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Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders
in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response
theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the
charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our
investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock
approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order
parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations.
Our calculations reveal that the “linear-response assumption” is justified for small to moderate nonequilibrium
situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe
dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get
coupled far from the equilibrium state indicating the failure of the linear-response assumption.
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I. INTRODUCTION

In many experiments that are carried out in solid-state
physics, one measures so-called “response functions.” Such a
function provides information on the linear response of a given
observable to a small time- (or frequency-) dependent external
perturbation. When a system is in its ground state (or, at finite
temperature, in thermal equilibrium) the well-known “Kubo
formula” [1,2] identifies the response functions as retarded
two-particle Green’s functions [3]. Important examples are
the magnetic or charge susceptibilities as well as the optical
conductivity.

In recent years, the development of ultrafast laser sources
made it possible to measure response functions not only
in equilibrium. Such measurements are usually denoted as
“pump-and-probe experiments” because a large pump pulse
first drives the system out of equilibrium before a small probe
pulse measures the usual response function. This kind of
technique has been successfully applied to investigate the
dynamics of electronic and phononic processes in high-Tc

superconductors [4–11] in order to elucidate the “glue” for
the Cooper pair binding. This can be achieved, e.g., by a pump
pulse through impulsive stimulated Raman scattering which
induces an out-of-equilibrium condensate for which coupled
excitations can be measured by a successive optical probe
[12,13]. Moreover, pump-and-probe methods have been used
to study the out-of-equilibrium dynamics of competing order
parameters in correlated systems as, e.g., the dynamics of spin
and charge orders in nickelates [14,15] or the interplay of
charge-density wave and superconducting orders in high-Tc

cuprates [16,17] (for a review see Refs. [18,19] and references
therein).

It is obvious that the calculation of a nonequilibrium
response function is even more challenging than that of its
equilibrium counterpart. In this regard, different schemes
have been employed to generalize the Kubo formula to out-
of-equilibrium situations [20–22] which have been critically
analyzed in the context of the optical conductivity [23].

In general, the dynamics of a quantum system can be
obtained from nonequilibrium Green’s-function (NEGF) tech-
niques which require the solution of the so-called Keldysh-
Kadanoff-Baym equations [24,25]. For interacting systems
these are usually decoupled within a conserving approxi-
mation. For weak to moderate interactions the lowest order
corresponds to the time-dependent Hartree-Fock approxima-
tion (TDHF) which will be employed in the present paper.
We note that in the case of strongly correlated systems also
the dynamical mean-field theory [26] and the Gutzwiller
approximation [27–29] have been generalized to the de-
scription of time-dependent phenomena. On the other hand,
in symmetry-broken systems the order parameter dynamics
can be phenomenologically described through time-dependent
Ginzburg-Landau theory (see, e.g., Ref. [18]) which among
others has been successfully applied to the description of spin
and charge order dynamics in nickelates [14,15,30].

In this work, it is our aim to analyze the dynamics of
competing orders in a given microscopic model. We are
particularly interested in the pairing and charge response
of BCS superconductors and standard charge-density wave
systems which can be accomplished within the TDHF [31,32].
This method can be used for the study of time development
near and away from equilibrium. It therefore allows us the un-
biased investigation of pump-and-probe situations without any
linear-response assumption. Moreover, in the small-amplitude
limit the TDHF reduces to the well-known “random-phase
approximation” [31,32] which corresponds to linear-response
theory so that our approach allows for exploring the validity
of the Kubo formula in out-of-equilibrium situations of
competing orders. The major drawback of the Hartree-Fock
approximation is its use of single-particle wave functions
which can lead to flawed results already for the ground-state
properties when correlation effects become important. This,
however, is not the issue of the present paper.

Our investigations will focus on the attractive Hubbard
model which is one of the simplest systems that shows
nontrivial symmetry-broken phases already within the Hartree-
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Fock approximation. For a weak on-site attraction and at zero
temperature the dominating instability is that to a standard
BCS superconductor with isotropic s-wave order parameter.
For a bipartite lattice at half filling the model has SO(3)
symmetry and the superconducting (SC) state is degenerate
with a commensurate charge-density wave. Without additional
long-range interactions and away from half filling, the SC
phase constitutes the ground state, i.e., it is always more stable
than a charge ordered state [33].

The SC order-parameter dynamics of related BCS-type
models has been the focus of numerous previous studies
[34–37] and has also been investigated for multiband su-
perconductivity [38]. In the linear-response limit [39] a
small perturbation of the SC order parameter � excites
amplitude modes with an energy corresponding to the SC
gap 2� and which are damped due to their admixture
with Bogoliubov quasiparticle excitations. As a consequence
the order-parameter relaxation towards a constant shows an
oscillatory behavior with frequency � = 2� and an amplitude
which decays ∼1/

√
t . Later it has been shown [40] that this

dynamics is also obeyed beyond the linear-response regime
when the nonequilibrium state is in the same class as the ground
state, e.g., when the nonequilibrium state is generated from a
paired ground state by a sudden change of the pairing strength.
In the other case, i.e., when nonequilibrium and ground states
are topologically different, persistent oscillations of the order
parameter occur. This can be achieved, e.g., by an initial normal
state while the ground state is a superconductor.

In the present paper, we investigate the dynamics of
competing orders, namely charge density wave (CDW) order
and SC order, in the context of the validity of linear-response
theory in a nonequilibrium situation. Thus we will also deal
with a scenario where a ground state and a nonequilibrium state
have different symmetries, namely SC and CDW or vice versa.
However, since without additional interaction the ground state
of the attractive Hubbard model at weak coupling is a BCS
superconductor we supplement the model with a staggered
charge order field, arising, e.g., from a lattice distortion, in
order to realize three different ground-state symmetries, (i) a
pure SC state, (ii) a charge-ordered state, or (iii) a state with
both orders present. The stability and proximity of these phases
makes the attractive Hubbard model an ideal playing field
for the study of nonequilibrium response functions because
we can combine each of the three possible symmetries of
the pump-pulse induced initial state with the two relevant
symmetries of a probe pulse. Note that the attractive Hubbard
model with both SC and CDW orders has recently also been
investigated in the context of the visibility of the amplitude
(Higgs) mode within linear (Raman) response [41].

Our work is organized as follows: In Sec. II we discuss our
model, the details about its treatment within TDHF, and our
way of simulating pump-and-probe experiments. The spectra
of the latter are determined by excitations which can be
elucidated from the quantum quench dynamics presented in
the first part of Sec. III. The probe pulse then selectively excites
the corresponding frequencies and the resulting pump-probe
out-of-equilibrium dynamics is discussed in the second part of
Sec. III. We close our presentation with concluding remarks in
Sec. IV. The ground-state properties of our model which are
helpful for an understanding of the nonequilibrium dynamics

are discussed in Appendix A and details on our numerical
minimization and the results for two tutorial toy models are
deferred to three further appendixes.

II. MODEL AND METHOD

In this section, we will present the theoretical background
of our study. First, in Sec. II A, we introduce our model and
derive its Hartree-Fock energy functional. Second, in Sec. II B,
the TDHF equations for our model are derived. Third, in
Sec. II C, we explain how we will simulate pump-and-probe
experiments.

A. Hamiltonian and ground-state energy functional

We consider the attractive (“negative U”) Hubbard model
defined by

ĤH = Ĥ0 − U
∑

i

n̂i,↑n̂i,↓ (U � 0), (1)

Ĥ0 =
∑
i,j,σ

ti,jĉ
†
i,σ ĉj,σ =

∑
k,σ

εkĉ
†
k,σ ĉk,σ , (2)

where i,j are lattice-site vectors, σ is the spin index, n̂i,σ ≡
ĉ
†
i,σ ĉi,σ , and k is a wave vector in the first Brillouin zone. For

simplicity, we assume a bipartite lattice with sublattices A/B

that can be defined with a nesting vector Q via

eiQ·i =
{+1 if i ∈ A

−1 if i ∈ B
. (3)

We further assume that the hopping parameters ti,j are nonzero
only when i and j belong to different sublattices. This leads to

εk+Q = −εk (4)

for the dispersion relation in (2).
In the following, we want to study states which may include

local pairing as well as charge order. On a mean-field level,
i.e., evaluated with a single-particle product wave function, the
expectation value of the (local) two-particle interaction in (1)
then has the form

〈n̂i,↑n̂i,↓〉 = 〈n̂i,↑〉〈n̂i,↓〉 + 〈ĉ†i,↑ĉ
†
i,↓〉〈ĉi,↓ĉi,↓〉, (5)

where we impose the charge- and pair-density fields as

〈ĉ†i,↑ĉ
†
i,↓〉 = �0 + eiQ·i�Q, (6)

〈n̂i,σ 〉 = n0 + eiQ·inQ. (7)

Here, �0, n0, nQ, and �Q are lattice-site independent numbers.
In real materials, a charge order can be stabilized by a static

distortion of the lattice. To simulate this effect we allow for an
external “charge order field”

Ĥco ≡ αQ

2

∑
i,σ

eiQ·in̂i,σ (8)

and study in the following the Hamiltonian:

Ĥ ≡ ĤH + Ĥco. (9)

In a superconducting phase the total particle number is not
conserved but its expectation value has to be fixed by means
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of a chemical potential μ. Hence we work with K̂ ≡ Ĥ − μN̂

instead of Ĥ . The expectation value of K̂ is given as

〈K̂〉
L

= 1

L

∑
k,σ

(εk − μ)〈ĉ†k,σ ĉk,σ 〉

−U ((nQ)2 + |�0|2 + |�Q|2) + αQnQ. (10)

Note that in this expression we have dropped the constant
energy shift Un2

0 on the right-hand side. The order parameters
in (10) can be calculated in momentum space with

�0 = 〈�̂0〉, �̂0 ≡ 1

L

∑
k

ĉ
†
k,↑ĉ

†
−k,↓, (11)

�Q = 〈�̂Q〉, �̂Q ≡ 1

L

∑
k

ĉ
†
k,↑ĉ

†
−k−Q,↓, (12)

nQ = 〈n̂Q〉, n̂Q ≡ 1

2L

∑
k,σ

ĉ
†
k,σ ĉk+Q,σ . (13)

With the nesting vector Q, we may split the Brillouin zone
B into two parts B = B0 ∪ BQ such that for each k we have
either k ∈ B0 or k ∈ BQ, k − Q ∈ B0. For convenience, B0

is chosen such that with k ∈ B0 it is also −k ∈ B0. To get
rid of the anomalous expectation values in (11) and (12) we
introduce the following canonical transformation:

d̂
†
k,1 = ĉ

†
k,↑, (14)

d̂
†
k,2 = ĉ−k,↓, (15)

d̂
†
k,3 = ĉ

†
k+Q,↑, (16)

d̂
†
k,4 = ĉ−k−Q,↓, (17)

for all k ∈ B0. With these operators, we may write the operators
in (11)–(13) as

�̂0 = 1

L

∑
k∈B0

(d̂†
k,1d̂k,2 + d̂

†
k,3d̂k,4), (18)

�̂Q = 1

L

∑
k∈B0

(d̂†
k,1d̂k,4 + d̂

†
k,3d̂k,2), (19)

n̂Q = 1

2L

∑
k∈B0

1∑
j=0

(−1)j

× (d̂†
k,1+j d̂k,3+j + d̂

†
k,3+j d̂k,1+j ). (20)

For the single-particle energies in (10) we obtain∑
k,σ

εk〈ĉ†k,σ ĉk,σ 〉 =
∑
k∈B0

εk(〈d̂†
k,1d̂k,1〉 − 〈d̂†

k,2d̂k,2〉

− 〈d̂†
k,3d̂k,3〉 + 〈d̂†

k,4d̂k,4〉), (21)

μ
∑
k,σ

〈ĉ†k,σ ĉk,σ 〉 = μ
∑
k∈B0

(〈d̂†
k,1d̂k,1〉 − 〈d̂†

k,2d̂k,2〉

× 〈d̂†
k,3d̂k,3〉 − 〈d̂†

k,4d̂k,4〉). (22)

With Eqs. (10) and (18)–(22), we have determined the energy

〈K̂〉 ≡ E(ρ̃) (23)

as a function of the single-particle density matrix ρ̃. This
matrix is diagonal with respect to k and therefore determined
by the four-dimensional matrices

ρk;γ ′,γ = 〈d̂†
k,γ ′ d̂k,γ 〉, (24)

for each k ∈ B0.

B. Out-of-equilibrium dynamics

The time dependence of the single-particle density matrix ρ̃

is governed by the well-known differential equation [29,31,32]

i ˙̃ρ = [h̃,ρ̃], (25)

where h̃ is also diagonal with respect to k and defined as

h̃k;γ,γ ′ ≡ ∂

∂ρk;γ ′,γ
E(ρ̃). (26)

Explicitly, h̃k;γ,γ ′ is given by the four-dimensional matrix

h̃k =

⎛
⎜⎝

εk − μ −ηsc −ηco −δηsc

−η∗
sc −εk + μ −δη∗

sc ηco

−ηco −δηsc −εk − μ −ηsc

−δη∗
sc ηco −η∗

sc εk + μ

⎞
⎟⎠, (27)

with the four eigenvalues

E2
±(k) = δη2

sc + ε2
k + μ2 + η2

sc + η2
co

± 2
√

ε2
k

(
δη2

sc + μ2
) + (δηscηsc + μηco)2. (28)

Here, the “fields”

ηsc = U�0, (29)

ηco = UnQ − αQ/2, (30)

δηsc = U�Q, (31)

are, through (11)–(20), time-dependent functions that need to
be determined self-consistently. The calculation of these fields
is simplified significantly by our A/B lattice structure and the
resulting property (4) of the dispersion relation. It allows us
to replace all momentum-space integrals by energy integrals,
e.g.,

�0 =
∫

dεD(ε)(〈d̂†
ε,1d̂ε,2〉 + 〈d̂†

ε,3d̂ε,4〉), (32)

where we introduced the (bare) density of states

D(ε) = 1

L

∑
k∈B0

δ(ε − εk). (33)

In the following, we will work with the semielliptic density of
states

D(ε) = 2

πJ 2

√
J 2 − ε2 (ε � 0), (34)

in which J sets the energy scale of our model. We note
in passing that in test calculations we observed only minor
quantitative changes of the results when we replace (34) by
the more realistic density of states of a two-dimensional square
lattice with nearest-neighbor hopping.
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Since ρ̃ and h̃ are block diagonal with respect to k (or from
now on ε), we need to solve the four differential equations

i ˙̃ρε = [h̃ε,ρ̃ε] (35)

for each ε. It is clear that, in our numerical solution, we have to
discretize the energy interval −J � ε � 0 and solve (35) for
a finite number Ndisk of energy points εi . We found a number
of Ndisk = 104 to be sufficiently accurate.

The differential equations (35) cannot be solved analytically
because the fields in (27) are unknown time-dependent
functions. Hence we use the numerical Adams-Bashforth [42]
method to fourth order. After each time step, we have to
recalculate the fields (11)–(13).

It is worth mentioning that the total particle number,
although no conserved quantity in the BCS approximation
due to the breaking of U(1) symmetry, is conserved in the time
evolution described by Eq. (25). Only numerical errors could
lead to an error in the particle number as a function of time.
This error, however, was found to be negligible for the time
periods which we are interested in.

C. Simulation of pump-and-probe experiments

In a typical pump-and-probe experiment, the system under
investigation is in its ground state |φ0〉 (or in equilibrium at
finite temperatures) at some time t = −T . Then, in the time
interval t ∈ (−T ,0), a “large” pump field is applied that drives
the system into some nonequilibrium state |φ(0)〉 at time t = 0.
The further time evolution |φ(t)〉 of this state follows from a
solution of the time-dependent Schrödinger equation for the
Hamiltonian Ĥ of the system (in our case K̂).

One is interested in the response of the system to a “small”
probe pulse of the form

V̂ = sin (ωt)�(t)Â ≡ f (t)Â (36)

that is applied at times t > 0. Here, �(t) is an envelope
function and Â is some operator, e.g.,

Â = �̂0 or Â = n̂Q, (37)

i.e., the operators that describe the the SC amplitude or
the charge modulation. The wave function |φp(t)〉, in the
presence of the probe pulse, differs from |φ(t)〉 and so does
the expectation value of Â. Hence, we may define

δA(t) ≡ 〈Â〉φp(t) − 〈Â〉φ(t) (38)

as a measure for the impact of V̂ on the observable Â.
Without the pump pulse, δA(t) is usually calculated by

means of the Kubo formula [1,2]

δA(t) =
∫ t

0
dt ′χA,A(t,t ′)f (t ′) (39)

with the (retarded) Green’s function

χA,A(t,t ′) ≡ −iθ (t − t ′)〈φ(0)|[ÂI(t),ÂI(t
′)]|φ(0)〉, (40)

where ÂI(t) = eiĤ t Âe−iĤ t is the interaction representation of
Â (i.e., Ĥ is defined without the probe pulse). Note that, in a
linear-response approximation, Eqs. (39) and (40) are equally
valid if |φ(0)〉 is the excited state induced by the pump pulse.
However, the full two-time response function χA,A(t,t ′) is

needed here, instead of χA,A(t − t ′) when the perturbation is
applied to the ground state. In order to show this, we introduce
the eigenstates |n〉 and energies En of Ĥ and the expansion

|φ(0)〉 =
∑
m

ϕm|m〉 (41)

of the initial state. With these, we can write, e.g., the first part
of the commutator in (40) as

〈φ(0)|ÂH(t) · ÂH(t ′)|φ(0)〉
=

∑
m,m′,n

ϕ∗
mϕm′Am,nAn,m′e−iEn(t−t ′)eiEmte−iEm′ t ′ , (42)

Am,n ≡ 〈m|Â|n〉. (43)

Obviously, this quantity is a function of t − t ′ only when
m = m′, i.e., when |φ(0)〉 is an eigenstate of Ĥ . The (nonequi-
librium) Green’s function therefore has unusual properties
as becomes clear from the equivalent of a Lehmann repre-
sentation: First, we can perform a Fourier transform of (40)
with respect to τ ≡ t − t ′ while explicitly keeping the response
time t ,

χA,A(ω,t) =
∑

n,m,m′
ϕ∗

mϕm′ei(Em−Em′ )t

×
[

AmnAnm′

ω − En,m′ + iδ
− AmnAnm′

ω + En,m + iδ

]
, (44)

where En,m ≡ En − Em. Upon further defining a “long-time”
response average [21]

χ̃A,A(ω) = 1

T ′

∫ T ′

0
dtχA,A(ω,t) (45)

one obtains for T ′ → ∞
χ̃A,A(ω) →

∑
n,m

|ϕm|2
[

AmnAnm

ω − En,m + iδ
− AmnAnm

ω + En,m + iδ

]
.

(46)

This has a similar structure as the equilibrium response
function but for the factor |ϕm|2 which describes the admixture
of excited states induced by the pump pulse. It has been
shown [21] that, for a number of cases, Eq. (46) is similar
to the equilibrium response when the |ϕm|2 are replaced by
Boltzmann weights. In this spirit we will later compare the
numerically obtained response, using Eqs. (35) and (36),
with an equilibrium response function for a nonzero effective
temperature.

In equilibrium, the linear-response assumption of Eqs. (39)
and (40) is justified because a small perturbation will normally
lead to a small response of a system that is in its stationary
ground state and sufficiently far away from an instability.
The situation is obviously different when the system is in a
nonequilibrium state due to a pump pulse and it is not clear
to what extent (39) and (40) are still applicable. Since the
TDHF method that we use in this work does not rely on the
linear-response assumption we are able to assess its validity in
pump-and-probe situations.

Relevant pump pulses are of the form given in (36) and
(37). Hence, to define them, we have to specify the pulse
frequency as well as the shape and duration T of the pump
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pulse �(t). These tunable quantities would come on top of the
system parameters U, n, αQ and the probe frequency ω. To
limit the total number of such parameters, and since we are
not addressing any specific experiment, we prefer to set up the
initial out-of-equilibrium states not through a pump pulse but
by varying the three initial fields {η0

ν} ≡ {η0
sc,δη

0
sc,η

0
co} away

from their ground-state values η
gs
ν .

For a given set of initial fields η0
ν (at time t = 0) and a

given probe pulse Eq. (36) we solve Eq. (25) numerically
over a certain time period �t , typically �t = 1000/J . With
this solution, we determine both expectation values on the
right-hand side of (38) and thereby the fluctuations δA(t).
Note that, for a non-Hermition operator Â (e.g., �

†
0) the latter

contain both amplitude and phase contributions, i.e.,

|δA(t)|2 = |〈Â〉φp(t)|2 + |〈Â〉φ(t)|2

− 2|〈Â〉φp(t)||〈Â〉φ(t)| cos[�p(t) − �0(t)], (47)

where �p(0)(t) denotes the phase of 〈Â〉φp(0)(t) with (without)
the probe pulse. As a measure for the impact of the probe
pulse, we define

〈δA〉 = 1

�t

∫ �t

0
dt |δA(t)|. (48)

This quantity will be considered as a function of ω, the
pulse frequency in (36), where, for simplicity, we set �(t) =
�o = 10−5. In cases where the experiment measures only the
amplitude with and without the probe pulse, in particular in
connection with SC, it is also useful to define the response
quantity

〈δ|�0|〉 ≡ 1

�t

∫ �t

0
dt ||〈�̂0〉�p(t)| − |〈�̂0〉�(t)||. (49)

If the response occurs on top of a nonequilibrium state with
|〈�̂0〉�(t)| � |δ�0(t)| one can expand Eq. (48),

〈δ|�0|〉 = 1

2�t

∫ �t

0
dt |δ�0(t)e−iφ(t) + δ�∗

0(t)eiφ(t)|, (50)

where φ(t) denotes the phase of 〈�̂0〉�(t). For a linear
phase change φ(t) = �P t and upon performing the same
response average which led to Eq. (46) one therefore expects
an amplitude response 〈δ|�0|〉 with a two-peak structure
corresponding to the absorption and emission of a phase mode.

III. OUT-OF-EQUILIBRIUM DYNAMICS

In this section, we discuss the out-of-equilibrium dynamics
of our model. In the first section, we consider situations without
an external time-dependent perturbation (“quantum-quench
problems”), where the time dependence results from an initial
state that is not the ground state. The phase diagram of the latter
and other ground-state properties for the relevant parameters
studied in this work are discussed in Appendix A. Finally, the
application to pump-and-probe experiments is studied in the
second section.

A. Quantum quench problems

We first consider the dynamics of our system that evolves
from different initial density matrices. The latter are deter-
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γ the envelope function can be fitted by n∞

Q ± C/
√

t (dashed) and the
effective temperature T eff , as indicated in the lower panel, is defined
as the temperature for which an equilibrium calculation yields n∞

Q for
otherwise the same parameters. (b) Frequency of the Fourier peaks
as a function of γ . The insets detail the Fourier spectra for selected
γ values. For γ → 1 the excitations approach the CDW gap 2ηCO .

mined by the initial parameters η0
sc,η

0
co,δη

0
sc. In the following

we shall always change these parameters relative to their
ground-state values, η0

ν = γ η
gs
ν . There are three different

situations: (i) a purely charge ordered phase (η0
sc = δη0

sc = 0),
(ii) a superconducting phase (η0

co = δη0
sc = 0), and (iii) a

coexistence phase of both orders where all η
gs
ν are nonzero.

Note that our dynamics does not evolve from a Hamiltonian
with “quenched” interaction parameters but only from a
quenched density matrix. This is different from previous
studies [27,28,43–47] where in the context of the (repulsive)
Hubbard model the local interaction U is set to a different
value at t = 0.

We start with a consideration of case (i). In Fig. 1(a) we
show nQ as a function of time t for U/J = 1.5, n = 1.0, αQ =
0.2 and several scaling factors γ between 0.05 and 3. The
time dependence of nQ has the generic structure expected for
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mean-field order parameters [40] which previously has been
discussed in the context of SC [34–37,39] or antiferromag-
netism [48]. This includes a cos(2η∞

COt)/
√

η∞
COt relaxation of

the amplitude towards a stationary value n∞
Q which appears

as a consequence of a “dephasing” between the individual
contributions of the scattering processes k → k + Q to the
order parameter. Close to γ = 1 the oscillatory frequency
is determined by the amplitude excitations across the CDW
gap 2ηCO , which soften with increasing deviation from the
equilibrium state towards a values η∞

CO = Un∞
Q + αQ/2 for

t → ∞. The difference between this (reduced) stationary
value as compared to the equilibrium result at γ = 1 may
be interpreted in terms of a population of excited HF states
via an effective finite temperature T eff . The latter is defined by
the condition that the Fermi-Dirac distribution for T eff leads
to an equilibrium expectation value of n̂Q that equals n∞

Q . The
values of these effective temperatures are given close to the
corresponding curves in Fig. 1(a).

The behavior of the dynamics changes for γ < 0.1 where
oscillations on much longer time scales emerge. In this
regime one should go to very large times in order to obtain
sensible results which conflict with the stability of integration.
We therefore abstain from an investigation of the extreme
nonequilibrium regime.

The dependence of the CDW amplitude excitations on γ ,
obtained from the Fourier spectra of nQ(t), is summarized
in Fig. 1(b). Close to γ = 1 the linear-response dynamics of
the CDW amplitude is described by a peak at � = 2ηCO with
small intensity (cf. spectra for γ = 0.9, 1.1 in the insets) due to
the strong mixing with quasiparticle excitations (indicated by
the yellow shaded area). Upon increasing the nonequilibrium
situation (i.e., |γ − 1|) the excitations soften and move inside
the (equilibrium) CDW gap. Note that the equilibrium value of
nQ ≈ 0.43 in Fig. 1 is close to the maximum value nQ = 0.5
for a CDW at half filling. Therefore one needs a large γ > 1
in order to approximately obtain the same stationary value as
for γ = 0.4 and consequently also the CDW excitations are
not symmetric with respect to γ = 1.

As an example for case (ii) we show in Fig. 2(a) the absolute
value |�0| of the pairing order parameter as a function of
time for U/J = 1.5, n = 0.7, and several scaling factors γ .
Similar to the previous case the time dependence is a damped
oscillatory behavior cos(2η∞

SCt)/
√

η∞
SCt which approaches η∞

SC

for t → ∞. The latter can again be described by an effective
temperature T eff as indicated adjacent to the corresponding
curves.

Figure 2(b) reports the time evolution of SC amplitude
and phase for γ = 0.4 together with their Fourier transforms.
The gauge invariance of the TDHF approach implies con-
servation of charge which would be violated if one changes
the order parameter in a BCS calculation without adjusting
the chemical potential. Here charge conservation is obeyed
in the nonequilibrium situation via the coupling to the phase
mode which appears at a finite frequency �P . The dependence
of both amplitude excitation �A and phase mode �P on γ

is summarized in Fig. 2(c). The amplitude excitation for the
SC order parameter has essentially the same behavior as for
the charge order parameter in case (i) and develops from
�A = 2ηSC at γ = 1 inside the (equilibrium) SC gap upon
decreasing or increasing γ from the equilibrium situation. In
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FIG. 2. (a) Absolute value of the pairing order parameter |�0|
as a function of time t for U/J = 1.5, n = 0.7, and scaling factors
γ = 3.0 (black, solid), γ = 1.0 (black, dotted), γ = 0.4 (red), γ =
0.2 (blue), γ = 0.125 (green). Staggered CDW field αQ = 0. For
moderate γ the envelope function can be fitted by n∞

Q ± C/
√

t

(dashed) and the effective temperature T eff , as indicated adjacent
to the curves, is defined as the temperature for which an equilibrium
calculation yields n∞

Q for otherwise the same parameters. (b) Time
evolution of amplitude and phase for γ = 0.4. The inset shows the
corresponding Fourier peaks of the main frequency (amplitude: red;
phase: blue). (c) Amplitude and phase excitation frequency as a
function of the scaling parameter γ . The inset reports the Fourier
spectrum for γ = 0.1 demonstrating the coupling between amplitude
and phase modes.
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FIG. 3. Dynamics of CDW amplitude (green), SC amplitude
(red), and SC phase (blue) for a system with both orders finite in the
ground state. The inset reports the corresponding Fourier transforms
(CDW and SC amplitude excitations occur at the same frequencies
and therefore are undistinguishable). At t = 0 the equilibrium values
of the order parameters are scaled with γ = 0.6. U/t = 1.5, αQ =
0.2, n = 0.8.

equilibrium the phase mode �P = 0 reflecting its property
as a Goldstone mode for the U(1) symmetry breaking. Upon
deviating from equilibrium, �P moves inside the SC gap. The
inset to Fig. 2(c) demonstrates the coupling between phase
and amplitude excitation which reflects as two side peaks at
�A ± �P and which gets more pronounced upon increasing
nonequilibrium. Note that such mixing is a common feature of
superconductors in nonequilibrium and has recently also been
exploited for two-band systems where a coupling between
amplitude (Higgs) and Leggett modes can be induced [49].

Finally, Fig. 3 reports the amplitude and phase dynamics
for a ground state with both SC and CDW order and scaling
factor γ = 0.6. A first obvious difference from the previous
cases is that after a short transient response both SC and CDW
order parameters oscillate with constant amplitude without any
signature of relaxation. Second, the short period oscillation of
CDW and SC amplitude is now clearly imprinted onto the
phase dynamics which therefore reflects the strong coupling
between the amplitude and the phase in this case. As a
consequence and similar to the previous case, the phase mode
now also appears in the form of side bands in the Fourier
spectrum of the SC/CDW amplitude excitation which both
appear at the same energy �A. Moreover, already at γ = 0.6
higher-order excitations at 2�A and 2�A ± �P are visible
in the spectrum, though with rather small intensity. A more
detailed inspection reveals also interference effects between
phase and amplitude oscillations at δω = �A − 6�P which
further splits the phase excitations.

B. Pump-and-probe simulations

Our general method of analyzing pump-and-probe situ-
ations has been described in Sec. II C. Depending on the
values of αQ and n there can be three different equilibrium
phases: a purely superconducting or charge-ordered phase, or
a coexistence phases of both orders. We shall consider all three
cases separately in the following sections. Since we can probe
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FIG. 4. Pairing response 〈δ|�0|〉 as a function of frequency
ω for U/J = 1.5, n = 1.0, αQ = 0.2, and scaling factors γ = 3.0
(black, solid), γ = 1.0 (black, dotted), γ = 0.4 (red), γ = 0.2 (blue),
γ = 0.1 (green), γ = 0.075 (maroon). ELRT results are shown
with dashed lines and are obtained for the effective temperatures
indicated in the lower panel of Fig. 1. Upper right inset: Same
quantities for γ = 0.075 (maroon), γ = 0.05 (orange). Upper left
inset: Change �E ≡ E(ηsc) − E(ηsc = 0) of the energy as a function
of ηsc/J for stationary states with U/J = 1.5, n = 1.0, αQ = 0.2,
and expectation values nQ ≈ 0.43 (black), nQ = 0.4 (red), nQ = 0.35
(blue), nQ = 0.3 (green).

the response of the system to either a pairing or a charge order
field there are six different setups in total that we need to
consider.

1. Charge-order states

We first look at response functions in a charge ordered
phase as it is established in the ground state, e.g., for U/J =
1.5, n = 1.0, and αQ = 0.2. The time dependence of nQ in this
case has been shown for several values of the initial scaling
factor γ in Fig. 1(a).

We can probe the response of the system to either a pairing
or a charge order field. Note that, without a probe pulse the
pairing amplitude is zero. This means that for a pairing probe
pulse, Eq. (49) simplifies to

〈δ|�0|〉 = 1

�t

∫ �t

0
dt |〈�̂0〉�p(t)|. (51)

In Fig. 4 we show 〈δ|�0|〉, as defined in (51), as a function
of probe frequency for U/J = 1.5, n = 1.0, αQ = 0.2 and
several values of γ . The figure shows that the qualitative
structure of the response does not change in the same range
of γ values, 3 � γ � 0.075, for which the quench dynamics
(Fig. 1) shows the “regular” damped oscillatory behavior.
Starting from the equilibrium situation γ = 1 one observes
a shift of the response to higher frequencies upon increasing
or decreasing γ without a change of the Lorentzian peak
structure. This behavior is in qualitative agreement with the
expectation from equilibrium linear-response theory (ELRT)
which is derived for the present situation in Appendix C and
evaluated (dashed lines in Fig. 4) with the effective tempera-
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tures T eff , introduced in Sec. III A. Within this approximation,
the pairing fluctuation, induced by the on-site attraction U ,
generates poles within the CDW gap 2ηCO (cf. Fig. 15 in
Appendix C). Small values of U/J (compared to ηCO/J )
induce in-gap states close to the upper band edge 2ηCO and
with increasing fluctuation strength U/J the pole is shifted to
lower energy inside the CDW gap.

As expected, for γ = 1 ELRT agrees with the full TDHF
result as can be seen from Fig. 4. A moderate nonequilibrium
situation corresponds to an initial population of excited states
and in ELRT can be modelled by a finite temperature for which
the values are given in the lower panel of Fig. 1. One finds that
upon increasing nonequilibrium, ELRT captures the reduction
of peak intensity and the shift of the peak to higher energy,
however, it under(over)estimates the latter upon decreasing
(increasing) γ from γ = 1.

Only for values of γ below 0.075, the linear-response
assumption seems to break down almost instantaneously, see
the inset of Fig. 4, where also the quench dynamics changes.

In an equilibrium situation the collective excitation fre-
quency � of an observable O can be deduced from the
curvature of the energy functional around the saddle point,
i.e., �2 ∼ ∂2E/∂(δO)2. In this spirit one could argue that the
hardening of the excitation in Fig. 4 is due to a stiffening of the
ground-state energy functional as a function of the dynamical
variable, in our case �0. Such an interpretation, however, fails
in our out-of-equilibrium situation. This is illustrated in the
upper left inset to Fig. 4 where we show the energy change as
a function of ηsc that is induced in a stationary state for values of
nQ that equal those in the long time for γ = 3.0, 0.4, 0.2, 0.1;
see Fig. 1(a). As one may expect, by shifting the system away
from its ground state, pairing becomes energetically less costly
and for nQ � 0.3 it even lowers the energy. Hence, the stiffness
argument would predict a softening rather than a hardening of
the excitations as shown in the main panel of Fig. 4.

One must keep in mind that, while the expectation values of
n̂Q and consequently of Ĥ0 become stationary in the long-time
limit, the density matrix does not. Therefore, the stationary
states considered in the left upper inset to Fig. 4 have not
much in common with the time-dependent long-time states in
Fig. 1, apart from the expectation value of n̂Q. It is therefore
interesting to observe that in an out-of-equilibrium situation
the long-time limits of n̂Q yield the qualitatively correct
behavior of the peak shifts in an effective temperature ELRT
while the analysis of the stiffness in the energy functional fails.

A charge-order probe pulse obviously detects the amplitude
excitation as shown in Fig. 1(c). This implies not only a shift
of the peak position to lower energies but also a significant
increase of its weight. As already mentioned in the previous
section the stark asymmetry in the spectra with respect to
γ = 1 is due to the fact that the underlying equilibrium CDW
order parameter ηCO is close to its fully polarized value.

We can also try to understand the peak positions from
the ELRT analysis (cf. Appendix C). Without staggered
field (αQ = 0) the collective CDW excitation appears at the
frequency of the CDW gap ω = 2ηCO . A finite αQ pushes this
excitation into the quasiparticle continuum, however, the in-
tensity of the RPA response function χ cdw(ω) = χ cdw

0 (ω)/[1 −
VQχ cdw

0 (ω)] is still maximum at the CDW gap frequency due
to (a) the enhancement of the bare correlations χ cdw

0 (ω) and
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FIG. 5. Charge order response 〈δnQ〉 as a function of frequency
ω for U/J = 1.5, n = 1.0, αQ = 0.2, and scaling factors γ = 1.0
(black, dotted), γ = 0.6 (blue), γ = 0.4 (red), γ = 0.3 (green), γ =
0.2 (orange). Inset: Same quantities for γ = 1.0 (black, dotted), γ =
2.0 (red), γ = 3.0 (orange). ELRT results are shown with dashed
lines and are obtained for the effective temperatures indicated in the
lower panel of Fig. 1.

(b) the minimum of Re[1 − VQχ cdw
0 (ω)] at ω = 2ηCO . In fact,

the peaks in the TDHF results shown in Fig. 5 occur exactly
at the values ω = 2η∞ = |U |n∞

Q + αQ/2 with n∞
Q being the

long-time stationary value [cf. Fig. 1(a)] from which we have
defined the effective temperatures and for which the ELRT
results are shown with the dashed curves in Fig. 5. Thus, while
the peak positions between TDHF and effective temperature
ELRT show very good agreement, the intensities strongly
deviate in particular for γ < 1 where the response in TDHF
gets strongly enhanced.

At first sight, one might think that this enhancement of
spectral weight is a natural behavior that simply results from
the larger amplitudes of the underlying out-of-equilibrium
oscillations in Fig. 1(a). In fact, as we show in Appendix D,
the very same behavior is found in the rather simple model of
a one-dimensional classical oscillator. It is crucial, however,
to include an anharmonic term into the potential of that model.
Without it, i.e., for a linear equation of motion, no weight gain
is observed. We also do not find such a weight gain when
we calculate the exact out-of-equilibrium response function
for a two-site (negative U ) Hubbard model; see Appendix E.
This is not surprising because here, as well, we solve a set of
four linear differential equations with constant coefficients.
In contrast, the TDHF equations for the same model are
nonlinear. For this reason, we do observe a weight gain which,
at least for the two-site model, is clearly a spurious result.
In order to check whether the weight gain is a failure of the
TDHF method we have also performed calculations for smaller
U/J = 0.5 and larger αQ (not shown) so that the resulting
charge order parameter nQ is approximately the same. We
find that a nonequilibrium response with similar frequency
shift for both U/J = 1.5 and U/J = 0.5 leads to a similar
enhancement of the spectral weight. Therefore the increase of
weight with decreasing γ as seen in Fig. 5 is not an artefact of
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FIG. 6. Pairing response 〈δ|�0|〉 as a function of frequency ω for
U/J = 1.5, n = 0.7, αQ = 0. Top: scaling factors γ = 1.0 (black,
dotted), γ = 0.9 (blue), γ = 0.6 (red), γ = 0.4 (orange), γ = 1.5
(green). Inset: same quantities for a smaller frequency range. Bottom:
scaling factors γ = 0.4 (orange), γ = 0.2 (black), γ = 0.125 (red),
γ = 3.0 (blue). Inset: same quantities for a smaller frequency range.
The vertical thin lines correspond to energies �A ± �P as deduced
from the Fourier transform of amplitude and phase modes (cf. Fig. 2).
The thick lines are phase modes whereas the red dashed vertical line
is an excitation at 2�A − �P for γ = 0.125.

the TDHF approximation although we cannot exclude that the
effect is suppressed to some extent by correlations beyond HF.
In contrast, our previous observation that position and weight
of the pairing response function are rather robust when we go
away from equilibrium is confirmed by the exact results for
the two-site Hubbard model in Appendix E.

2. Superconducting ground state

Next we consider the case with U/J = 1.5, n = 0.7, αQ =
0 where the system has a pure superconducting ground state.

We start our discussion with the pairing response function
which is shown in Fig. 6 for scaling factors γ between

0.125 and 3 for which the corresponding amplitude and phase
excitations have been reported in Fig. 2(c).

In the equilibrium limit (γ = 1) the TDHF response is
perfectly reproduced by ELRT (dashed) which describes
the amplitude excitation (or “Higgs mode”) at twice the
superconducting gap. Upon increasing the nonequilibrium
situation (i.e., deviating from γ = 1) one observes two main
features beyond the ELRT expectation: first, the amplitude
excitation splits into two peaks and second, additional weight
is observed at low energies. In fact, applying the effective
temperature ELRT yields a single peak located between the
excitations of the TDHF result (cf. the result for γ = 0.4 in
the upper panel of Fig. 6). The reason for the splitting of
the amplitude excitation has been discussed in Sec. II C and
is related to the definition of the pairing response function
Eq. (49) which for the present situation is influenced by
the phase mode of the underlying nonequilibrium state [cf.
Fig. 2(c).] Therefore the response 〈|δ�0|〉 is determined by
excitations appearing at frequencies �A ± �P , where �A,P

correspond to amplitude and phase modes, respectively. The
lower panel of Fig. 6 demonstrates the consistency of our
analysis for various γ values.

In contrast, the effective temperature ELRT only yields
a renormalized (softened) amplitude mode and thus cannot
account for the splitting when the response is evaluated within
Eq. (46). Also an evaluation based on Eq. (44) does not yield
a splitting since the phase mode in ELRT always occurs at
�P = 0.

Moreover, for strong nonequilibrium initial states one
observes further nonlinear processes as the appearance of an
excitation at 2�A − �P for γ = 0.125. As mentioned above
the second feature concerns the low-energy spectral weight as
shown in the insets to Fig. 6 which can also be attributed to the
coupling between phase and amplitude degrees of freedom at
strong nonequilibrium. These low-energy excitations are also
split by ωP ± g2/�A where g denotes an effective coupling
parameter between amplitude and phase.

We proceed with the analysis of the charge-order response
which is shown in Fig. 7 again for various initial nonequilib-
rium situations parametrized by γ . At half filling the charge
response at q = Q would occur at zero frequency due to
the degeneracy between CDW and SC. Finite doping shifts
this excitation to finite frequency inside the SC gap (cf.
Fig. 1 in Ref. [50]) and Fig. 7 reveals that in the equilibrium
situation (γ = 1) our TDHF response is perfectly described
by ELRT (dashed). For stronger nonequilibrium situations the
effective temperature ELRT still gives a reasonable description
of the mode softening but does not capture the reduction
in intensity of the TDHF charge-order response. Moreover,
in nonequilibrium the charge order excitations at q = Q can
couple to the pairing modes at q = 0 (cf. Fig. 6 which induces
the high-energy features shown in the inset to Fig. 7. Note that
in this case the splitting is not exactly 2�P but also influenced
by the coupling strength between charge and pairing modes.

3. Ground state with finite pairing and charge order parameters

Finally, as an example for a coexistence phase we consider
the case where U/J = 1.5, n = 0.8, αQ = 0.2. For these
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FIG. 7. Charge-order response 〈δnQ〉 as a function of frequency ω

for U/J = 1.5, n = 0.7, αQ = 0, and scaling factors γ = 3.0 (black,
solid), γ = 1.0 (black, dotted), γ = 0.4 (red), γ = 0.2 (blue), γ =
0.125 (green). Inset: Same quantities at larger frequencies.

parameters, �0 and nQ have approximately the same values
(cf. Fig. 13) and neither of the two orders dominates.

In Fig. 8 we show the pairing response in the equilibrium
(γ = 1) and nonequilibrium situation (γ �= 0). The linear
response for a coupled CDW-SC system has been recently
analyzed in Ref. [41] in the context of the visibility of the
amplitude (“Higgs”) mode within linear (Raman) response
[41]. In fact, the presence of CDW order pushes the linear-
response amplitude excitation to �A ≈ 0.66J , i.e., well below
the −E−(kF ) → +E−(kF ) ≈ 1.2J transition [cf. Eq. (28)]
where it would appear in the pure SC case. In the nonequi-
librium case the individual peaks can be understood from an
inspection of the corresponding time evolution of the order
parameters as shown in Fig. 3 for the case γ = 0.6 and from
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FIG. 9. Charge order response 〈δnQ〉 as a function of frequency
ω for U/J = 1.5, n = 0.8, αQ = 0.2 and scaling factors γ = 1.0
(black, dotted), γ = 0.8 (blue), γ = 0.6 (red), γ = 0.4 (green).
Coupled amplitude and phase excitations as deduced from Fig. 3
are indicated for the γ = 0.4, 0.6 results.

the general structure of the pairing response function as given
in Eq. (44). The latter couples the phase to the amplitude
modes, similar to what is already observed in the bare SC case
Fig. 6, yielding excitations at �A ± �P plus the phase mode
at �P . An additional feature concerns the interference effect
between phase and amplitude excitation which occurs at

δω = �A − 6�P (52)

and generates further satellite peaks to the main excitations
discussed above.

Since we consider a commensurate charge order at Q =
(π,π ) the corresponding order parameter can always be chosen
as real and there is no associated phase degree of freedom. Thus
the charge order response, as shown in Fig. 9, occurs at �A.
Note, however, that the charge and SC amplitudes are coupled
which induces the satellite peaks at �A ± δω. Increasing the
nonequilibrium situation to γ = 0.4 induces further satellites
related to phase modes and their coupling to the amplitude
excitations. In any case, it is obvious that in the nonequilibrium
situation both charge and pairing responses cannot be captured
by ELRT which accounts for neither the coupling of amplitude
and phase nor the satellite structure due to the interference
scale δω.

IV. CONCLUSIONS

In this work, we have investigated pairing and charge-order
response functions in out-of-equilibrium states of the negative
U Hubbard model by means of the time-dependent Hartree-
Fock approximation (TDHF). In particular, we have focused on
the coupling between amplitude and phase excitations which
can be inherent in the definition of the response function [cf.
Eq. (50)] but also be induced in a nonequilibrium situation.

We have allowed for an additional charge order field in the
Hamiltonian which simulates the effect of a lattice modulation.
In this way, our model can have three types of ground states:
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a pure superconducting state, a charge-order state, or a state
with both orders present. A pump pulse may then drive the
system into nonequilibrium states of the same symmetry.

Since the TDHF can be applied in all nonequilibrium
situations, we did not have to rely on any linear-response
assumptions that are inherent, e.g., in the Kubo formula.
In this way our study also revealed if and under what cir-
cumstances such an assumption is justified in nonequilibrium
calculations. It turned out that a linear-response assumption,
based on an effective temperature description of the underlying
nonequilibrium state, qualitatively accounts for the spectra
when the latter is due to a pure CDW dynamics without
any coupling to phase degrees of freedom. In these cases
(Figs. 4 and 5) ELRT works for not too large deviations
from γ = 1 but fails to reproduce the excitation energy or
(and) peak intensity in stronger nonequilibrium situations. For
an underlying nonequilibrium SC state the appearance of a
finite frequency phase mode has significant consequences for
the pairing and charge order response. Concerning the latter,
ELRT correctly describes the formation of in-gap excitations
(cf. Fig. 7), although underestimating the intensity, while
it fails to describe the amplitude-phase coupling in strong
nonequilibrium which induces the appearance of split peaks
on the scale of the SC gap. The same holds in the case of the
pairing response where the splitting is due to the appearance of
the phase mode in the definition of the response Eq. (50) and
when the nonequilibrium state is an admixture of both CDW
and SC.

In this work, we have considered a neutral system without
long-range Coulomb interactions which due to the Anderson-
Higgs mechanism [51] would push the phase mode up to the
plasma frequency. For a two-dimensional system the plasma
frequency would be still at low energy, ωp ∼ √|q|, so that
for these systems our results could be still meaningful. Also
disorder helps to push the plasma frequency to lower energies
due to the reduced superfluid density.

The interplay of CDW and SC in the attractive Hubbard
model has been investigated previously [41] in the context
of the visibility of the amplitude (Higgs) mode in charge-
density-wave superconductors such as NbSe2. These authors
were interested in the Raman response which amounts to
the evaluation of the charge response function at momentum
q = 0. Here, instead we have studied the charge response
function at the momentum of the CDW q = Q which in
principle can be measured with inelastic x-ray scattering or
indirectly with neutrons via the coupling to the lattice. The
pairing response can be experimentally accessed with the
Josephson effect which has been previously used to investigate
the contribution of pair fluctuations to the pseudogap formation
in high-Tc superconductors [52].

While the measurement of these responses for CDW
superconductors would be definitely interesting to compare
with our predictions, an equally important issue of the
present paper concerns the validity of linear-response theory
in a nonequilibrium situation with regard to pump-probe
experiments. Methodologically our investigations are based
on the TDHF approximation which can be viewed as the
simplest approach to study the dynamics of interacting systems
and therefore one has to be aware of its limitations. In this
regard, one aspect concerns the damping of the order parameter

which in TDHF is caused by a “dephasing” of oscillations for
the different Hartree-Fock single-particle energies. Genuine
many-particle relaxation processes are not covered by the
TDHF and it is therefore bound to become inaccurate in
the limit t � J−1. In pump-and-probe experiments, however,
the probe pulse is usually applied in a time period where
the excitation induced by the pump pulse is still far from
relaxation. Hence we are confident that the TDHF constitutes
a meaningful first-order approximation to these problems.

We have also critically examined our observations by
looking into two simple toy models. Our findings seem to
be confirmed when we consider a simple anharmonic classical
oscillator. Due to the nonlinear term in the equation of motion,
the response to a small external field also depends strongly
on the amplitude of the underlying oscillation. In contrast,
however, the exact solution for the chargeorder response of
a two-site Hubbard model is, in this regard, different from
what the TDHF method finds. The reason for this difference
is the nonlinearity that the TDHF introduces into its equations
of motion. If one is interested in the strong-coupling limit of
the negative U Hubbard model, there are more sophisticated
methods available that could be used to study the out-of-
equilibrium response functions which we have investigated
in this work. The most obvious way to improve the TDHF
is to use Gutzwiller wave functions instead of single-particle
product wave functions [27–29,53–57]. Work in this direction
is in progress. Other conceivable approaches are the out-
of-equilibrium DMFT or purely numerical methods such as
DMRG, quantum Monte Carlo, or exact diagonalization. Our
TDHF results constitute a useful first-order approximation in
all such future investigations.
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APPENDIX A: GROUND-STATE PROPERTIES

In this appendix we discuss the ground-state properties of
our model. In particular the determination of the respective
stability of the different phases (SC, CDW) is the basis for
the evaluation of the nonequilibrium dynamics. Technical
details of the numerical minimization are briefly outlined in
Appendix B.

We first consider the case without external CDW field αQ =
0. As is well known [33], a purely superconducting phase, i.e.,
with ηco = δηsc = 0 is stable for all U > 0. We display the
resulting (real) order parameter �0 in the superconducting
ground state in Fig. 10 as a function of U/J for various band
fillings. Note that, due to particle-hole symmetry, it is sufficient
throughout this work to consider only results below half filling,
n ≡ 2n0 � 1.

Formally, a purely charge ordered state can be induced
from a second-order instability above some critical value UC

that depends on the particle density n. An analytical analysis
of the energy functional reveals that UC is given by

UC =
[∫ J

|μ|
dε

D(ε)

ε

]−1

, (A1)
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FIG. 10. Superconducting order parameter �0 in the supercon-
ducting ground state as a function of U/J for band fillings n =
1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 (in descending order).

which is displayed as a function of n in Fig. 11. At half filling,
due to perfect nesting, UC goes to zero and n = 1 corresponds
also to the peculiar situation where CDW and SC ground states
are energetically degenerate. For all densities n away from
half filling, the SC phase is lower in energy than the charge
ordered phase. This can be seen in Fig. 12 where we show the
energy difference between the superconducting and the charge
ordered phase as a function of U/J for various values of n.
The inset of this figure displays the corresponding charge order
parameters nQ and fields ηco. It should be mentioned that here
we are restricted to a commensurate [i.e., Q = (π,π )] CDW
whereas away from half filling incommensurate charge orders
would be energetically more stable albeit still above the SC
ground-state energy.

For Coulomb parameters of U where both phases are stable,
it is conceivable that a coexistence phase, i.e., with �0 and nQ
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U
c [1

/J
]
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disordered

CDW

n

n

CDW

 [1
/J

]

disordered

FIG. 11. Phase diagram for a pure charge ordered phase (i.e.,
without SC) as a function of n. Inset: the same result for a larger
range of densities n.

FIG. 12. Energy difference between the superconducting and the
charge ordered phase for n = 0.9 (black), 0.8 (blue), 0.7 (red), and
0.6 (green) as a function of U/J . Inset: Corresponding results for
the charge order parameter nQ (solid lines) and the fields ηco (dashed
lines).

both nonzero, has an even lower energy. In our numerical
analysis, however, we found such a phase to be always higher
in energy than a pure superconducting one.

In order to stabilize charge order and to allow for situations
with both order parameters finite, we introduce a nonzero
charge order field αQ; see Eq. (8). In its presence, a purely
charge ordered phase is obviously most favorable at half filling.
Away from half filling, both order parameters nQ and �0 are
nonzero in the ground state. We show the typical behavior of
both parameters as a function of U for n = 1.0 and n = 0.9 in
Fig. 13. The doping dependence of both quantities is displayed
in Fig. 14. Note that in approaching half filling, the pairing
order parameter is nonanalytic, �0 ∼ √

1 − n.

FIG. 13. Order parameters nQ [black (n = 1.0) and red (n = 0.9)]
and �0 [blue (n = 0.9)] as a function of U/J for αQ = 0.05, 0.1, 0.2
(dotted, solid, dashed). Note that �0 = 0 for n = 1.0.
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FIG. 14. Order parameters nQ (black) and �0 (blue) as a function
of charge concentration n for U/J = 1.5 and αQ = 0.05, 0.1, 0.2
(dotted, solid, dashed).

In the region U/J � 0.5, the superconducting order pa-
rameter shows a somewhat unexpected behavior because it
gets larger when αQ is increased. In this regime the chemical
potential falls in the range where the CDW opening induces a
1/

√
ω enhancement of the DOS. For larger U/J the SC order

parameter gets suppressed by the CDW scattering as expected.

APPENDIX B: MINIMIZATION ALGORITHM

For the numerical minimization of our energy functional,
we need to solve the equation

[h̃εi
,ρ̃εi

] = 0 (B1)

self-consistently for all energies εi and obeying the additional
constraint ρ̃2

εi
= ρ̃εi

for single-particle wave functions. This
equation is readily solved numerically by determining the
eigenvectors and eigenvalues of h̃εi

. We have determined the
minimum with the following algorithm:

(i) We start with some small, but nonzero, (input) values
for the fields ηi

sc, ηi
co, δηi

sc and set up the matrices h̃εi
for each

of the Ndisk energies εi .
(ii) For each εi , we solve Eq. (B1).
(iii) With ρ̃εi

, new values ηo
sc, ηo

co, δηo
sc are determined

using (11)–(13) and (29)–(31). With these values, we could
go back to (i). However, it is usually necessary to introduce
some “damping factor” β < 1 and continue with, e.g., ηi

sc →
ηi

sc + β(ηo
sc − ηi

sc). Without such a damping, it is not ensured
that the energy decreases in each step of our algorithm.

(iv) The algorithm terminates when the fields in (iii) are
approximately the same as the input values in (i).

APPENDIX C: EQUILIBRIUM LINEAR-RESPONSE
THEORY (ELRT) FOR A SC PERTURBATION

OF A CDW GROUND STATE

The Hamiltonian for a CDW is given by

H =
∑
k,σ

(εk − μ)ĉ†k,σ ĉk,σ + η
∑
k,σ

(εk − μ)ĉ†k+Q,σ ĉk,σ (C1)

with Q = (π,π ) and εk = −εk+Q. The transformation

ĉk,σ = βkâk,−,σ + αkâk,+,σ ,

ĉk+Q,σ = −αkâk,−,σ + βkâk,+,σ

diagonalizes Eq. (C1) and yields

H =
∑

k∈B0,σ

[(−μ + E+
k )â†

k,+,σ âk,+,σ

+ (−μ + E−
k )â†

k,−,σ âk,−,σ ] (C2)

with

αk = 1√
2

√
1 + εk

Ek
,

βk = 1√
2

√
1 − εk

Ek
,

where E±
k = ±

√
ε2

k + �2 andB0 is the reduced Brillouin zone
introduced in Sec. II A.

1. Pair fluctuations

We use the pairing operators �̂0 and �̂Q, as introduced
in (11) and (12) to define the corresponding pair-correlation
functions

χ
�

†
0�0

0 = −i〈T �̂
†
0�̂0〉,

χ
�

†
Q�Q

0 = −i〈T �̂
†
Q�̂Q〉,

χ
�

†
0�Q

0 = −i〈T �̂
†
0�̂Q〉,

χ
�

†
Q�0

0 = −i〈T �̂
†
Q�̂0〉.

One obtains

χ
�

†
0�0

0 (ω) = − 1

N

∑
k∈B0,s=±

1 − 2f
(
Es

k − μ
)

ω − 2μ + 2Es
k

,

χ
�

†
Q�Q

0 (ω) = − 1

N

∑
k,s=±

η2

E2
k

1 − 2f
(
Es

k − μ
)

ω − 2μ + 2Es
k

,

− 1

N

∑
k∈B0,s=±

ε2
k

E2
k

1 − f (E+
k − μ) − f (E−

k − μ)

ω − 2μ
,

χ
�

†
Q�0

0 (ω) = χ
�

†
0�Q

0 (ω),

= − 1

N

∑
k∈B0,s=±

s
η

Ek

1 − 2f
(
Es

k − μ
)

ω − 2μ + 2Es
k

,

which we evaluate with the density of states D(ε) as defined
in Eq. (34).
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FIG. 15. Poles �pole within the CDW gap 2η induced by a SC
perturbation Eq. (C3) at half filling and for the temperatures for
which the ELRT results are shown in Fig. 4.

We now consider a perturbation from pairing fluctuations
as, e.g., arising from an attractive on-site interaction

V̂ = −|U |
N

∑
q

�̂†
q�̂q (C3)

with

�̂q ≡ 1

L

∑
k

ĉ
†
k,↑ĉ

†
−k−q,↓, (C4)

which yields the following RPA problem for the pair-
correlation functions:

χ = χ0 + χ0V χ (C5)

with

χ0 =
⎛
⎝χ

�
†
0�0

0 χ
�

†
0�Q

0

χ
�

†
Q�0

0 χ
�

†
Q�Q

0

⎞
⎠ (C6)

and

V =
(−|U | 0

0 −|U |
)

. (C7)

The poles �pole within the CDW gap 2η can then be
determined from the condition

DET |1 − χ0V | = 0, (C8)

which for ω = 0 corresponds to the standard Thouless criterion
for a SC instability. The solutions of Eq. (C8) are shown in
Fig. 15 and with increasing U/J move from the CDW gap at
�pole = 2ηCO to �pole = 0 where the SC instability is reached.
Note, however, that the curves in Fig. 15 are obtained for fixed
η whereas in the present HF theory ηCO itself is an increasing
function of |U | so that the instability is never reached at half
filling.

2. CDW fluctuations

The (Hermitian) operator n̂Q for CDW fluctuations has
been defined in (13) and the corresponding CDW correlation

function reads

χ cdw
0 = −i〈T n̂Qn̂Q〉,

which can be evaluated as

χ cdw
0 (ω) = 4

N

∑
k∈B0,σ

ε2
k

Ek

f (E−
k ) − f (E+

k )

ω2 − 4E2
k

.

The interaction between the CDW fluctuations is given
by VQ = 1/2(−|U |

2 )δ�Qδ�−Q so that the RPA result for the
correlation function is obtained as

χ cdw(ω) = χ cdw
0 (ω)

1 − VQχ cdw
0 (ω)

. (C9)

In particular, for ω = 2η, i.e., at the energy of the CDW gap,
the denominator of Eq. (C9),

1 − VQχ cdw
0 (ω) = 1 − |U |

2N

∑
k∈B0,σ

f (E−
k ) − f (E+

k )

Ek
, (C10)

vanishes when the external staggered field αQ = 0. In fact, in
this case Eq. (C10) is identical to the self-consistency equation
for the CDW order parameter ηCO , so that for αQ = 0 the CDW
amplitude excitations occur exactly at ω = 2ηCO and therefore
are damped due to their admixture with the quasiparticle
excitations. With finite (positive) αQ the amplitude excitation
is further pushed into the continuum, however, since the real
part of 1 − VQχ cdw

0 (ω) still acquires a minimum at ω = 2ηCO

the linear-response spectra in Fig. 5 are peaked at the energy
of the CDW gap.

APPENDIX D: ANHARMONIC OSCILLATOR:
A CLASSICAL EXAMPLE FOR OUT-OF-EQUILIBRIUM

RESPONSE FUNCTIONS

As a simple illustrative example we show results for a one-
dimensional classical (anharmonic) oscillator. It is described
by the differential equation

ẍ = −x + αx3 + � sin(ωt) (D1)

with (� �= 0) or without (� = 0) an external frequency-
dependent perturbation. We solve (D1) numerically in a time
interval 0 � t � �t with the initial condition x(0) = x0 and
ẋ(0) = 0. The solutions with and without external perturbation
are denoted as xω(t) and x0(t), respectively. Like in the main
part of this work, we define the time-dependent deviation

δx(t) = xω(t) − x0(t) (D2)

and its expectation value

〈δx〉 = 1

�t

∫ �t

0
dt |xω(t) − x0(t)|, (D3)

which is a function of the external frequency ω. The expecta-
tion value (D3) serves as a measure of the system’s response
to the external perturbation.

In Fig. 16 we display 〈δx〉 as a function of frequency
around equilibrium (x0 = 0) and for several out-of-equilibrium
amplitudes (x0 �= 0). As expected, the peak position is shifted
towards higher (lower) frequencies when α = −1 (α = 1).
Out of equilibrium, the weight of the resonance grows
substantially when the initial amplitude x0 is increased. This
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FIG. 16. Response function 〈δx〉 of the anharmonic classical
oscillator as a function of frequency ω for � = 10−4, �t = 100, α =
1 (red curves), α = −1 (blue), and initial amplitudes x0 = 0.2 (solid),
x0 = 0.4 (dotted), x0 = 0.6 (dashed). For x0 = 0 the results for α = 1
and α = −1 are the same (black curve).

is in agreement with our corresponding observations for the
negative U Hubbard model in the time-dependent Hartree-
Fock approximation. Note that in the linear limit (α = 0) the
response function 〈δx〉 is independent of the amplitude x0, i.e.,
it is the same at and away from equilibrium. The frequency
shifts and weight increases in Fig. 16 are therefore genuine
effects of the nonlinear terms in the differential equation (D1).

APPENDIX E: TWO-SITE HUBBARD MODEL: EXACT
SOLUTION VERSUS HARTREE-FOCK APPROXIMATION

The Hilbert space of a half filled two-site Hubbard model
is four dimensional when we assume that the total spin Sz in
quantization direction is zero. A basis for this space may be
chosen as

|d,0〉 = ĉ
†
1,↑ĉ

†
1,↓|vac〉, (E1)

|0,d〉 = ĉ
†
2,↑ĉ

†
2,↓|vac〉. (E2)

|↑,↓〉 = ĉ
†
1,↑ĉ

†
2,↓|vac〉, (E3)

|↓,↑〉 = ĉ
†
2,↑ĉ

†
1,↓|vac〉. (E4)

When we want to study a pairing probe pulse we further need
to include the states |0,0〉 = |vac〉 and

|d,d〉 = ĉ
†
1,↑ĉ

†
1,↓ĉ

†
2,↑ĉ

†
2,↓|vac〉 (E5)

because the pairing operator �̂0 has the form

�̂0 = −1

2
[|0,0〉(〈0,d| + 〈d,0|) + (|0,d〉 + |d,0〉)〈d,d|〉].

(E6)
The charge density operator nQ in the two-site model is given
as

n̂Q = 1
2

(|0,d〉〈0,d| − |d,0〉〈d,0|). (E7)

FIG. 17. Exact (solid lines) and Hartree-Fock (dashed lines)
values for the charge density order nQ in the ground state of the
two site (negative U ) Hubbard model as a function of U/J and for
αQ/J = 0.4 (black), 0.3 (blue), 0.2 (red), 0.1 (green), 0.05 (maroon),
and 0.01 (orange).

At half filling, the chemical potential is μ = −U/2 and the
operator K̂ hence becomes

K̂ = J (〈d,0| + 〈0,d|)(〈↑,↓| + 〈↓,↑|) + H.c.

+U (|↑,↓〉〈↑,↓| + |↓,↑〉〈↓,↑|) − αQn̂Q.

(E8)

A Hartree-Fock approximation is particularly weak for low-
dimensional systems. Hence, one cannot expect it to describe
the physics of a two-site Hubbard model satisfactorily. The
difficulties are already visible in the ground-state properties.
In Fig. 17 we show the exact and Hartree-Fock values for the
charge density order nQ as a function of U/J and for several
values of αQ. For αQ = 0 the exact ground state shows no
charge order whereas such an ordered state becomes stable in
the Hartree-Fock approximation for U/J > 2. This is due to
the fact that a “doublet singlet state” of the form |d,0〉 + |0,d〉
becomes the ground state for U � J and cannot be described
within the Hartree-Fock approximation. For αQ �= 0 the exact
and Hartree-Fock results in Fig. 17 differ only quantitatively,
however, these differences are quite substantial in large parts
of the parameter space.

In the following we present pump-and-probe results for
αQ = 0.4 where exact and Hartree-Fock ground states show
a finite charge order. We first consider the charge response
function as it has been defined in the main text; see Eq. (48).
The exact and TDHF results for 〈δnQ〉 are displayed for
U/J = 1.5 and U/J = 0.0 in Fig. 18 as a function of the probe
frequency ω and for several scaling factors γ (for the TDHF
results). We show only one exact curve for each U because it
appears to be largely independent of the initial state at time
t = 0. This is different from the Hartree-Fock curves which
show a shift towards smaller frequencies and a significant gain
in spectral weight. The TDHF behavior of the two-site model
therefore resembles that of the macroscopic systems which we
investigate in the main text.
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FIG. 18. Charge order response 〈δnQ〉 as a function of frequency
for U/J = 1.5 (dotted for exact and solid for TDHF results) and
U/J = 0.0 (dashed) with scaling factors γ = 1.0 (black), γ = 0.8
(red), γ = 0.6 (blue), and γ = 0.4 (green).

In Fig. 19 we show the corresponding results for the
superconducting response function. Again, the exact curves
are independent of the initial state. In this case, the TDHF

FIG. 19. Pairing response 〈δ|�0|〉 as a function of frequency for
U/J = 1.5 (dotted for exact and solid for TDHF results) and U/J =
0.0 (dashed) with scaling factors γ = 1.0 (black), γ = 0.6 (red),
γ = 0.4 (blue), and γ = 0.2 (green).

shows a rather similar behavior. This, however, does not come
as a surprise because it resembles our observations of the
macroscopic systems in the main text.
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