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Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces
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In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both
experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle
dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate
dxz/dyz states. Despite several experimental and theoretical investigations, the origin is still under debate. In
this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by
the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated
systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly
correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo
calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the
spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely,
the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that
spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized
calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is
observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that
only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong
magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior
within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.
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I. INTRODUCTION

In the growing field of spintronics, the spin of the electrons
is used to process information. One popular possibility to
achieve this is based on the different tunneling probabilities of
spin-up and -down electrons in magnetic materials. Naturally,
these currents can be manipulated by a magnetic field. In order
to apply this principle in practice for novel devices, it is crucial
to understand the details behind the tunneling process [1–3].
For example, an understanding of the surface density of states
of the electrodes is important. Chromium magnetic multilayers
are an example where complicated many-body effects at the
surface determine the tunneling [4].

Aside from a technological point of view, surface science is
also fundamentally interesting. New and unexpected features
may occur at surfaces. An interesting example is that of the
topological insulators [5]. Another example, at the Cr(001)
surface a sharp resonance close to the Fermi level is observed
in angular-resolved photoemission and scanning tunneling
experiments [6–9]. After this discovery, many experimental
and theoretical investigations were performed in order to
understand the physical origin of this phenomenon. The
first theoretical explanation was that of a single-particle
dz2 surface state [9,10]. However, in order to predict the
correct resonance position within this picture, an unrealistic
reduction of the magnetic polarization was required. Based
on scanning tunneling spectroscopy on very clean Cr(001)
surfaces, a many-body picture in terms of an orbital Kondo

*l.peters@science.ru.nl

effect due to the degenerate dxz and dyz states was proposed
[11,12]. Additional temperature-dependent scanning tunneling
spectroscopy experiments followed in order to clarify the
situation [13]. However, it appeared that both models were
in agreement with the experimental data. Although for the dz2

single-particle picture an electron-phonon coupling strength
5–10 times larger than in the bulk was required. By combining
scanning tunneling microscopy, photoemission spectroscopy,
and inverse photoemission spectroscopy, one was able to
show that the resonance above the Fermi level was mainly
of dz2 character [14]. This contradicts the orbital Kondo
interpretation. Although, one should realize that the resolution
of inverse photoemission spectroscopy is too low to properly
investigate the sharp resonance at low temperatures. On
the other hand, for the dz2 single-particle picture, the large
electron-phonon enhancement compared to the bulk remains
questionable. The newest photoemission experiments show a
pseudogap below roughly 200 K and the emergence of a sharp
resonance below 75 K [15]. Note that this type of behavior was
not observed in earlier experiments. These newest experiments
hint in the direction of a many-body interpretation of the
resonance. Also, recent dynamical mean-field theory (DMFT)
calculations within the continuous-time quantum Monte Carlo
(CTQMC) solver hint in this direction [16]. Namely, it was
observed that the resonance was very robust against artificial
shifts in the one-particle energies of the dxz, dyz, and dz2 states,
which points towards a dominant many-body contribution.

There are several disadvantages involved with employing
the CTQMC solver. For example, it is very difficult to
access temperatures at which the resonance is observed
experimentally. Further, the consideration of the full Coulomb
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matrix becomes prohibitively expensive within CTQMC at low
temperatures. Therefore, in Ref. [16] the lowest temperature
that could be considered was still too high to observe the sharp
resonance and only the density-density terms of the Coulomb
matrix were taken into account. It is known that such an
approximation to the Coulomb matrix can lead to qualitatively
wrong results [17,18]. Apart from the approximation in the
Coulomb matrix, the CTQMC method is essentially exact, i.e.,
all Feynman diagrams are taken into account. Therefore, it is
very hard to obtain a detailed understanding of the physical
processes responsible for the observed spectral features. In
order to avoid these disadvantages of the CTQMC method, we
employed two approximate methods derived in two opposite
limits and are able to consider the full Coulomb matrix
for temperatures far below where the sharp resonance is
observed. The spin-polarized T -matrix fluctuation exchange
(SPTF) approximation is derived in the limit of weak and
moderate correlations in which the interaction can be treated
perturbatively [19,20]. Although SPTF is known not to capture
Kondo-type physics properly, it can be used to test whether the
resonance has some other many-body origin. The noncrossing
approximation (NCA) is derived in the limit of strong corre-
lations, where the hybridization is treated as a perturbation
[21,22]. Note that the NCA is basically designed to capture
(orbital and spin) Kondo-type processes and is therefore the
ideal candidate to test for the orbital Kondo effect [23].

From the limits in which SPTF and NCA are derived, it
is clear that both methods consider totally different physical
processes. By using the recent CTQMC results as a benchmark,
we are able to trace down the physical processes responsible
for the high-energy spectral features, everything except the
resonance. These are the particle-particle processes within
SPTF. For the NCA it appeared that spin-polarized calculations
suffer from spurious behavior at the Fermi level. Then,
we turned to non-spin-polarized calculations to avoid this
unphysical behavior. By employing two plausible starting
hybridization functions, it is observed that the characteristics
of the resonance are crucially dependent on the starting point.
It appears that only one of these starting hybridizations could
result in an orbital Kondo resonance in the presence of a
strong magnetic field like in the Cr(001) surface. However,
to unambiguously establish this, first a thorough investigation
is required in order to resolve the unphysical behavior at
the Fermi level within the spin-polarized NCA. Such an
investigation is out of the scope of this work.

In the following, we first give a description of the SPTF and
NCA methods. Then, we discuss the results of these methods
and finally we make a conclusion.

II. THEORY

A. Dynamical mean-field theory

Density functional theory (DFT) in its conventional local
density approximation (LDA) or generalized gradient approx-
imation (GGA) is known to be quite successful in predict-
ing properties of real materials, i.e., structural properties,
magnetic moments, and band structures [24–28]. Since DFT
is essentially a single-particle approximation, and LDA and
GGA are derived in the limit of a (nearly) uniform electron

gas, this usually only holds for weakly correlated systems.
For moderately and strongly correlated systems, a proper
treatment of correlation effects is missing. However, even
for weakly correlated systems DFT will never be able to
capture pure many-body effects such as quasiparticle lifetimes
or resonances.

At that time it was also realized that Hubbard-type models
perform well in describing (strong) correlation effects, i.e.,
Mott-insulator transition and quasiparticle peaks. Therefore,
the idea came to describe the delocalized weakly correlated
electrons of a system within DFT and for the strongly
correlated electrons add by hand the most important missing
part. From experience with Hubbard-type models this missing
part is the onsite Coulomb interaction. Thus, this leads to a
generalized Hubbard model.

The main problem is to accurately solve this generalized
Hubbard model for all interaction strengths. A huge break-
through came with the discovery of the dynamical mean-field
theory [29,30]. It was shown that in the limit of infinite
dimensions or equivalently infinite nearest neighbors, the
self-energy becomes purely local. In other words, in this
limit only local diagrams survive, leading to a k-independent
self-energy. Since the topology of these diagrams is the same as
those of an Anderson impurity model, the generalized Hubbard
model can be mapped onto this model. The great advantage
of this is that for the Anderson impurity model, solvers exist.
Thus, by performing a mapping to the Anderson impurity
model and then using one of the solvers, the local self-energy of
the lattice problem (generalized Hubbard model) is obtained.
This is a good approximation when the self-energy is purely
local, i.e., in the limit of infinite nearest neighbors. However,
from experience it is known that this limit is reached rather
fast, already for two or three dimensions.

By using quantum Monte Carlo methods, for example
continuous-time quantum Monte Carlo (CTQMC), the An-
derson impurity model can be solved numerically exactly,
i.e., all Feynman diagrams are taken into account [31,32].
However, the quantum Monte Carlo methods also have several
disadvantages. One of them is that low temperatures are
very hard to access. Another, the consideration of the full
Coulomb matrix becomes prohibitively expensive at low
temperatures. Further, since all diagrams are considered, it
becomes very hard to obtain a detailed understanding of
which physical processes are responsible for the observed
spectral features. To avoid these disadvantages, numerically
efficient perturbative solvers have been developed that are
able to consider the full Coulomb matrix at low temperatures.
In the limit of weak or moderate correlations, the iterative
perturbation theory and spin-polarized T -matrix fluctuation
exchange approach have been derived [19,20,33]. For the
limit of strong correlations, where the hybridization can
be treated perturbatively, the noncrossing and one-crossing
approximations have been formulated [21,22,34].

B. SPTF

The idea of SPTF is to find a numerically efficient approach
for the Anderson impurity model in the limit of weak (and
moderate) correlations. In order to achieve this, the interaction
is treated perturbatively. More precisely, diagrams known to
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be dominant for systems with low electron densities (and
short-range repulsive potential) and high electron densities
are considered. Since SPTF is exact in these two limits, it is
also thought to provide an accurate description for systems
with intermediate densities. From a large variety of SPTF
calculations, it has appeared that a qualitatively satisfactory
description of weak and moderate correlated systems can be
obtained [35,36].

The dominant diagrammatic contribution for a low-density
electron system with short-ranged repulsive interaction comes
from the ladder diagrams in the particle-particle channel.
The particle-particle channel consists of electron-electron
and hole-hole contributions. It can be shown that in the
regime of low densities, the former dominates the latter. The
particle-particle contribution to the self-energy within SPTF is
given by

�T H
m1,m2

(iωn) = 1

β

∑
i�m

∑
m3,m4

Tm1,m3,m2,m4 (i�m)

×Gm4,m3 (i�m − iωn),

�T F
m1,m2

(iωn) = 1

β

∑
i�m

∑
m3,m4

Tm1,m4,m3,m2 (i�m)

×Gm3,m4 (i�m − iωn). (1)

Here, β is the inverse temperature, G is the single-particle
Green’s function, the mx labels refer to the strongly correlated
orbitals, � and ω are, respectively, bosonic and fermionic
Matsubara frequencies. Further, �T H

m1,m2
and �T F

m1,m2
correspond

to the Hartree and Fock contributions with an effective
interaction defined in terms of the T matrix

T (i�m) = U − U � χPP (i�m) � T (i�m). (2)

This equation is in terms of four index matrices, where
� represents the according matrix multiplication. The U

represents here the bare onsite Coulomb interaction and χPP

has a convenient representation in imaginary time

χPP
m1,m2,m3,m4

(τ ) = Gm1,m3 (τ )Gm2,m4 (τ ). (3)

Note that the contributions of Eq. (1) include all first- and
second-order contributions in the bare interaction exactly.

In the high-density electron limit, the electron-hole bubble
contributions become dominant, the random phase approxima-
tion. Aside from this contribution, there is another term known
to be important for the description of magnetic fluctuations,
the particle-hole ladder contribution. Both particle-hole contri-
butions can be conveniently taken into account by introducing
the following antisymmetrized vertex:

UAS
m1,m2,m3,m4

= Tm1,m2,m3,m4 (0) − Tm1,m2,m4,m3 (0). (4)

Here, the bare interaction has been replaced by the static value
of the T matrix of Eq. (2) because these ladder particle-particle
processes are known to be important for the renormalization
of the interaction [19]. Then, the particle-hole contribution to
the self-energy within SPTF can be written as

�PH
m1,m2

(τ ) =
∑

m3,m4

Wm1,m3,m4,m2 (τ )Gm4,m3 (τ ). (5)

Here, the particle-hole fluctuation potential is given by

W (�) = UAS � χPH (i�) � [I − UAS � χPH (i�)]−1 � UAS

−W2(i�), (6)

where the particle-hole susceptibility is

χPH
m1,m2,m3,m4

(τ ) = −Gm4,m1 (−τ )Gm2,m3 (τ ). (7)

The term W2 in Eq. (6) is required to remove the second-order
contribution, which is already contained in Eq. (1).

C. NCA

The NCA is a numerically efficient solver for the Anderson
impurity model derived in the limit of strong correlations.
In this limit, the hybridization can be treated perturbatively.
However, the machinery of quantum field theory (Wick’s
theorem) cannot be applied straightforwardly because the
zeroth-order term contains the many-body onsite interaction
term explicitly. The zeroth-order term is given by Himp in the
(multiple orbital) Anderson impurity model

H = Himp + Hbath + Vhyb,

Himp =
∑
α,σ

εασ d†
ασ dασ

+ 1

2

∑
α,β,α′,β ′,σ,σ ′

Uαα′ββ ′d†
ασ d

†
α′σ ′dβ ′σ ′dβσ , (8)

Hbath =
∑
k,ν,σ

εkνσ c
†
kνσ ckνσ ,

Vhyb =
∑
k,ν,σ

Vkν,α(d†
ασ ckνσ + c

†
kνσ dασ ).

Here, εασ are the single-particle impurity energy levels and
Uαα′ββ ′ is the onsite Coulomb repulsion between the impurity
states. Further, Hbath represents the bath of noninteracting
electrons whose dispersion is given by εkνσ . The last term
Vhyb describes the coupling between the impurity and bath
states.

By rewriting Eq. (8) in terms of pseudoparticles, the
standard field theoretical perturbation theory can be employed
again. Each pseudoparticle corresponds to a many-body
eigenstate |m〉 and eigenenergy Em of the isolated impurity

Himp =
∑
m

Em|m〉〈m|. (9)

Based on these eigenstates |m〉, pseudoparticle creation
a
†
n and annihilation am operators can be introduced with the

following relation to the physical electron operators:

dασ =
∑
n,m

F ασ
nm a†

nam. (10)

Here, Fασ
nm = 〈n|dασ |m〉 is the matrix element of the physical

impurity electron operator. In terms of the pseudoparticle
operators, the Anderson impurity model is written as

H =
∑
m

Ema†
mam +

∑
kνσ

εkνc
†
kνσ ckνσ

+
∑

m,n,k,ν,α,σ

(
Vkν,αF ασ

nm c
†
kνσ a†

man + H.c.
)
. (11)
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From this expression it is clear that the field theoretical
perturbative techniques can be employed again, where the
hybridization is now the interaction term. It describes the
interaction among the pseudoparticles induced by the coupling
to the bath electrons. Thus, the problem is to find a good
approximation for the pseudoparticle self-energy �m(ω) of
the pseudoparticle propagator

Gm(ω) = [ω − λ − Em − �m(ω)]−1. (12)

Here, λ is the Lagrange multiplier of the Lagrangian constraint
λ(Q − 1), which is required to ensure the completeness of the
impurity eigenstates

Q =
∑
m

a†
mam = 1. (13)

Within NCA, the pseudoparticle self-energy is approxi-
mated by an infinite resummation of diagrams with noncross-
ing conduction electron lines, which is exact to first order in
the hybridization function

�α(ω) =
∑
k,ν

V ∗
kν,αgkνVkν,α. (14)

Here, gkν(ω) = (ω+ + μ − εkν)−1 is the bare bath electron
propagator. The diagrams included in NCA describe the
processes where a single impurity electron (hole) hops to the
bath and back. Hereby, a pseudoparticle with N + 1 (N − 1)
electrons is temporarily created. Notice that these processes are
known to be responsible for the appearance of the Kondo peak
at low enough temperatures. For completeness, the expression
for the pseudoparticle self-energy in NCA is given by

�NCA
m (ω) = −

∑
m′,α,σ

[∣∣Fασ
mm′

∣∣2
∫

dv

π
f (ν)�

′′
α(ν)Gm′ (ω + ν)

+ ∣∣Fασ
m′m

∣∣2
∫

dv

π
f (−ν)�

′′
α(ν)Gm′(ω − ν)

]
.

(15)

Here, �
′′
α(ν) is the imaginary part of the hybridization

function in Eq. (14) and f (ν) is the Fermi function. After
the pseudoparticle self-energies are obtained self-consistently,
they need to be translated in order to obtain real physical
quantities.

NCA is known to provide a good qualitative description of
the Kondo resonance and Hubbard subbands [21,22]. Short-
comings are an underestimation of the Kondo temperature,
an overestimation of the asymmetry and height of the Kondo
resonance, and for temperatures much smaller than the Kondo
temperature a spurious peak emerges at the Fermi level due to
missing vertex corrections [37,38].

D. Computational details

The DFT(+SPTF) calculations reported here were carried
out using a full potential linear muffin-tin orbital (FP-LMTO)
method [39]. The GGA parametrization of Perdew, Burke,
and Ernzerhof was used [28]. The Brillouin zone was sampled
through a conventional Monkhorst-Pack mesh of 20 × 20 ×
1 k points, leading to a total of 102 vectors in the irreducible
wedge. The basis setup was the same for all calculations. For

the definition of the muffin-tin sphere of Cr, a radius of 2.23 a.u.
is used. The main valence basis functions were chosen as 3d,
4s, and 4p states, while 3s and 3p electrons were treated as
core states [39]. Three kinetic energy tails were used for 4s

and 4p states, corresponding to the default values 0.3, −2.3,
and −0.6 Ry. Only the first tail is used for the 3d states. The
use of a single tail is due to the choice of the construction
of the correlated orbitals of the Anderson impurity model.
These correlated orbitals are constructed from LMTOs, that
have a representation involving structure constants, spherical
harmonics, and a numerical radial representation inside the
muffin-tin spheres. These functions are matched continuously
and differentiably at the border of the muffin-tin spheres to
Hankel or Neumann functions in the interstitial. The “ORT”
basis originates from these native LMTOs after a Löwdin
orthonormalization. The MT orbitals, instead, are atomiclike
orbitals where the radial part comes from the solution of the
radial Schrödinger equation inside the muffin-tin sphere at an
energy corresponding to the “center of gravity” of the relevant
energy band. For a more detailed description of the correlated
orbital bases, we refer to Ref. [35]. There, it is also shown that
they generally lead to very similar results. In this work, the
“ORT” basis is used.

As for the double counting within DFT+SPTF, the or-
bitally averaged static part of the self-energy is used. For
the parametrization of the onsite Coulomb interaction, the
constrained random phase approximation results of Ref. [40]
are used. In their work, a slab of 10 layers is considered for
which they found the following onsite Coulomb interactions:
U1/10 = 3.44 eV, U2/9 = 4.64 eV, U3/8 = 4.73 eV, U4/7 =
4.94 eV, and U5/6 = 4.95 eV. Here, the numbers indicate
the layer of the slab, i.e., 1 and 10 are, respectively, the top
and bottom layer. The Hund exchange interaction is constant
J = 0.65 eV.

In order to use the CTQMC results as a benchmark, the
Cr(001) surface is modeled in exactly the same way as in
Ref. [16]. This is a slab of 10 atomic layers with a vacuum of
approximately 16 Å stacked in the z direction and periodically
continued in the x and y directions. This structure is optimized
by allowing the atomic coordinates to relax in the z direction.
Further, we also break the symmetry in an antiferromagnetic
way in the first iteration of the DMFT loop. Note that we
also started the spin-polarized DMFT calculation on top of a
converged non-spin-polarized DFT (GGA) calculation. Just as
the CTQMC calculations, our calculations are not charge self-
consistent. Also in accordance with the CTQMC calculations
is the application of a multisite version of the DMFT method to
model the slab of 10 atomic layers. On the Matsubara axis, the
lattice Green’s function within the multisite version of DMFT
is given by

G
ij

αβ(iωn,k)−1 = [
(iωn + μ)δαβ − �i

αβ(iωn)
]
δij − H (k)ijαβ .

(16)

Here, i and α refer to the local basis functions |i,α〉 with
i and α, respectively, corresponding to the site and correlated
orbital. The chemical potential is represented by μ and for
completeness H (k)ijαβ = 〈i,α|H (k)|j,β〉. Further, �i

αβ(iωn) is
the local self-energy, i.e., it is k independent and i �= j terms
are zero. The double-counting correction is absorbed in the
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self-energy. In order to obtain the rest of the self-energy, an
effective impurity model is solved for each Cr atom in the
slab until self-consistency within the DMFT loop is reached.
For this purpose, at each DMFT iteration the following site-
dependent Weiss fields are computed:

Gi
0,αβ (iωn)−1 = Gi

αβ(iωn)−1 + �i
αβ(iωn). (17)

Here, G(iωn) is the local lattice Green’s function, which is
obtained by taking a k average of G(iωn,k).

For the NCA calculations, we did not use the multisite
DMFT version since we performed only one-shot DMFT
calculations. Then, the standard single-site version can be
employed. For a one-shot NCA calculation we obtain the
hybridization function and projected 3d eigenvalues from a
converged non-spin-polarized GGA calculation. This GGA
calculation is performed for the same geometry as described
above. The double counting is about 13.5 eV in order to have
a total of approximately 4.75 3d electrons.

III. RESULTS

A. GGA

Before we study the many-body effects within DMFT on the
spectral properties, we first consider the single-particle GGA
approach. In Fig. 1, the projected density of states of the 3d

states are plotted for a non-spin-polarized and spin-polarized
GGA calculation. These spectra are in very good agreement
with what is reported in literature [10,12,16]. For example
the results of Ref. [16], for convenience presented here in
Figs. 3(a) and 3(b), are very similar to our results in Fig. 1. The
non-spin-polarized calculation is convenient to make a rough
estimate of the bandwidth. From the top figure of Fig. 1, it can
be observed that the bandwidth is about 7 eV. As mentioned
above from constrained RPA calculations it is known that for
the top surface layer the screened onsite correlations within
these 3d states is 3.44 eV. This suggests that the 3d states of
the Cr(001) surface are weakly/moderately correlated.

From the bottom figure of Fig. 1 it is clear that inclusion
of spin polarization has a huge effect on the spectral density.
Further, the exchange-induced spin splitting can be observed.
By comparing Fig. 1 (both non-spin-polarized and spin-
polarized) with experiment [6–8,11–14], it can be concluded
that GGA is not able to account for the resonance. For the
non-spin-polarized case, the peaks at the Fermi level are too
high and broad, and the orbital character is not in accordance
with experiment [14]. On the other hand, for the spin-polarized
case there is no peak at the Fermi level.

B. SPTF

Since CTQMC is in principle exact, we use it as a
benchmark for our approximate solvers. More precisely, we
compare our results with those of Ref. [16] presented here
in Figs. 2 and 3. In the former, the local spin-averaged
3d partial density of states is shown for non-spin-polarized
and spin-polarized GGA, and DMFT. For DMFT also the
temperature dependence of the feature at the Fermi level (zero
energy) is depicted. Here, β refers to the inverse temperature.
The latter contains the local 3d projected, dz2 , dx2−y2 , dxz/dyz,
and dxy , partial density of states for non-spin-polarized and

FIG. 1. The 3d projected partial density of states is plotted for
a non-spin-polarized (top) and a spin-polarized GGA calculation
(bottom). Here, blue corresponds to dz2 , magenta to dx2−y2 , black
to dxz/dyz, and red to dxy .

spin-polarized GGA, and DMFT at two different inverse
temperatures.

In order to compare SPTF with CTQMC, the local spin-
averaged 3d partial density of states is calculated within SPTF
for different double countings (see Fig. 4) at β = 20 eV−1.
From a comparison with Fig. 2(a) (solid black line), it can be
observed that for the double countings 13.8 and 13.5 eV the
height of the feature at the Fermi level is underestimated with
respect to the main peak at about 1 eV. On the other hand,
for the 12.7-eV double counting, the agreement is very good.
There is only a slight mismatch in the position of the feature
at the Fermi level. This mismatch will be addressed below in
more details.

It becomes even more clear that SPTF for 12.7-eV double
counting is in good agreement with CTQMC, while that of
13.8 eV is not, from an inspection of the local 3d projected
density of states. In Fig. 5, the local 3d partial density of states
projected on dz2 , dx2−y2 , dxz/dyz, and dxy is shown for 13.8-eV
(top) and 12.7-eV (bottom) double counting within SPTF for
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FIG. 2. The CTQMC local spin-averaged 3d partial density of
states for different methods and inverse temperatures, β = 20 eV−1

(dashed red), β = 40 eV−1 (solid black), and β = 60 eV−1 (solid
magenta) of Ref. [16].

β = 20 eV−1. From a comparison with the CTQMC results
in Fig. 3(c) (for the same inverse temperature) it is clear that
SPTF with 12.7 double counting is in very good agreement,
while that of 13.8 is not. For example, the calculation for 13.8
double counting wrongly predicts the main contribution of the
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(d) DMFT β = 40 eV−1

FIG. 3. The CTQMC 3d projected partial density of states of
Ref. [16]. Here, the top two figures are for non-spin-polarized and
spin-polarized GGA and the bottom figures for CTQMC at two
different inverse temperatures β = 20 eV−1 (c), β = 40 eV−1 (d).
Here, blue corresponds to dz2 , magenta to dx2−y2 , black to dxz/dyz,
and red to dxy .

FIG. 4. The local spin-averaged 3d partial density of states within
SPTF for different double countings at β = 20 eV−1.

feature at the Fermi level to be of majority dz2 type. For the 12.7
double counting the main contribution is correctly predicted to
originate from the minority dz2 channel. However, it should be
noted that its contribution is a bit underestimated with respect
to CTQMC. Also, the majority dz2 state seems to be a bit
too close to the Fermi level. Furthermore, the broad features
around −1 and +1 eV are in good agreement with CTQMC.

As mentioned earlier in CTQMC the treatment of the
full Coulomb matrix becomes prohibitively expensive at low
temperatures. Therefore, in Ref. [16] only density-density
terms of the local Coulomb interaction are considered. It is
interesting to see what the influence of this approximation
is on the spectrum. For this purpose, a SPTF calculation is
performed with full and density-density only local Coulomb
interaction. In Fig. 6, the local spin-averaged 3d partial density
of states is depicted for these two calculations, where a 12.7-eV
double counting and β = 20 eV−1 was used. From this figure
it can be observed that the consideration of the full Coulomb
matrix and density-density terms only leads to very similar
results. Only the peaks around −1 and +1 eV are slightly
different.

It also interesting to investigate the temperature dependence
of the spectral feature close to the Fermi level. For the CTQMC
calculations, this is presented in Fig. 2. Here, the feature
shifts towards the Fermi level for increasing temperature
(decreasing β). For SPTF the temperature-dependent results
are shown in Fig. 7, where for 12.7-eV double counting the
local spin-averaged 3d partial density of states is presented
for two different inverse temperatures β = 14.7 eV−1 (black)
and β = 62.5 eV−1 (red). From this figure, it can be observed
that in contrast to the CTQMC results the position of this
spectral feature shifts closer to the Fermi level for decreasing
temperature. Thus, part of the mismatch in the position of
the spectral feature at the Fermi level (between CTQMC
and SPTF) is due to the different temperature dependence.
Probably the rest of the mismatch is caused by the difference
in double counting.

The next step is to perform SPTF calculations for tem-
peratures at which the sharp resonance at the Fermi level is

245137-6



ORIGIN OF THE QUASIPARTICLE PEAK IN THE . . . PHYSICAL REVIEW B 96, 245137 (2017)

FIG. 5. The local 3d projected density of states within SPTF for
13.8-eV (top) and 12.7-eV (bottom) double counting at β = 20 eV−1.
Here, blue corresponds to dz2 , magenta to dx2−y2 , black to dxz/dyz, and
red to dxy .

observed experimentally, roughly below 100 K. Therefore, we
performed calculations for temperatures as low as 15 K. The
results are not shown here because they are essentially the
same as for β = 62.5 eV−1 (T = 185.7 K) shown in Fig. 7.
Thus, the occurrence of a sharp resonance at low temperatures
is not observed within SPTF. From this result and the good
agreement between SPTF and CTQMC at higher temperatures,
it can be concluded that the high-energy spectral features,
everything except the resonance, are mainly due to the physical
processes captured within SPTF.

In order to obtain an even more detailed understanding of
which physical processes are dominant for the high-energy
spectral features, we performed additional SPTF calculations
with particle-hole processes excluded. This means that the
contribution of Eq. (5) is not included anymore and only
particle-particle processes are considered. In Fig. 8, the local
spin-averaged 3d partial density of states is shown (top figure)
of a SPTF calculation with both particle-particle and particle-
hole processes included (black) and one with only particle-

FIG. 6. The local spin-averaged 3d partial density of states within
SPTF with full (black) and density-density only Coulomb interaction
(red) at β = 20 eV−1 for 12.7-eV double counting.

particle processes considered (red). The bottom figure of Fig. 8
contains the local 3d projected density of states for SPTF
with only particle-particle processes considered. All these
calculations are for β = 20 eV−1, 12.7-eV double counting
and full Coulomb interaction. Thus, from a comparison of
Figs. 2(a) and 3(c) with Figs. 4, 5, and 8, it appears that the
particle-particle processes provide the main contribution to the
high-energy spectral features.

Finally, it is also interesting to have a more detailed
understanding of how the peaks of the non-spin-polarized
GGA spectrum (Fig. 1) are renormalized due to the inclusion
of the many-body processes on the level of SPTF. For this
purpose, the real and imaginary parts of the local 3d projected
self-energy are presented in Fig. 9. This figure is for a full SPTF
calculation with 12.7-eV double counting, β = 20 eV−1, and
full Coulomb interaction. From this figure it can be observed,

FIG. 7. The local spin-averaged 3d partial density of states within
SPTF at two different inverse temperatures β = 14.7 eV−1 (black)
and β = 62.5 eV−1 (red) for 12.7-eV double counting and full
Coulomb interaction.
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FIG. 8. In the top figure, the local spin-averaged 3d partial density
of states is presented for full SPTF (black) and SPTF with only
particle-particle processes (red). The bottom figure contains the local
3d projected density of states for the SPTF with only particle-particle
processes. Here, blue corresponds to dz2 , magenta to dx2−y2 , black to
dxz/dyz, and red to dxy . All these calculations are for β = 20 eV−1

and 12.7-eV double counting.

for example, that the minority dz2 peak at the Fermi level (see
the bottom figure of Fig. 5) is a renormalization of the dz2 peak
at about −3 eV of the non-spin-polarized GGA spectrum. On
the other hand, the majority dz2 peak at about 0.3 eV is due
to a renormalization of the broad peak at about 1 eV of the
non-spin-polarized GGA spectrum.

C. NCA

We use the NCA scheme to investigate the formation
of orbital Kondo-type resonances in the Cr(001) surface
at very low temperature. From ferromagnetic NCA calcu-
lations with a large spin splitting of the order of 6 eV
(see Fig. 10), we observed a spurious sharp resonance at
the Fermi level. In Fig. 10, this spurious behavior can be
observed for a one-shot spin-polarized NCA calculation,
i.e., the hybridization function and projected 3d eigenvalues
are obtained from a spin-polarized GGA calculation. The

FIG. 9. The local 3d projected real (top) and imaginary (bottom)
parts of the self-energy are depicted for a full SPTF calculation with
β = 20 eV−1, 12.7-eV double counting, and full Coulomb interaction.
Here, blue corresponds to dz2 , magenta to dx2−y2 , black to dxz/dyz,
and red to dxy .

behavior is spurious since there is a resonance in the orbitally
(and spin) nondegenerate dx2−y2 state. Note that the (orbital)
Kondo effect is based on a degenerate state. Moreover, the
self-energy becomes positive, i.e., noncausal. The reason for
the occurrence of this unphysical behavior in magnetic NCA
calculations is explained in Ref. [41] in terms of missing vertex
corrections. Equivalently, in the presence of a magnetic field,
the accidental cancellation at the Kondo temperature of the
diverging potential and spin scattering contributions is lifted.
Since for nonmagnetic NCA this cancellation is complete,
there is no unphysical behavior at the Fermi level. Therefore,
we restrict ourselves in the rest of this work to the nonmagnetic
Cr(001) case.

From the nonmagnetic NCA calculations it appears that the
results crucially depend on the behavior of the hybridization
function near the Fermi level. In order to demonstrate this,
we used two versions of the non-self-consistent calculations,
which give drastically different spectral functions near the
Fermi level. The first one consists of the hybridization
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FIG. 10. The 3d projected partial density of states within NCA
for β = 100 eV−1. Here, blue corresponds to dz2 , magenta to dx2−y2 ,
black to dxz/dyz, and red to dxy .

function � calculated from the standard noninteracting im-
purity problem [29,30]

G−1
imp(iωn) = iωn − μ − �(iωn). (18)

The second approach is based on the Bethe-lattice approx-
imation [29] with some adjustable Bethe hopping tB :

�(iωn) = t2
BGimp(iωn). (19)

In this case, we used tB as a scaling parameter in order to
have a similar magnitude for the hybridization function as the
ones obtained directly from the impurity GGA calculations.
The main reason to check these models is related to the very
different behavior of the hybridization function near the Fermi
level in these two cases: while in the impurity model we get
mainly the dz2 and dx2−y2 orbitals at EF , in the Bethe-lattice
model the main peaks are related with the dxz/dyz and dxy

orbitals, which is clearly seen from the nonmagnetic projected
partial density of states (Fig. 1).

Results for the NCA calculations of the nonmagnetic
Cr(001) surface for both models are presented in Fig. 11. It is
quite unusual that results are crucially dependent on the models
for the hybridization function: while for the impurity model
we have two Kondo-type resonances in the dz2 and dx2−y2

orbitals at EF , for the Bethe-lattice model there is a single
broader Kondo resonance in the degenerate dxz/dyz orbitals.
The latter corresponds to a strong SU(4) spin-orbit resonance
and will reduce to a weaker SU(2) orbital Kondo resonance
in the strong magnetic field from the ferromagnetic Cr(001)
surface. The former two SU(2) spin resonances in the dz2 and
dx2−y2 orbitals will be killed by a strong magnetic field. Thus,
only for the Bethe-lattice model an orbital Kondo resonance
could occur in the presence of a strong magnetic field.
However, self-consistent spin-polarized NCA calculations for
the ferromagnetic state of the Cr(001) surface are needed to
unambiguously verify this. Since the present spin-polarized
NCA approach suffers from spurious behavior at the Fermi
level (Fig. 10), first a thorough investigation of the missing
vertex corrections is required to resolve this issue. Such an

FIG. 11. The 3d projected partial density of states within NCA
for different hybridization functions in nonmagnetic Cr(001) for β =
100 eV−1. The top figure is for the impurity model and the bottom is
for the Bethe-lattice model. Here, blue corresponds to dz2 , magenta
to dx2−y2 , black to dxz/dyz, and red to dxy .

investigation is out of the scope of this work. It is therefore for
future investigations to show a possibility of a self-consistent
solution of orbital dxz/dyz Kondo states in realistic DMFT
calculations. We expect that the final hybridization function
will be crucially dependent on the starting point which will
explain the CTQMC results that used the standard impurity
model [16].

IV. DISCUSSION AND CONCLUSION

In this work, we addressed the spectral properties of a
Cr(001) surface and in particular the physical origin of the
experimentally observed resonance close to the Fermi level
at low temperatures. In the literature, a single-particle dz2

surface state renormalized by electron-phonon coupling and
the orbital Kondo effect due to the degenerate dxz and dyz

states are proposed as two possible origins of this resonance.
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Recent continuous-time quantum Monte Carlo calculations
within the dynamical mean-field theory already indicated the
many-body nature of the feature at the Fermi level. However,
the precise physical origin of the feature remains unknown.
Further, temperatures at which the resonance is experimentally
observed could not be reached and only the density-density
terms of the Coulomb matrix were considered.

Therefore, we employed two approximate methods within
the dynamical mean-field theory in order to access low
temperatures for the full Coulomb matrix and to consider
specific physical processes only. First, the spin-polarized
T -matrix fluctuation exchange approximation is used, which
considers specific scattering processes by treating the onsite
Coulomb interaction perturbatively. This method is known
to be good for weakly and moderately correlated systems.
Second, the noncrossing approximation which is derived in
the limit of weak hybridization (strongly correlated systems)
and considers Kondo-type processes.

By using the recent continuous-time quantum Monte Carlo
calculations as a benchmark, we found that the high-energy
features, everything except the experimentally observed reso-
nance at the Fermi level, of the spectrum is captured within the
spin-polarized T -matrix fluctuation exchange approximation.
More precisely, the particle-particle processes provide the
main contribution. The occurrence of a resonance even at
temperatures as low as 15 K was not observed within this
approximation.

For the noncrossing approximation we found that magnetic
calculations lead to a spurious resonance at the Fermi level.
Therefore, in order to avoid this unphysical behavior, we
performed additional nonmagnetic calculations. By using two
plausible starting hybridization functions, it is shown that
the characteristics of the resonance at the Fermi level are
crucially dependent on the starting point. For example, in
one case a Kondo-type resonance was obtained in the spin

degenerate dz2 and dx2−y2 orbitals, while in the other case in
the spin and orbital degenerate dxz/dyz orbitals. The latter
corresponds to a strong SU(4) spin-orbit resonance and will
reduce to a weaker SU(2) orbital Kondo resonance in the
strong magnetic field from the ferromagnetic Cr(001) surface.
The former two SU(2) spin resonances in the dz2 and dx2−y2

orbitals will be killed by a strong magnetic field. Since we
cannot do self-consistent calculations within the present NCA
approach for the ferromagnetic state of the Cr(001) surface,
it will be very interesting for future investigations to show
a possibility of a self-consistent solution of orbital dxz/dyz

Kondo states in realistic DMFT calculations. Before such
an investigation can be conducted, a thorough inspection
of the missing vertex corrections within the spin-polarized
noncrossing approximation is required in order to resolve the
spurious behavior at the Fermi level.
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