the
multipolariton concept of exciton-polartions in Sec. IV A,
we discuss the rotating wave approximation, the nonanalytic
exchange interaction and criteria for the observability of
polariton effects in Secs. IV B–IV D, respectively. In Sec. V,
we then use the Hamiltonian, which accounts for the complete
valence-band structure, the exchange interaction, and the
central-cell corrections to calculate the complex dispersion of
the polaritons connected with the exciton states of 2 � n � 4.
We also discuss the observability of polariton effects. The K

dependent splitting and the dispersion of the 1S ortho-exciton-
polariton are treated separately from the other polaritons in
Sec. VI. After the discussion of the splitting in Sec. VI A,
we introduce the 5 × 5 matrix model in Sec. VI B. The
dispersion of the ortho-exciton-polariton, the group velocity
and the oscillator strengths are compared with experimental
results in Sec. VI C. We finally give a summary and outlook
in Sec. VII.

II. HAMILTONIAN

In this section, we shortly present the theory of excitons
with a finite momentum of the center of mass in Cu2O, where
the cubic valence-band structure, the exchange interaction
and the central-cell corrections need to be considered. The
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Hamiltonian of the exciton is given by

H = Eg + V (re − rh) + He( pe) + Hh( ph)

+HCCC(re − rh) + Hexch(re − rh) (1)

with the energy Eg of the band gap. The screened Coulomb
interaction V , the central cell corrections HCCC, the analytic
exchange exchange interaction Hexch, and the kinetic energies
He( pe) and Hh( ph) of the electron and the hole are given in
Ref. [28].

We now introduce relative and center-of-mass coordinates:

r = re − rh, (2a)

R = αre + γ rh. (2b)

The factors α and γ are in general 3 × 3 matrices with
| det (α + γ )| = 1 [42]. As the Hamiltonian (1) depends only
on the relative coordinate r = re − rh of electron and hole,
the momentum of the center of mass

P = pe + ph = −ih̄(α + γ )∇R (3)

with

∇re = α∇R + ∇r , (4a)

∇rh = γ∇R − ∇r , (4b)

is a constant of motion, i.e., we can set P = h̄K [42,71].
According to Ref. [42], the matrices α and γ can be chosen
arbitrarily, as long as | det (α + γ )| = 1 holds, but should be
adapted to the problem. Note that if we insert Eqs. (2) and (4)
into the Hamiltonian (1) in general a coupling term between the
relative motion and the motion of center of mass appears. Only
for a specific choice of α and γ this coupling term vanishes.
However, the correct values of α and γ are difficult to find
[20,71]. In particular, the generalized relative and center of
mass coordinate transformation of Ref. [20] holds only if the
parameters ηi in the kinetic energy of the hole are set to zero
(cf. Ref. [20]). When assuming isotropic coefficients α = α1
and γ = (1 − α)1 it is not possible to find a constant value of
α for which the relative motion and the motion of the center
of mass are decoupled. This is connected to the fact that the
exciton mass in Cu2O is not isotropic [20]. Hence the more
complicated generalized transformation with 3 × 3 matrices
would be needed.

Nevertheless, the results of the Hamiltonian are indepen-
dent of the choice of α and γ . As we extend the theory
of excitons in semiconductors with a cubic valence-band
structure for polariton effects, we simply use the coordinates
and momenta of relative and center of mass motion with
α = me/(me + mh)1 and γ = mh/(me + mh)1 known from
the hydrogen atom in the following:

r = re − rh, (5a)

R = (mere + mhrh)/(me + mh), (5b)

p = (mh pe − me ph)/(me + mh), (5c)

P = pe + ph = h̄K . (5d)

We can then write the Hamiltonian in the form

H = H0 + (h̄K)H1 + (h̄K)2H2. (6)

The first part H0 is exactly the Hamiltonian of relative motion
presented and discussed in Ref. [28], while the last part H2

describes the motion of the center of mass in the degenerate
band case. The term H1 depends on the relative momentum
p and thus couples the relative motion and the motion of the
center of mass.

For the case that the wave vector K is oriented along one
of the directions of high symmetry, i.e., along [001], [110],
or [111], one can rotate the coordinate system to make the
quantization axis coincide with the direction of K and then
express the Hamiltonian (6) in terms of irreducible tensors
[40,75–77]. Explicit expressions for H0, H1, and H2 for these
special orientations of the wave vector K are given in Ref. [78].

The Schrödinger equation corresponding to the Hamil-
tonian (6) is solved using the method presented in
Refs. [20,21,28] with a complete basis. The ansatz for the
exciton wave function now reads

|�ν K 〉 =
∑

NLJFFtMFt

cν K
NLJFFtMFt

|�〉, (7a)

|�〉 = |N,L; (I, Sh) J ; F, Se; Ft ,MFt
〉 (7b)

with complex coefficients c and the quantum numbers
explained in Refs. [20,21,28]. Note that the coefficients here
depend on the wave vector K , which enters the Hamiltonian
(6). The index ν is a number to distinguish the different
exciton states.

Inserting the ansatz (7) in the Schrödinger equation H� =
E� and multiplying from the left with another basis state 〈�′|,
we obtain a matrix representation of the Schrödinger equation
of the form

Dc = EMc. (8)

The vector c contains the coefficients of the ansatz (7). All
matrix elements of H1 and H2, which enter the symmetric
matrices D and M are given in Ref. [78]. The matrix elements
of H0 are already given in the appendices of Refs. [20] and
[28]. The generalized eigenvalue problem (8) can finally be
solved using an appropriate LAPACK routine [79]. All material
parameters used in the calculations are listed in Table I.

III. OSCILLATOR STRENGTHS

Having solved the generalized eigenvalue problem (8), one
can directly calculate the relative oscillator strengths for the
transitions from the ground state of the solid to the exciton
states. In this section we will derive the according formulas
for dipole and quadrupole transitions. The oscillator strength is
strongly connected to the interaction between the excitons and
photons. According to Ref. [7] the probability per unit time
for a transition from the ground state �0 of the semiconductor
to an exciton state �στ

vc, ν K is proportional to |M|2 with

M =
∫

�στ∗
vc, ν K

[
−e

m0
A0(κ,ξ )

N∑
l=1

eiκ r l pl

]
�0d r1 · · · d rN.

(9)

Here, A0(κ,ξ ) denotes the amplitude of the vector potential of
the radiation field with the wave vector κ and the polarization
ξ . N denotes the number of electrons with the coordinates r l .

245202-3



SCHWEINER, ERTL, MAIN, WUNNER, AND UIHLEIN PHYSICAL REVIEW B 96, 245202 (2017)

TABLE I. Material parameters used in the calculations.

band gap energy Eg = 2.17208 eV [13]
electron mass me = 0.99 m0 [72]
spin-orbit coupling � = 0.131 eV [19]
valence-band parameters γ1 = 1.76 [19,20]

γ2 = 0.7532 [19,20]
γ3 = −0.3668 [19,20]
η1 = −0.020 [19,20]
η2 = −0.0037 [19,20]
η3 = −0.0337 [19,20]

lattice constant a = 0.42696 nm [73]
dielectric constants εs1 = 7.5 [74]

εb1 = εs2 = 7.11 [74]
εb2 = 6.46 [74]

energy of �−
4 -LO phonons h̄ωLO1 = 18.7 meV [48]

h̄ωLO2 = 87 meV [48]
exchange energy J0 = 0.792 eV [28]
central-cell correction V0 = 0.539 eV [28]

Within the scope of the simple band model the wave
function of an exciton is given by

�στ
vc, ν K =

∑
q

fvc ν(q)�στ
vc (q − γ K , q + αK ), (10)

where τ and −σ denote the spins of the electron and the hole,
respectively. As we will discuss below, the spin-orbit splitting
in Cu2O does not have a perceptible effect on the oscillator
strength. Hence we will keep the derivation of the formula for
the oscillator strength more simple by assuming a threefold
degenerate �+

5 valence band and by treating the electron spin
and the hole spin separately.

The envelope function fvc ν(q) in Eq. (10) is the Fourier
transform of the solution Fvc ν(β) of the Wannier equation
[5,7],

fvc ν(q) = 1√
N

∑
β

Fvc ν(β)e−iqβ, (11)

with ν denoting the different exciton states. Note that the
coordinate β is a lattice vector which in general takes only
discrete values [48]. This coordinate is identical to the relative
coordinate r used in Sec. II in the continuum approximation.

The wave function (10) contains a Slater determinant of
Bloch functions with one electron being in a Bloch state of the
conduction band and N − 1 electrons in Bloch states of the
valence bands:

�στ
vc (kh, ke)= Aψvk1αψvk1β · · ·ψvkhσψckeτ · · ·ψvkN β. (12)

Here, A denotes the antisymmetrization operator. With the
ground state of the semiconductor

�0 = Aψvk1αψvk1β · · · ψvkiαψvkiβ · · · ψvkNβ (13)

we can express the exciton state (10) as∣∣�στ
vc, ν K

〉 =
∑

q

fvc ν(q)c†c(q+αK )τ cv(q−γ K )σ |�0〉, (14)

using creation and annihilation operators. The operator
in square brackets in Eq. (9) can be written in second

quantization as∑
nn′

∑
kk′

∑
σ ′τ ′

−e

m0
A0(κ,ξ )〈ψn′k′τ ′ |eiκ r p|ψnkσ ′ 〉c†n′k′τ ′cnkσ ′ .

(15)

After some transformations, using A0(κ,ξ ) = A0(κ,ξ )êξκ

and neglecting umklapp processes, we arrive at

M = −eh̄

m0
A0(κ,ξ )Nδτσ δκ,K

∑
q

f ∗
vc ν(q)

∫
WSC

d r

× u∗
c(q+αK )(r)êξκ [(q − γ K )uv(q−γ K )(r)

− i∇uv(q−γ K )(r)] (16)

with an integral over the Wigner-Seitz cell (WSC) [80].
To obtain expressions for the dipole and quadrupole

oscillator strength, we use k · p perturbation theory and keep
all terms up to first order in q and K . It is [48,80]

umk(r) ≈ um0(r) + h̄

m0

∑
n	=m

k · pnm

(Em − En)
un0(r) + · · · (17)

with pmn = 〈um0| p|un0〉 and the energy En = En(k = 0) of
the band n at the � point. Due to the orthogonality of the
Bloch functions, the first summand in the integral of Eq. (16)
vanishes up to first order in q and K . We obtain

M = − eh̄

m2
0

A0(κ,ξ )δτσ δκ,K

∑
q

f ∗
vc ν(q)

× [〈uc0|êξκ · p|uv0〉
+ 〈uc0|(êξκ · p)Mv( p · (q − γ K ))|uv0〉
+ 〈uc0|((q + αK ) · p)Mc( p · êξκ )|uv0〉], (18)

where we defined

Mm =
∑
n	=m

|un0〉〈un0|
(Em − En)

. (19)

The sum over q can be evaluated using

1√
N

∑
q

q
χ

i fvc ν(q) = (−i)χ
∂χ

∂β
χ

i

Fvc ν(β)

∣∣∣∣
β=0

(20)

and we arrive at

M = − eh̄

m2
0

A0(κ,ξ )
√

Nδτσ δκ,K

× lim
r→0

[êξκ · pcv F ∗
vc ν(r)

+ êξκ · (M̃v + M̃c) · (i∇βF ∗
vc ν(r))

+ êξκ · (−γ M̃v + αM̃c) · (F ∗
vc ν(r)K )], (21)

where we replaced β with r and defined the matrices M̃v , M̃c

with the components

(M̃v)ij = 〈uc0|piMvpj |uv0〉, (22a)

(M̃c)ij = 〈uc0|piMcpj |uv0〉. (22b)

In Cu2O it is pcv = 0 since the valence and the conduction
band have the same parity and thus the first term in Eq. (21)
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vanishes. The term δτσ has to be replaced by
√

2δS,0 when
using the eigenstates of the total spin S = Se + Sh = τ − σ

[81].
The operators Mc and Mv are projection operators. For

reasons of symmetry, these operators transform according to
the irreducible representation �+

1 of Oh. On the other hand, the
operator p transforms according to �−

4 . The symmetry of the
operator between the Bloch functions in Eq. (22) is, therefore,

�−
4 ⊗ �+

1 ⊗ �−
4 = �+

1 ⊕ �+
3 ⊕ �+

4 ⊕ �+
5 . (23)

The symmetry of the Bloch functions (without spin) is

�v ⊗ �c = �+
5 ⊗ �+

1 = �+
5 . (24)

Hence the expression requires that the operator has the symme-
try �+

5 [82]. We can then consider the coupling coefficients for
the case �−

4 ⊗ �−
4 → �+

5 . With the basis functions |X〉, |Y 〉,
|Z〉 of �−

4 and the basis functions |X̃〉 = |YZ〉, |Ỹ 〉 = |ZX〉,
and |Z̃〉 = |XY 〉 of �+

5 , we see that, e.g., the �+
5 -like part of the

products |X〉1|Y 〉2 and |Y 〉1|X〉2 transforms as |Z̃〉/√2. The
other expressions are obtained via cyclic permutation [83].

In Sec. II, we have introduced the quasispin I = 1. If we
compare the states |I,MI 〉 with the three functions |uxy

v0〉, |uyz

v0〉,
and |uzx

v0〉 transforming according to �+
5 , it is [67]

|1, + 1〉I = −(∣∣uyz

v0

〉 + i
∣∣uzx

v0

〉)
/
√

2, (25a)

|1,0〉I = ∣∣uxy

v0

〉
, (25b)

|1, − 1〉I = +(∣∣uyz

v0

〉 − i
∣∣uzx

v0

〉)
/
√

2. (25c)

In the envelope function of the exciton, the angular
dependence is given by the spherical harmonics YLM . We know
that in Eq. (21) the gradient of the envelope function at r = 0
is nonzero only if L = 1 holds. Furthermore, the envelope
function itself vanishes at r = 0 if L 	= 0 holds.

Let us assume that the light is polarized in x direction, i.e.,
êξκ = êx . Let us furthermore write the function |�ν K 〉 of the
exciton in the form of Eq. (7), where the spins, the envelope
with the angular momentum L, and the function of the hole
with the quasispin I enter. The dipole term in Eq. (21) is then
proportional to

lim
r→0

〈S = 0,MS = 0|
(〈

u
xy

v0

∣∣ ∂

∂y
+ 〈

uzx
v0

∣∣ ∂

∂z

)
|�ν K 〉

= lim
r→0

〈S = 0,MS = 0| ∂

∂r

(
〈I = 1,MI = 0|(−i)

√
3

8π
(〈L = 1,ML = 1| + 〈L = 1,ML = −1|)

− i√
2

(〈I = 1,MI = −1| + 〈I = 1,MI = 1|)
√

3

4π
〈L = 1,ML = 0|

)
|�ν K 〉

= −i

√
3

4π
lim
r→0

∂

∂r
(D〈2, 1| +D 〈2, − 1|)|�ν K 〉 (26)

Here the state |Ft ,MFt
〉D for the dipole transition (D) is a short notation for

|(Se, Sh) S, I ; I + S,L; Ft ,MFt
〉 = |(1/2, 1/2) 0, 1; 1, 1; Ft ,MFt

〉, (27)

in which the coupling scheme of the spins and angular momenta is different from the one of Eq. (7b) due to the requirement that
S must be a good quantum number: Se + Sh = S → (I + S) + L = Ft . As the quantization axis, we choose the z axis, which is
parallel to one of the principal axes of the crystal lattice. In an analogous way, the quadrupole term can be written as

lim
r→0

〈S = 0,MS = 0|(〈uxy

v0

∣∣Ky + 〈
uzx

v0

∣∣Kz

)|�ν K 〉

= lim
r→0

〈S = 0,MS = 0| 1√
4π

〈L = 0,ML = 0|
(

〈I = 1,MI = 0|Ky

− i√
2

(〈I = 1,MI = −1| + 〈I = 1,MI = 1|)Kz

)
|�ν K 〉

= lim
r→0

1√
4π

(
Q

〈1, 0|Ky − i√
2

(Q〈1, − 1| +Q 〈1, 1|)Kz

)
|�ν K 〉 (28)

with the state |Ft ,MFt
〉Q for the quadrupole transition (Q) being a short notation for

|(Se, Sh) S, I ; I + S,L; Ft ,MFt
〉 = |(1/2, 1/2) 0, 1; 1, 0; Ft ,MFt

〉. (29)

Note that this state is similar to the one of Eq. (27) but only L is set to zero. We finally arrive at the following expression for the
relative oscillator strength:

f rel
ξν K =

∣∣∣∣ lim
r→0

[
− i(M̃∗

v + M̃∗
c )

∂

∂r

〈
T D

ξ K

∣∣�ν K
〉 + (−γ M̃∗

v + αM̃∗
c )

K√
6

〈
T

Q
ξ K

∣∣�ν K
〉]∣∣∣∣

2

. (30)
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For the dipole term in Eq. (30) the two states |T D
ξ K 〉 are

given by

∣∣T D
ξ K

〉 =
3∑

i=1

êξ K i

∣∣πD
i

〉
, ξ = 1, 2 (31)

with the three components of the polarization vector êξ K and
three states, which transform according to �−

4 [21]:

∣∣πD
x

〉 = i√
2

[|2, − 1〉D + |2, 1〉D], (32a)

∣∣πD
y

〉 = 1√
2

[|2, − 1〉D − |2, 1〉D], (32b)

∣∣πD
z

〉 = i√
2

[|2, − 2〉D − |2, 2〉D]. (32c)

The state |T Q
ξ K 〉 in the quadrupole term of Eq. (30) reads

∣∣T Q
ξ K

〉 =
3∑

i=1

êξ K i

∣∣πQ
i

〉
, ξ = 1, 2 (33)

with the three states which transform according to �+
5 [21]:

∣∣πQ
x

〉 = K̂y |1, 0〉Q + K̂z

i√
2

[|1, − 1〉Q + |1, 1〉Q], (34a)

∣∣πQ
y

〉 = K̂x |1, 0〉Q + K̂z

1√
2

[|1, − 1〉Q − |1, 1〉Q], (34b)

∣∣πQ
z

〉 = K̂y

1√
2

[|1, − 1〉Q − |1, 1〉Q]

+ K̂x

i√
2

[|1, − 1〉Q + |1, 1〉Q]. (34c)

If we now set K = 0 in Eq. (30), we see that we have derived
the expression for the relative oscillator strength, which has
already been used in Refs. [20,21].

We can finally make an assumption as regards the size of the
parameters M̃v and M̃c. Since in Cu2O the uppermost valence
bands as well as the lowermost conduction band have positive
parity, we see from Eq. (22) that only bands with negative
parity will contribute to the sums in Eq. (19). In Cu2O, there
are only two bands of negative parity, which lie 449 meV above
the lowest conduction band and 5.6 eV below the highest
conduction band [48]. Hence, as regards the denominators
of the form (Em − En) in Mc and Mv , the energy difference
between the �+

7 and the �+
8 valence band due to the spin-orbit

coupling is negligible small in comparison to the energy
difference between these bands and the bands of negative
parity. Thus the spin-orbit coupling does not have a sizable
effect on the oscillator strength. Furthermore the denominator
(Ec − En) in Mc is much smaller than the denominator
(Ev − En) in Mv and it is Mc  Mv . We therefore neglect Mv

in this paper. As a consequence, to obtain absolute oscillator
strengths, only one parameter η in the final expression

fξν K = η

∣∣∣∣limr→0

[
−i

∂

∂r

〈
T D

ξ K

∣∣�ν K
〉 + αK√

6

〈
T

Q
ξ K

∣∣�ν K
〉]∣∣∣∣

2

(35)

has to be determined via a comparison with experimental
values. Note the specific form of Eq. (35), where the sum of

dipole and quadrupole matrix element is squared. In contrast
to the hydrogenlike model, inversion symmetry is broken
when considering the more precise model of Cu2O. Hence the
exciton states are mixed-parity states and, thus, an interference
term occurs. Especially for the 1S orthoexciton, both terms in
Eq. (35) are of the same magnitude. The dipole term becomes
equally large as the quadrupole term for K 	= 0 due to a K

dependent admixture of P excitons to the 1S orthoexciton.
Even though the parameter α occurs in Eq. (35), the whole
expression is independent of its value. This is related to the
fact that the wave function of the exciton also depends on α.

In this paper, we choose K to be oriented in [001], [110],
or [111] direction and, as in Ref. [21], we also rotate the
coordinate system to make the z axis of the new coordinate
system coincide with the direction of K . The formulas for the
oscillator strengths for the three orientations of K [84] can be
derived by analogy with Ref. [21]. The consideration of these
three directions of high symmetry is sufficient to determine
those parameters in Sec. VI, which are needed in the 5 × 5
matrix model to calculate the polariton dispersion for any other
direction of K .

IV. EXCITON-POLARITONS

In this section, we recapitulate the quantum mechanical
theory of exciton-polaritons in Sec. IV A and discuss the
rotating-wave approximation in Sec. IV B. To obtain the
correct treatment of the K-dependent problem, we consider the
nonanalytic exchange interaction in Sec. IV C. In Sec. IV D,
we shortly present the criteria for the observability of polariton
effects.

A. Polariton transformation

The quantum mechanical theory of polaritons was first
developed by Hopfield, Fano, and Agranovich [56–58]. Ac-
cording to Refs. [56,85,86], the second-quantized Hamiltonian
for the interaction of excitons and photons,

H =
∑
ξ K

[
h̄ωξ K

(
a
†
ξ K aξ K + 1

2

)

+
∑

ν

Eν K

(
B

†
ν K Bν K + 1

2

)

+ i
∑

ν

Cξ ν K (a†
ξ K + aξ−K )(Bν K − B

†
ν−K )

+
∑

ν

Dξ ν K (a†
ξ K + aξ−K )(aξ K + a

†
ξ−K )

]
, (36)

can be derived either from a microscopic model of excitons
with the Hamiltonian describing the interaction between
radiation and matter or from the equation of motion for the
exciton polarization. In the Hamiltonian (36) the operators
B

†
ν K and Bν K create and annihilate an exciton with energy

Eν K , respectively, and obey Bose commutation rules in the fol-
lowing. Likewise, the operator a

†
ξ K (aξ K ) creates (annihilates)

a photon with polarization ξ and energy h̄ωξ K = h̄cK/
√

εb2.
The coupling coefficients in the exciton-photon and the
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photon-photon interaction terms of Eq. (36) are given by

Cξ ν K =
(

κSIπβξν K E3
ν K

εb2h̄ωξ K

) 1
2

(37)

with κSI = 1/4πε0 and

Dξ ν K = C2
ξ ν K /Eν K . (38)

The polarizability βξν K is proportional to the oscillator
strength of the exciton state. With our definition of the oscil-
lator strength fξν K (cf. Refs. [64,65,69]), this proportionality
is given by [85,87,88]

βξν K = ε0εb2fξν K . (39)

The Hamiltonian (36) can be diagonalized by the Hopfield
transformation [56,57], which is similar to the Bogolyubov’s
uv transformation [89,90]: new creation and annihilation
operators p

†
μξ K and pμξ K are introduced via

aξ K =
∑

μ

[uμξ K pμξ K + v∗
μξ−K p

†
μξ−K ], (40a)

Bν K =
∑

μ

[uμξν K pμξ K + v∗
μξν−K p

†
μξ−K ], (40b)

to obtain the polariton Hamiltonian

H =
∑
μξ K

Eμξ K p
†
μξ K pμξ K + const. (41)

with μ and Eμξ K denoting the polariton branches and the
polariton energies, respectively. The new operators must obey
Bose commutation relations and the Hamiltonian shall be
diagonal, i.e.,

[pμξ K ,H ] = Eμξ K pμξ K (42)

must hold. This provides the following conditional equation
for the polariton energies [58,86,91]:

h̄2c2K2

E2
μξ K

= εb2 +
∑

ν

4πκSIβξν K

1 − (Eμξ K /Eν K )2
. (43)

Using the phase convention of Hopfield [56], the soulitons
for the coefficients u and v of the polariton transformation can
be obtained (see Ref. [86]). The polariton operators can also
be expressed in terms of exciton and photon operators:

pμξ K = w
(1)
μξ K aξ K + w

(2)∗
μξ−K a

†
ξ−K

+
∑

ν

[
z

(1)
μξν K Bν K + z

(2)∗
μξν−K B

†
ν−K

]
. (44)

Since all creation and annihilation operators of the three (quasi)
particles obey Bose commutation relations, we can determine
the coefficients w and z by evaluating

[pμξ K , a
†
ξ K ] = +w

(1)
μξ K = u∗

μξ K , (45a)

[pμξ K , aξ−K ] = −w
(2)∗
μξ K = v∗

μξ K , (45b)

and

[pμξ K , B
†
ν−K ] = +z

(1)
μξν K = u∗

μξν K , (46a)

[pμξ K , Bν K ] = −z
(2)∗
μξν K = v∗

μξν K . (46b)

The coefficients w
(i)
μξ K or the sum

Wμξ K =
2∑

i=1

∣∣w(i)
μξ K

∣∣2
(47)

then allow one to determine whether the polariton is more
photonlike (Wμξ K → 1) or more excitonlike (Wμξ K → 0).

B. Rotating-wave approximation

In the literature, polaritons are often treated within the so-called rotating-wave approximation [85]. In this case, the term
with the coefficient D and the antiresonant terms of the form aB and a†B† are neglected in the Hamiltonian (36). The resulting
Hamiltonian

H =
∑
ξ K

[
h̄ωξ K a

†
ξ K aξ K +

∑
ν

Eν K B
†
ν K Bν K +

∑
ν

Cξ ν K (a†
ξ K Bν K + aξ K B

†
ν K )

]
(48)

is then called the Jaynes-Cummings Hamiltonian [92], where the vacuum energy of the photons has also been neglected [85] and
where the operators aξ K have been replaced with iaξ K . Note that this replacement does not change the physics of the problem
since it only adds global phases to the occupation-number states. The occupation-number operator and the commutation relations
remain unchanged.

The coefficient Cξ ν K can be written as [85,88]

Cξ ν K =
[
κSIπβξν K E3

ν K

εb2h̄ωξ K

] 1
2

≈ 1

2

(
K0

K

) 1
2

h̄�R (49)
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with the wave vector at the exciton-photon resonance K0 = Eν K 0

√
εb2/h̄c and the Rabi frequency

�R = Eν K 0

√
4πκSIβξν K

εb2h̄
2 . (50)

The rotating wave approximation is generally valid if h̄�R � Eν K 0 holds. This is, e.g., the case for anorganic semiconductors
and especially for Cu2O [88].

Close to the resonance (K ≈ K0) one can assume Cξ ν K ≈ h̄�R/2. Note that for K → 0 the coupling constant (49) diverges,
which is a manifestation of the infrared catastrophe in quantum electrodynamics [85]. Hence the simplifications made above are
valid only in the vicinity of the exciton-photon resonance. Otherwise, the full Hamiltonian (36) has to be diagonalized.

In the rotating-wave approximation, the polariton transformation is more simple as there is no interaction between states with
different values of K . Using the ansatz

pμξ K = wμξ K aξ K +
∑

i

zμξνi K Bνi K , (51)

the Bose commutation relations of the creation and annihilation operators, and the condition (42) for the polariton operator, one
ends up with the eigenvalue problem

P ξ{ν}K zμξ{ν}K = Eμξ K zμξ{ν}K (52)

with

P ξ{ν}K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̄ωξ K
1
2 h̄�R, ν1

1
2 h̄�R, ν2 · · · 1

2 h̄�R, νn
· · ·

1
2 h̄�R, ν1 Eν1 K 0 · · · 0 · · ·
1
2 h̄�R, ν2 0 Eν2 K

...
...

...
. . . 0 · · ·

1
2 h̄�R, νn

0 · · · 0 Eνn K
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

zμξ{ν}K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wμξ K

zμξν1 K

zμξν2 K
...

zμξνn K
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (53)

Knowing the energies Eν K and the Rabi frequencies �R, ν of the exciton states, one can directly obtain the corresponding polariton
energies by determining the eigenvalues of Eq. (52).

Finally, as the polariton is a mixed state of a photon and excitons, one can again determine the photonlike part

Wμξ K = |wμξ K |2 (54)

of the polariton or the contribution

Zμξν K = |zμξν K |2 (55)

of the exciton with the energy Eν K to the polariton.

C. Nonanalytic exchange interaction

There is another interaction affecting the exciton states: the nonanalytic (NA) exchange interaction. It is well known that the
splitting caused by H NA

exch is identical to the longitudinal-transverse splitting (LT splitting) when treating polaritons [93]. Hence
it is indispensable to include the nonanalytic exchange interaction in the theory to obtain a correct treatment of the complete
problem.

In this section we will derive an expression for the nonanalytic exchange interaction. We start with the formula of Ref. [25]
for the nonanalytic exchange energy between two exciton states �στ

vc, ν K and �σ ′τ ′
vc, ν ′ K ′ in second quantization:

H NA
exch =

∑
νν ′ K

m∗
ν K mν ′ K

ε0εb2VucK2
B

†
ν K Bν ′ K (56)
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with the volume Vuc of one unit cell and

mν K = δστ

e√
N

∑
q

fvc ν(q)

{
− h̄

m0

K · pvc

Ev − Ec

+ h̄2

m2
0

∑
n	=v,c

[
[(q − γ K ) · pvn] [(q + αK ) · pnc]

(Ev − En)(Ec − En)

+ [(q + αK ) · pvn] [(q + αK ) · pnc]

(Ec − Ev)(Ec − En)
+ [(q − γ K ) · pnc] [(q − γ K ) · pvn]

(Ev − Ec)(Ev − En)

]}
. (57)

Here, mν K is a short notation for the function mvc ν(K , 0) of Ref. [25]. For the definitions of �στ
vc, ν K , fvc ν(q), and pmn see Sec. III.

The exchange energy includes the term δστ δσ ′τ ′ . Introducing the total spin S = Se + Sh = τ − σ of electron and hole, this term
can be written for singlet and triplet states as 2δS,0 [81].

Using Eq. (20) and rearranging the different terms in Eq. (57) yields

mν K = δστ

eh̄2

m2
0

K

(Ec − Ev)
lim
r→0

[(Ñv + Ñc) · (−i∇rFvc ν(r)) + (−γ Ñv + α Ñc) · (Fvc ν(r)K )] (58)

with the matrices

Ñv = 〈uv0| pMv(K̂ · p)|uc0〉, (59a)

Ñc = 〈uv0|(K̂ · p)Mc p|uc0〉, (59b)

and K̂ = K/K .
Due to the similarity between Eqs. (21) and (58), we can perform the same calculation as in Sec. III to obtain

mν K ∼ K lim
r→0

[
−i(M̃v + M̃c)

∂

∂r

〈
LD

K

∣∣�ν K
〉 + (−γ M̃v + αM̃c)

K√
6

〈
L

Q
K

∣∣�ν K
〉]

(60)

with the states

∣∣LD
K

〉 =
3∑

i=1

K̂i

∣∣πD
i

〉
,

∣∣LQ
K

〉 =
3∑

i=1

K̂i

∣∣πQ
i

〉
. (61)

As in Sec. III, we will assume Mc  Mv so that we can finally state that mν K is proportional to

K lim
r→0

[
−i

∂

∂r

〈
LD

K

∣∣�ν K
〉 + αK√

6

〈
L

Q
K

∣∣�ν K
〉]

. (62)

We can see from Eq. (56) that there is no interaction between states with different values of K , which is the same case as
for the Hamiltonian (48) of the polariton interaction in the rotating-wave approximation. Knowing the exciton energies Eν K and
the corresponding wave functions |�ν K 〉, we can simultaneously diagonalize the polariton Hamiltonian and the NA-exchange
Hamiltonian by solving the eigenvalue problem

(P ξ{ν}K + N {ν}K )zμξ{ν}K = Eμξ K zμξ{ν}K (63)

with the matrix

N {ν}K = ζ

εb2K2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 · · ·
0 m∗

ν1 K mν1 K m∗
ν1 K mν2 K · · · m∗

ν1 K mνn K · · ·
0 m∗

ν2 K mν1 K m∗
ν2 K mν2 K

...
...

...
. . . · · ·

0 m∗
νn K mν1 K · · · m∗

νn K mνn K
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (64)

and the matrix P ξ{ν}K and vector zμξ{ν}K defined in Eq. (53). The constant parameter ζ can be determined by the fact that the
splitting caused by H NA

exch is identical to the LT splitting.
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D. Observability of polariton effects

We now shortly discuss the criteria for the observability
of polariton effects, which were derived by Tait in Ref. [94].
To obtain these criteria, he included a damping term � in the
model of polaritons since damping is always present in the
solid due to the interaction between excitons and phonons or
the leakage of photons out of the solid [88]:

h̄2c2K2

E2
μξ K

= εb2 +
∑

ν

4πκSIβξν K E2
ν K

E2
ν K − E2

μξ K − i�Eμξ K
. (65)

This equation can either be solved for a fixed wave vector K

or for a fixed frequency ω = Eμξ K /h̄.
The first case corresponds to nonlinear optical experiments

like, e.g., two-photon absorption. For this case a criterion of
temporal coherence between the photon and the exciton can
be derived [85,94]. As long as

h̄� < h̄

√
κSI

π

εb2
βξν K E2

ν K 0
= h̄

2
�R (66)

holds, where h̄� is the broadening of the linewidth due to
damping, the polariton splitting is observable. This criterion
can be interpreted in terms of Rabi oscillations, i.e., polariton
effects are observable if a coherent energy transfer between
an exciton and a photon is possible at least once [88]. Spatial
coherence is already provided here by keeping K fixed [85].

The second case corresponds to reflectivity or absorption
experiments. Here the coupling between the photon and the
exciton must remain coherent during the propagation of the
polariton through the solid in the presence of damping [85].
The criterion of spatial coherence reads [85,88,95]

h̄� <

√
16π

Mc2
κSIE

3
ν K 0

βξν K = h̄

2
�R

√
16εb2

Mc2
Eν K 0 , (67)

and it is generally more difficult to satisfy than Eq. (66) [88,96]
since

√
16εb2Eν K 0/Mc2 � 1 holds for an exciton mass M

on the order of m0 and an exciton energy on the order of
a few eV. The criterion (67) is equivalent to l  λ with λ

denoting the light wavelength and l = vg/� the mean free
path of the exciton [85]. Hence polariton effects can hardly be
observed in semiconductors with very shallow excitons, e.g.,
in GaAs [85], when using linear optical techniques. Therefore
polariton effects are often investigated using nonlinear optical
spectroscopic techniques due to the much less stringent
criterion (66) [97,98].

V. RESULTS INCLUDING VB STRUCTURE AND
CENTRAL-CELL CORRECTIONS

In this section, we will treat the exciton-polaritons with
2 � n � 4 in Cu2O using a Hamiltonian that accounts for the
valence-band structure, the exchange interaction, the central-
cell corrections, and the finite momentum h̄K of the center
of mass. For the three orientations [001], [110], and [111] of
K considered here, the cubic symmetry Oh is reduced to C4v,
C2v, and C3v, respectively [82].

Excitons of even and odd parity behave differently in
dependence on the momentum h̄K . On the one hand, states of
the odd series having the symmetry �−

4 and a component with
L = 1 show a finite dipole oscillator strength at K = 0. Since

the angular momentum L is not a good quantum number in
Cu2O and P -like exciton states are admixed to other states of
odd parity at K = 0 [28], P , F , H , . . . states of symmetry �−

4
have a finite dipole oscillator strength. Hence, for these states
already a splitting at K = 0 occurs due to the nonanalytic
exchange interaction and the exciton-photon coupling, which
affect the states of this symmetry.

On the other hand, the even exciton states do not have an
oscillator strength at K = 0 and, therefore, no splitting occurs.
For those even states, which have the symmetry �+

5 and an
L = 0 component at K = 0, the coupling to light via a finite
K vector is possible. Since S-like exciton states are admixed
to other states of even parity at K = 0 [28], S, D, G, . . . states
of symmetry �+

5 obtain a finite quadrupole oscillator strength
being proportional to K2.

At first, we will compare our numerical results for the
relative oscillator strengths of the 1S excitons with the absolute
value from the experiment. This will allow us to calculate
absolute oscillator strengths for all exciton states. Having
determined the correct size of the nonanalytic exchange
interaction for the nP excitons and, hence, for all other
exciton states, we can then investigate the dispersion of
exciton-polaritons for the three orientations of K along the
axes of high symmetry.

Since the formula derived in Sec. III allows us only to
calculate relative oscillator strengths f rel

ξν K but not absolute
oscillator strengths for the different polarizations ξ and exciton
states ν K , we determine the scaling factor η in

fξν K = ηf rel
ξν K (68)

by comparing the theoretical results for f rel
ξ 1S K for the 1S

exciton state at the exciton-photon resonance K = K0 with
the experimentally obtained value of [64]

fξ 1S K = 3.6 × 10−9 (69)

for K ‖ [110]. This yields η = 825.9. Knowing this scaling
factor, we can give the absolute oscillator strengths of all
exciton states in the following. With this value the oscillator
strengths of, e.g., the nP excitons are given by

fξ nP K = 3.75 × 10−4 n2 − 1

n5
. (70)

For a complete description of the polariton problem, we
also have to include the nonanalytic exchange interaction. The
splitting caused by this interaction at K = 0 must exactly equal
the LT splitting due to the polariton transformation. As the
rotating wave approximation does not hold for K → 0, we
determine at first the polariton energies Eμξ K for the transverse
exciton states via the conditional equation

h̄2c2K2

εb2E
2
μξ K

= 1 +
∑

ν

fξν K

1 − (Eμξ K /Eν K )2
, (71)

which is obtained when using the complete exciton-photon
interaction Hamiltonian [58,86,91]. The conditional equation
(71) can be rewritten so that the polariton energies are the roots
of the function

F(Eμξ K ) = 1 − h̄2ω2
ξ K

E2
μξ K

+
∑

ν

fνξ K E2
ν K

E2
ν K − E2

μξ K

, (72)

245202-10



EXCITON-POLARITONS IN CUPROUS OXIDE: THEORY . . . PHYSICAL REVIEW B 96, 245202 (2017)

FIG. 1. (a) The exciton energies Eν K in dependence on K = |K | for K ‖ [001]. Due to the inclusion of the complete valence-band structure
and the central cell corrections, the spectrum is much more complicated than in the hydrogenlike case (cf. Refs. [26,99]). The color bar shows
the oscillator strengths for ξ = σ±

z polarized light. For both polarizations the spectrum is identical. We denote from which states at K = 0 the
exciton states originate (cf. Ref. [28]). For reasons of space, we introduce the abbreviated notation �±

i/j to replace �±
i , �±

j . The blue solid line
gives the photon dispersion h̄ωξ K = h̄Kc/

√
εb2. (b) Polariton dispersion obtained by solving the eigenvalue problem (63). Since the P excitons

have a large oscillator strength, large avoided crossings can be observed. They clearly shift the position of the smaller avoided crossings for the
2S, 3D, and 4F excitons away from the position where the dispersion of light and the dispersion of these exciton states cross. (c) Photonlike
part Wμξ K of the polariton states. In all cases, the mixing of excitons and photons is strongest in the vicinity of an avoided crossing. Only for
the P excitons an admixture of photons far away from the resonance occurs.

where the photon energy h̄ωξ K = h̄Kc/
√

εb2 is used. Note that
a root of F(Eμξ K ) is always located between any neighboring
pair of the exciton energies Eν K , Eν+1 K [100–102].

We calculate the effect of the nonanalytic exchange interac-
tion on the longitudinal states for K → 0 by diagonalizing the
matrix N {ν}K given in Eq. (64). As the size of the nonanalytic
exchange is a priori unknown, we have scaled the matrix
N {ν}K , which describes this interaction, with a parameter ζ .
We vary the parameter ζ in such a way that the energies of
the longitudinal and transverse nP exciton states are identical.
This yields ζ = 213.5 ± 2.0.

Of prime interest are now the polariton dispersions in the
vicinity of the exciton phonon resonance. In this range of K ,
the rotating wave approximation is valid and we solve the
eigenvalue problem (63). Note that the errors arising due to
the use of the rotating-wave approximation are smaller than
the error due to uncertainties in εb2.

The numerical results for K ‖ [001] are shown in Fig. 1. In
the panels (a), we show the exciton spectrum in dependence
on K = |K |. Since the changes in the energy in dependence
on K are in the order of tens of μeV, the exciton states appear
as straight horizontal lines.
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The spectrum is much more complicated than when using
the hydrogenlike model of excitons, which was done in
Refs. [26,99]. Even for vanishing momentum of the center
of mass, the complete valence-band structure already leads
to a complicated fine structure splitting and to a mixing of
the exciton states with even or odd parity. This explains the
observability of F excitons in absorption spectra due to the
admixture of P excitons [18,20]. Due to the finite momentum
of the center of mass S and D excitons also obtain a small
oscillator strength.

We state in the panels (a) of Fig. 1 from which states at
K = 0 the exciton states originate using the nomenclature
nLy/g(�±

i ) of Ref. [28] with the abbreviations y and g for
yellow and green. In the case of the P and F excitons, we do
not give the symmetry of the complete exciton state but only
the combined symmetry of envelope and hole [18].

In the panels (b), we show the polariton dispersion.
Only for the P excitons, which have a comparatively large
oscillator strength, significant deviations between the polariton
spectrum and the exciton spectrum can be observed. The
insets in the panels show that also for the other exciton states
avoided crossings appear due to their finite oscillator strength.
However, the panels (c), which show the photonlike part of the
polariton states, indicate that the mixing between excitons and
photons is small in these cases.

Due to the proximity of the nS and nP states as well as
that of the nF states, avoided crossings are not well separated.
Hence the multipolariton concept has to be used and a single-
polariton concept would lead to different results. The large
avoided crossings of the P excitons clearly affect the other
avoided crossings as they shift them away from the position
where the dispersion of light and the dispersion of the other
exciton states cross.

As regards the other orientations K ‖ [110] or K ‖ [111]
of the momentum of center of mass, the differences in the
polariton spectra are slight. Since the K-dependent shift of the
exciton energies is on the order of tens of μeV, the exciton
energies are almost the same for the three orientations of K
considered. The main difference between the spectra for K ‖
[001], K ‖ [110], or K ‖ [111] is the values of the oscillator
strengths due to the different symmetry breaking. Therefore
also the polariton dispersions are different, however, mainly in
the vicinity of the avoided crossings [103].

Note that we do not show the polariton dispersion for
exciton states with n � 5 since the number of states with
a finite oscillator strength increases rapidly. However, the
oscillator strengths of the G, H , . . . exciton states are very
small so that polariton effects are likewise very small. Hence
we do not expect to observe considerably new effects for the
exciton-polaritons with n � 5.

Using the criteria of Tait [94] for temporal and spatial
coherence presented in Sec. IV D, we can estimate the possible
observability of the polariton effects. If we set n = 2, the
criterion of temporal coherence reads

h̄� <
h̄

2
�R ≈ 6.4 meV. (73)

For the criterion of spatial coherence, we obtain

h̄� <
h̄

2
�R

√
16εb2

Mc2
Eν K 0 ≈ 0.11 meV (74)

with the isotropic mass M ≈ 1.57m0 of the exciton and m0

denoting the free electron mass. In Ref. [13], the spectrum
of the giant Rydberg excitons has been investigated in an
absorption experiment and, thus, experimental values of the
exciton linewidths h̄� for the criterion of spatial coherence
are known. For n = 2, the experimental line width is h̄� =
1.58 meV [13,15], which is significantly larger than 0.11 meV.
Therefore we expect that the polariton effects for the yellow
exciton states with n � 2 in Cu2O may only be observed using
nonlinear spectroscopy methods and high quality crystals
[97,98]. As regards the 1S orthoexciton state, the linewidth is
small enough to clearly observe polariton effects [64,65,69].

VI. YELLOW 1S ORTHO-EXCITON-POLARITON

We now come to the yellow 1S ortho-exciton-polariton,
for which a pronounced polariton effect has been proven in
experiments. In Sec. VI A, we will discuss at first the effect
of finite momentum of the center of mass h̄K 	= 0 on the
exciton spectrum. We will especially pay attention to the
small quadrupole oscillator strength [64] and the K dependent
splitting of this state [20,66–68]. In Sec. VI B, we set up a 5 × 5
matrix model, which allows us to calculate the anisotropic
dispersion of the 1S ortho-exciton polariton for any direction
of K . We then present in Sec. VI C the polariton dispersion,
determine the group velocity [65,69] as well as the spectra for
rotations about the [11̄0] and the [111] axis, and compare them
with experimental values [65–68].

A. K -dependent splitting

As has already been stated in Sec. V, we have to consider
the reduction of the irreducible representations of the cubic
group Oh by the groups C4v, C2v, and C3v for the three
cases of K being oriented along the [001], [110], or the [111]
direction, respectively. In particular, for an exciton state having
the symmetry �±

5 at K = 0, degeneracies are lifted for K 	= 0.
We therefore observe a splitting of the 1Sy(�+

5 ) orthoexci-
ton state depending on K when solving the full K-dependent
Hamiltonian of excitons in Cu2O. This splitting is shown
in Fig. 2. It was observed experimentally in Refs. [66–68]
and originally discussed in terms of a K-dependent exchange
interaction. However, a closer examination of this interaction
revealed that it is far too weak in Cu2O to describe the
observed splitting [25]. Instead, it could be shown that the
effects due to the cubic valence-band structure lead to a
K-dependent effective mass and a K-dependent splitting of
the 1S orthoexciton [20]. Hence the directional dispersion is
the true cause of the experimentally observed splitting.

Note that in Ref. [20] the splitting was treated within a
perturbation approach and it was already emphasized that the
complete K-dependent Schrödinger equation including the
central cell corrections would have to be solved to obtain
correct results. This has now been done.

As the 1S orthoexciton state exciton state has the symmetry
�+

5 for K = 0, we expect for K ‖ [001] and K ‖ [111] a
splitting into two degenerate and one nondegenerate state.
For K ‖ [110] all degeneracies are lifted. This splitting can
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FIG. 2. Energy of the 1Sy(�+
5 ) orthoexciton state in dependence of K = |K |. We do not plot the absolute energies but the energy difference

�E = Eo
1S,K − Eo

1S,0 to show the small increase of the energy for K 	= 0. The 1S exciton obtains a finite oscillator strength for K 	= 0, which
increases quadratically with K . Furthermore, a K-dependent splitting of the three orthoexciton states can be observed. The green solid lines
are the fits of the eigenvalues of the Hamiltonian (75) to the numerical results. For further information see text.

be described by the Hamiltonian

Hdisp(K ) =�1

⎛
⎝K2 0 0

0 K2 0
0 0 K2

⎞
⎠

+ �3

⎛
⎝3K2

x − K2 0 0
0 3K2

y − K2 0
0 0 3K2

z − K2

⎞
⎠

+ �5

⎛
⎝ 0 KxKy KxKz

KxKy 0 KyKz

KxKz KyKz 0

⎞
⎠. (75)

We can prove the consistency with this formula by diag-
onalizing the Hamiltonian (75) for K ‖ [001], K ‖ [110],
and K ‖ [111] and fitting the resulting eigenvalues to our
numerical results obtained with the full exciton Hamiltonian
(6). This is shown in Fig. 2. The values of the fit parameters
�1, �3, and �5 are given in Table II. Since we have only
three independent parameters �i but seven exciton states to be

TABLE II. Results for the three coefficients �i when fitting
the eigenvalues the Hamiltonian (75) to the theoretical spectra of
Fig. 2 for the different orientations of K . For the [001] and the [111]
directions, the values �5 and �3 cannot be determined, respectively.
All results are given in 10−14 μeV m2. For a comparison, we also list
the experimentally determined values of Refs. [66–68]. For further
information see text.

[001] [110] [111] expt

�1 1.727 1.729 1.728 1.074
�3 −0.156 −0.155 – −0.189
�5 – 0.213 0.213 0.292

fitted, the consistency is proven by the fact that we obtain the
same values of the parameters �i in all fits.

When performing the fit, it is not necessary to account for
the K-dependent nonanalytic exchange interaction. In the next
section (Sec. VI B), a formula for the size of the nonanalytic
exchange interaction of the 1S exciton will be derived:

�Q = 2f0E0/K
2
0 . (76)

Here, f0 = 3.6 × 10−9 and E0 denote the oscillator strength
and the energy of the transverse exciton for K ‖ [001] at
the exciton-photon resonance K0, respectively. From the
numerical results we obtain

K0 = 2.614 × 107 1

m
, E0 = 2.032 eV, (77)

and, therefore,

�Q = 2.135 × 10−17 μeV m2. (78)

Obviously, the nonanalytic exchange interaction is two to three
orders of magnitude smaller than the anisotropic dispersion (cf.
Table II).

The experimentally observed splitting was described by the
ansatz (75) as well [66–68]. When comparing the results, we
have to note that the values of the �i are given with respect
to K0 and that the factor �1 of Refs. [66–68] only describes
the “exchange interaction,” i.e., the interaction without the
spherically symmetric part of the kinetic energy. Therefore
we have to compare �1/K

2
0 + h̄2/2M , �3/K

2
0 , and �5/K

2
0

with our results of the parameters �i . Here, M = me + me ≈
1.64m0 is the value of the isotropic exciton mass used in
Refs. [66–68].
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Within our model the average mass of the 1S orthoexciton
is

M = h̄2

2K2

3

Tr[Hdisp(K )]
= h̄2

2�1
= 2.2 m0, (79)

which is significantly larger than the sum M = me + mh =
me + m0/γ1 ≈ 1.56m0 of the isotropic quasiparticle masses.
However, there is a clear deviation from the experimen-
tally determined value of M = (3.0 ± 0.2)m0 [104–106].
The disparity in the masses can be explained by the fact
that the electron and the hole are not bare particles but polarize
the surrounding lattice and are thus accompanied by clouds of
longitudinal optical phonons [47]. Hence, in the experiment,
always polaron masses are measured, which are larger than
the bare particle masses [47]. Although we accounted for
this effect via the Haken potential in the Hamiltonian, we
already stated in Ref. [28] that there are some difficulties in
applying this theory to Cu2O due to the existence of two
optical phonons contributing to the Fröhlich interaction and
the small distance between the electron and the hole in the
exciton ground state, for which the Haken potential cannot
describe the non-Coulombic electron-hole interaction.

For the other two coefficients �3 and �5, a good agreement
is obtained (see Table II), in particular, as regards the sign of
the parameters. Note, however, that in Refs. [66–68], �Q has
been assumed to be of the same order of magnitude as the
parameters �i and that it has been included in the fit of the
experimental data. This affects the values for �3 and �5 and
is, therefore, another reason for the difference between the
experimental and the theoretical values in Table II.

Finally, differences between the experimental and theoreti-
cal values of the parameters �i could furthermore be explained
by the neglect of the polariton nature of the orthoexciton in
Refs. [66–68], in terms of small strains in the crystal [67] and
uncertainties in the experimental values (cf. the large error
bars in the figures of Ref. [66]). In particular, the fact that the
experimental spectra are not identical when changing the angle
of the laser beam by the same amount in opposite directions
in Ref. [66] shows the presence of strains.

We wish to note that also splittings in the same order
of magnitude are obtained, e.g., for the 2P exciton state.
However, these splittings cannot be observed experimentally
due to the large linewidth of the 2P exciton.

B. 5 × 5 matrix model

The yellow 1S orthoexciton is well separated from the
other exciton states regarding its energy. Hence it can be
treated separately from the other ones as regards polariton
effects. In this section we set up a model with a 5 × 5 matrix,
which allows calculating the dispersion of the 1S ortho-
exciton-polariton for any direction of K close to the resonance
(K ≈ K0). This model includes the two photon states with the
polarization vectors êξ K and the three orthoexciton states �i ,
which transform according to yz, zx, and xy.

First, we will treat the oscillator strength and the Rabi
frequency. Let us consider the most simple case with K ‖
[001]. Due to group theoretical reasons, the three states �yz,
�zx , and �xy are good eigenstates of the Hamiltonian. The
�zx exciton interacts with the photon in x polarization and the

�yz exciton interacts with the photon in y polarization. Let
us denote the oscillator strength of these exciton states at the
exciton-photon resonance by f0.

For other orientations of K , superpositions of the form∑
i ai�i are eigenstates of the Hamiltonian. From the expres-

sion (35) or especially from the form of the states |T Q
ξ K 〉 (33),

we can see that the K-dependent oscillator strength of these
exciton states is given by

f1S ξ K = f0

∣∣∣∣∣∣
⎛
⎝ êξ K ,yKz + êξ K ,zKy

êξ K ,zKx + êξ K ,xKz

êξ K ,xKy + êξ K ,yKx

⎞
⎠ ·

⎛
⎝ayz

azx

axy

⎞
⎠

∣∣∣∣∣∣
2

(80)

with the components êξ K ,i of the polarization vector êξ K .
For states of symmetry �+

5 , it has been shown in
Ref. [25] that the nonanalytic exchange interaction can be
written as

HNA
exch(K ) = �Q

K2

⎛
⎜⎝

K2
yK2

z K2
z KyKx K2

yKxKz

K2
z KyKx K2

z K2
x K2

xKyKz

K2
yKxKz K2

xKyKz K2
xK2

y

⎞
⎟⎠.

(81)

Contrary to dipole allowed excitons, the nonanalytic exchange
energy depends on the fourth power of the angular coordinates
of K . The prefactor �Q is connected to the oscillator strength
and can be determined for the 1S state in the following
way. For the special case of K being oriented in [111]
direction, the �+

5 state splits into one longitudinal �1 and two
transverse �5 states. The longitudinal state is an eigenstate of
the operator (81) with the eigenvalue �Q/3. An excitation of
the longitudinal exciton leads to an oscillating longitudinal
polarization. Due to the Maxwell equation ∇ · D = 0, the
dielectric function must be zero. Hence we have

ε(ω,K0)[�1] = εb2 +
4
3f0εb2

1 − (
E0 + 1

3�QK2
0

)2
/(E0)2

= 0

(82)

[cf. also Eq. (71)]. Here, E0 = h̄cK0/
√

εb2 is the energy of
the �1 exciton at K = K0 without the nonanalytic exchange
interaction. Using f0 � 1 [64,65,69], we obtain

�Q = 2f0E0/K
2
0 = 2f0h̄

2c2/εb2. (83)

Combining all the K dependent effects for the 1S orthoex-
citon, we arrive at the Hamiltonian for the 1S ortho-exciton-
polariton in the rotating-wave approximation:

H =
(

Hph Hexc−ph

HT
exc−ph Hexc

)
(84)

with the 2 × 2 matrix Hph containing the photon dispersion,

Hph = h̄cK√
εb2

(
1 0
0 1

)
= E0

K

K0

(
1 0
0 1

)
, (85)
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FIG. 3. Dispersion of the 1S ortho-exciton-polariton calculated using the 5 × 5 matrix model. For the different orientations of K , we give
the photonlike part Wμξ K for the two polarizations ξ . It can be seen that for K ‖ [110] and light being polarized along ê2K no exciton-photon
coupling occurs. We do not plot the absolute energies but the energy difference �E = E − E0. For further information see text.

a 2 × 3 matrix Hexc−ph with the Rabi energies h̄�R = E0
√

f0,

Hexc−ph = 1

2
h̄�R

1

K0

((
ê1K ,yKz + ê1K ,zKy

) (
ê1K ,zKx + ê1K ,xKz

) (
ê1K ,xKy + ê1K ,yKx

)
(
ê2K ,yKz + ê2K ,zKy

) (
ê2K ,zKx + ê2K ,xKz

) (
ê2K ,xKy + ê2K ,yKx

)
)

, (86)

and

Hexc = E0 1 + Hdisp(K ) + HNA
exch(K ), (87)

where 1 is the 3 × 3 identity matrix.
Note that the Rabi energy depends on the square root of the

oscillator strength [cf. Eq. (50)]. Hence questions about the
sign of the terms (ê1K ,yKz + ê1K ,zKy) in Eq. (86) may arise.
However, for reasons of symmetry, the terms must be linear in
K . As the photon has negative parity, i.e., since it transforms
according to �−

4 in Oh, the terms have to change the sign if the
direction of K is reversed. The eigenstates of the Hamiltonian
(84) can be calculated using an appropriate LAPACK routine
[79].

C. Polariton dispersion

As the 1S orthostate shows a pronounced polariton effect,
we will now come to its dispersion, which can be calculated
using the 5 × 5 matrix model. For the subsequent calculations,
we will use the parameters

f0 = 3.6 × 10−9, E0 = 2.0239 eV (88)

of Ref. [64], which yields

K0 = 2.618 × 107 1

m
, �Q = 2.135 × 10−17 μeV m2,

(89)

and the average values of the theoretical results for the
parameters �i in Table II.

FIG. 4. (a) Group velocity vg (color scale) of the 1S ortho-exciton-polariton with K ‖ [110] and ê1K polarization in dependence on the
energy difference �E = E − E0 and the wave vector K . (b) and (c) The group velocity vg only in dependence on the energy difference
�E = E − E0 for a comparison with Fig. 3 of Ref. [65]. The minimum value of vg depends on f0 and is given by vg,min = 1.5 km/s.
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In Fig. 3, we first present the results for K being oriented
along one of the axes of high symmetry. The longitudinal
exciton states do not couple to photons and, therefore, their
dispersion appears as almost horizontal lines. In particular, it
can be seen that for K ‖ [110] and light being polarized along
ê2K no exciton-photon coupling occurs. For the transverse
states, we present the photonlike part for the two polarizations.

In Ref. [65], the group velocity of the 1S ortho-exciton-
polariton has been measured as a function of the photon energy
for K ‖ [110]. From the dispersion shown in Figs. 3(b) and
3(e), we can directly calculate the group velocity via

vg = dω

dK
= 1

h̄

dE

dK
. (90)

The result is shown in Fig. 4. It can be seen that the group
velocity decreases on the lower polariton branch close to
the resonance for increasing values of K . However, for large
values of K , the polariton dispersion approaches the exciton
dispersion, which increases quadratically in K , so that vg is
then proportional to K . Hence there must be a minimum value
of the group velocity. In the experiment, group velocities as
low as 40 km/s could be measured [65]. However, it was
not possible to measure the complete dispersion. In particular,
the region of very low group velocities is not experimentally
accessible. From Eq. (90) and the theoretical results, it is
possible to calculate all group velocities. The minimum value
of vg obtained in our calculations is

vg,min = 1.5
km

s
(91)

at K = 2.758 m−1. When comparing our result for the group
velocity, i.e., Fig. 4(b), with the experimental results of
Ref. [65], a very good agreement can be observed.

From the results of the 5 × 5 matrix model, it is also
possible to calculate the polarization vector of the photonlike
part of the polariton or the orientation of the electric field
as

∑2
i=1 Wμ i K êi K and the polarization vector connected

with the excitonlike part of the polariton via the symmetric
cross product of êi K and K [cf. Eq. (80)] according to the
group theoretical condition �+

5 ⊗ �−
4 → �−

4 . One obtains for
�3 = �5 = 0 states with purely longitudinal or transverse
polarization. However, in the general case, the states are
mixed longitudinal-transverse states and the polarization is
not parallel to the applied electrical field.

Another interesting point is the polariton energies if the
crystal is rotated about the [11̄0] or the [111] axis (cf.
Refs. [66–68]). In the case that the crystal is rotated about
the [11̄0] plane, the K vector passes all three orientations of
high symmetry from [001] to [111] and then to [110]:

K = K√
2

⎛
⎝ sin ϕ

sin ϕ√
2 cos ϕ

⎞
⎠. (92)

The polarization vectors are given by

ê1K = 1√
2

⎛
⎝ cos ϕ

cos ϕ

−√
2 sin ϕ

⎞
⎠, ê2K = 1√

2

⎛
⎝ 1

−1
0

⎞
⎠. (93)

Independent of the angle ϕ the symmetry of the problem is
always Cs [83]. This group contains the identity and a reflection
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FIG. 5. (a) and (b) Polariton energies at K = K0 when rotating
the vector K in the plane with the normal vector n̂ = (1, − 1, 0)/

√
2.

Again, we only plot the energy difference �E = E − E0. The color
scale denotes the photonlike part of the polariton states. As is
discussed in the text, the problem decouples in two problems for
the two irreducible representations �1 (a) and �2 (b) of the group Cs.
(c) and (d) Polariton energies at K = K0 when rotating K in the plane
with the normal vector n̂ = (1, 1, 1)/

√
3. Every 60◦ K is oriented in

a direction of high symmetry.

at the plane with the normal vector n̂ = (1, − 1, 0)/
√

2,
which is identical to one of the six σd reflections of Oh. The
irreducible representations of Cs are either symmetric (�1)
or antisymmetric (�2) under reflection. Hence the complete
problem falls into two parts: The linear combinations �xy

and (�zx + �yz)/
√

2 of the orthoexciton states transform
according to �1, while the linear combination (�zx − �yz)/

√
2

transforms according to �2. Furthermore, photons transform
in Cs also according to �1 (ê1K ) and �2 (ê2K ). Therefore
the problem decouples group theoretically in a �1 problem
with three polariton branches and a �2 problem with only two
polariton branches.

We keep the amount of K fixed at K = K0 and increase the
angle ϕ from 0◦ to 90◦. The result is shown in Figs. 5(a) and
5(b). From the photonlike part of the polariton, we can clearly
see the decoupling of the problem. Furthermore, the expected
degeneracies of the polariton states occur if K is oriented in
[001], [111], or [110] direction.

Especially, the polariton dispersion for K ‖ [112̄] (ϕ =
arccos(−2/

√
6)) is interesting as regards second harmonic

generation (SHG) measurements. This dispersion is shown
in Fig. 6. SHG measurements are selective with respect to ω

and K creating bulk polaritons with 2ω and 2K . This allows
the excitation of polaritons on the upper polariton branch.
The lower polariton branch is inaccessible since the total
K-vector is too small. Due to symmetry reasons, it is not
possible to observe SHG for K being parallel to [001] or
[110]. The SHG measurements in Ref. [70] were therefore
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FIG. 6. Same as Fig. 3 but for K ‖ [112̄], i.e., for ϕ =
arccos(−2/

√
6) in Eqs. (92) and (93). In panel (a) there are three

hybrid polariton branches having a polarization within the (1,1̄,0)
plane. This is in contrast to the directions of high symmetry, where
only two polariton branches occur. For further information see text.

performed in a configuration where K is parallel to [111]
or [112̄]. Especially SHG measurements with K ‖ [112̄] are
interesting because there exist three hybrid polariton branches
having a polarization within the (1,1̄,0) plane. The polariton
states on the upper and intermediate polariton branch are both
accessible in SHG. Therefore this is a situation where two
exciton polaritons can get coherently excited by means of the
same nonlinear polarization P (2ω, 2K). The interference of
both exciton polaritons should give rise to a polariton beat
showing up in time resolved SHG measurements.

Let us now discuss the rotation about the [111] axis. The
[111] axis is a threefold axis, for which reason after every
60◦ K is oriented in a direction of the form [110]. Between
each two of these cases K is oriented in a direction of the form
[112]. We have

K = K√
6

⎛
⎝

√
3 cos ϕ + sin ϕ

−√
3 cos ϕ + sin ϕ

−2 sin ϕ

⎞
⎠, (94)

and the polarization vectors

êj K = 1

3
√

j

⎛
⎝3j − 4 + cos ϕ − √

3 sin ϕ

3j − 4 + cos ϕ + √
3 sin ϕ

3j − 4 − 2 cos ϕ

⎞
⎠, j = 1,2.

(95)

The resulting spectrum when varying the angle ϕ and
keeping the amount of K fixed at K = K0 is shown in Figs. 5(c)
and 5(d). In the cases with K being of the form [110] only
one exciton state is allowed for the polarization vector of
the form [001] and all exciton states are forbidden for the
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FIG. 7. Polariton energies for the vector K given by Eq. (94)
with ϕ = 4◦ and its amount is varied. Again, we only plot the energy
difference �E = E − E0. The color scale denotes the photonlike
part of the polariton states.

other polarization vector. Note, however, that if we start with
the configuration K ‖ [01̄0], ê1K ‖ [001̄], and ê1K ‖ [110] of
Ref. [66] and perform a rotation about the [111] axis, none
of the polarization vectors is oriented in the [010] direction
at ϕ = 60◦ while K ‖ [101̄] holds. Hence only for ϕ = 0◦
all exciton states are forbidden for the polarization ê2K in
Figs. 5(c) and 5(d).

In the cases with K being of the form [112], all exciton
states are allowed. Since the difference between K ‖ [11̄0]
and K ‖ [21̄1̄] are only �ϕ = 30◦, a rotation about the [111]
axis with ϕ = 4◦ already shows a significant effect on the
spectrum as can be seen especially from Fig. 5(d).

Exactly for this case with ϕ = 4◦ and the polarization ê2K ,
the transmission spectrum of the ortho-exciton-polariton is
shown in Fig. 2(c) of Ref. [66]. The shape of the transmission
spectrum of is clearly affected by polariton dispersion. Photons
with K ‖ [1̄10] and êξ K ‖ [110] do not interact with the
orthoexciton. Tilting the K vector by 4◦ leads to a very weak
exciton photon interaction so that two of the excitons show up
in this figure as two extremely narrow absorption peaks. The
product of Rabi frequency and exciton lifetime is however so
low that these states are excitons rather than polaritons. This
explains the sharp absorption lines with a line width of less
than 1 μeV. The third quadrupole-allowed state is responsible
for the comparatively broad absorption line observed in [001]
polarization. This state is in contrast to the other ones a perfect
polariton. The much broader line width of 20 μeV is caused
by polariton dispersion. If single photon spectroscopy was
K-selective, this exciton polariton would show up with a
similar small line width as is in the pure exciton case.

For a comparison with the experiment, we calculate the
polariton dispersion for different values of K and keeping ϕ

fixed to ϕ = 4◦. The result is shown in Fig. 7. It can be seen that
for the polarization ê2K two states have a significant photon
amplitude. Hence, these are the two states, which could be
observed as very narrow lines in the experimental transmission
spectrum [66]. However, while in the experiment the energy
difference between the two states is about 4 μeV, we obtain
only 2.4 μeV. We can exclude uncertainties in the parameter
�1 or the angle ϕ since a variation of these parameters does
not change the size of the splitting. Only a variation of �3
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and �5 changes the size of the splitting. However, even if we
set these parameters to the experimentally determined values
listed in Table II, the splitting increases only to 3.0 μeV. As
we have already stated above, the presence of small strains in
the crystal cannot be excluded. These may be the major reason
for the observed discrepancy.

Of course, it is also possible that the positions of the
transmission maxima in the experiment are not exactly given
by the positions of the avoided crossings. In this case, one
would have to calculate the transmission spectrum for the
polariton dispersion using Pekar’s boundary conditions [107].
This is likewise difficult and beyond the scope of this work.
Despite all that, we obtain a good qualitative agreement with
the experiment.

VII. SUMMARY AND OUTLOOK

We presented the theory of exciton-polaritons in Cu2O.
In the derivation of the formulas we accounted for all relevant
effects which are needed to describe the spectra theoretically in
an appropriate way, i.e., the complete valence-band structure,
the exchange interaction, and the central-cell corrections
[28]. This leads to a likewise complicated expression for the
momentum-dependent Hamiltonian of excitons. Our method
of solving the corresponding Schrödinger equation allows
calculating dipole and quadrupole oscillator strengths, for
which general formulas have been derived. The subsequent
polariton transformation can be performed within the so-called
rotating-wave approximation. Within this approximation it is
straightforward to additionally account for the nonanalytic
exchange interaction.

We have treated the dispersion of polaritons in Cu2O using
a multipolariton concept. When considering the correct model
of excitons in Cu2O, all states which have the symmetry �+

5
for K = 0 obtain a finite K-dependent oscillator strength, i.e.,
S, D, G, and higher excitons. The more complex spectrum
of excitons when using the full Hamiltonian leads to a more
complex polariton dispersion than in previous works [26,99].
We also estimated that polariton effects for the yellow exciton
states with n � 2 may only be observed using nonlinear
spectroscopy methods and high quality crystals.

When including the complete valence-band structure, a
K-dependent splitting of the three components of the yellow
1S orthoexciton appears. In contrast to Ref. [20], we have

solved the complete K-dependent Schrödinger equation nu-
merically including also the correct values for the central-
cell corrections of Ref. [28]. The splittings calculated are
on the same order of magnitude as the splittings observed
experimentally [66–68].

As the exciton ground state is well separated from the
other exciton states, it can be treated separately as regards
polariton effects. Exploiting the symmetry properties of the
1S orthoexciton, we were able to set up a 5 × 5 matrix model,
which allows for the calculation of the corresponding polariton
dispersion for any direction of K . Using the 5 × 5 matrix
model, we investigated the dispersion of the 1S ortho-exciton-
polariton for different orientations of K . In a comparison of
the results for the group velocity with experimental results, we
obtained a very good agreement. The calculations allowed us
to determine the minimum value of the group velocity, which is
not directly accessible in the experiment, to vg,min = 1.5 km/s.
We also presented results for the two special cases that the
K vector is rotated in planes perpendicular to [11̄0] and
[111]. Especially in the second case, another comparison with
experimental results was possible for a rotation angle of 4◦. The
splitting between the two allowed states obtained is smaller
than in the experiment. This can, however, be explained in
terms of the presence of small strains and uncertainties in the
parameters �i .

As a next step, it is possible to calculate transmission spectra
from the polariton dispersion obtained via the 5 × 5 matrix
model by assuming Pekar’s boundary conditions [107] and
applying the Fresnel equations. This would allow for an even
better comparison of theoretical results with the experiment
and may also lead to an understanding of the shape of the peaks
in the spectra. Furthermore, we plan to investigate exciton
spectra in an external magnetic field in Voigt configuration,
where, in contrast to the Faraday configuration of Ref. [21], a
finite value of the wave vector K must be considered.
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[24] S. Zielińska-Raczyńska, D. Ziemkiewicz, and G. Czajkowski,
Phys. Rev. B 95, 075204 (2017).

[25] F. Schweiner, J. Main, G. Wunner, and Ch. Uihlein, Phys.
Rev. B 94, 115201 (2016).
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