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Linear magnetoresistance in the charge density wave state of quasi-two-dimensional
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We report measurements of the magnetoresistance in the charge density wave (CDW) state of rare-earth
tritellurides, namely TbTe3 and HoTe3. The magnetic field dependence of magnetoresistance exhibits a
temperature dependent crossover between a conventional quadratic law at high T and low B and an unusual
linear dependence at low T and high B. We present a quite general model to explain the linear magnetoresistance
taking into account the strong scattering of quasiparticles on CDW fluctuations in the vicinity of “hot spots” of
the Fermi surface (FS) where the FS reconstruction is the strongest.
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I. INTRODUCTION

Interaction between pairs of quasiparticles often leads to
broken-symmetry ground states in solids. Typical examples are
the formation of Cooper pairs in superconductors, or charge
(CDW) and spin (SDW) density waves driven by electron-
phonon and electron-electron interactions, respectively [1,2].
A CDW ground state is characterized by a spatial modulation
∼cos(Qx + ϕ) of the electron density and a periodic lattice
distortion with the same QCDW = 2kF wave vector inducing
opening of a gap, �, in the electron spectrum. From one-
dimensional (1D) weak coupling mean-field theories, with
�/EF � 1, the Peierls instability is driven by the electronic
energy gain which originates mostly from the Fermi surface
(FS) nesting with Q = 2kF .

In the case of not complete nesting in quasi-one-
dimensional (Q1D) compounds or in the case of quasi-two-
dimensional (Q2D) or three-dimensional (3D) conductors
the ground state in the CDW state is semimetallic because
electron and hole pockets remain in the FS. Properties of these
carriers can be modified by the CDW ordering. One of the
methods to understand this possible modification is to study
magnetoresistance.

In conventional metals, the Lorentz force caused by an
applied magnetic field changes the electron trajectory and gives
rise to a positive magnetoresistance (MR) which increases
quadratically with the strength of the field [3–5]. Only in a few
cases the MR may grow linearly with the field (LMR). For the
first time such type of behavior was observed by Kapitza [6] in
polycrystalline metals. It was shown that LMR is attributed to
the presence of open Fermi surfaces. The quantum mechanism
of LMR was proposed by Abrikosov [7,8]. In his model LMR
is realized basically in gapless semiconductors or semimetals
with a linear energy spectrum and with a very small carrier
concentration, so that only one Landau band participates
in the conductivity. Parish and Littlewood [9] considered
a macroscopically disordered and strongly inhomogeneous
semiconductor and showed that a classical mechanism will
give LMR in this case. In Ref. [10] it was shown that LMR

may occur in weakly inhomogeneous systems, for fields where
the cyclotron orbit period exceeds the scattering time.

From many published works one can also conclude that this
unusual LMR may be a common feature of CDW systems.
Indeed, LMR was observed in Q1D compounds exhibiting
a CDW with incomplete FS nesting such as NbSe3 [11,12]
and in PdTeI [13]. The effect of LMR was reported for
Q2D compounds with a CDW: transition metal dichalco-
genides 2H-NbSe2; 2H-TaSe2 [14]; 1T-TaTe2 [15], 1T- NbTe2

[16], monophosphate tingsten bronzes (PO2)4(WO3)2m for
m = 4.6 [17]; molybdenum purple bronze K0.9Mo4O11 and
molybdenum oxides η-Mo4O11 [18]. In the present work we
have studied galvanomagnetic properties in another type of
Q2D compound with a CDW, namely, rare-earth tritellurides.
We have measured magnetoresistance in the temperature
range across the Peierls transition temperature and show that
effectively LMR appears below this temperature.

Rare-earth tritellurides RTe3 (R = Y, La, Ce, Nd, Sm,
Gd, Tb, Ho, Dy, Er, Tm) exhibit an incommensurate CDW
through the whole R series with a wave vector QCDW1 =
(0,0, ∼ 2/7c∗) with a Peierls transition temperature above
300 K for the light atoms (La, Ce, Nd). For the heavier R

(Dy, Ho, Er, Tm) a second CDW occurs with the wave vector
QCDW2 = (∼ 2/7a∗,0,0). The superlattice peaks measured
from x-ray diffraction are very sharp and indicate a long range
3D CDW order [19–21].

Below the Peierls transition, in all RTe3 compounds, the
Fermi surface is partially gapped resulting in a metallic
behavior at low temperature. The layered RTe3 compounds
exhibit a large anisotropy between the resistivity along the
b axis and that in the (a,c) plane, typically ∼102 below
TCDW1 and much higher at low temperature [22]. Because
of the unidirectional character of the upper CDW [23–25],
a conductivity anisotropy in the (a,c) plane arises in the
CDW state as was observed experimentally and explained
theoretically in Ref. [26]. The effect of the upper CDW on
the in-plane resistivity observed in experiments is very weak,
no more than a few percent of the total resistance [19,22,26].
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For our study we chose two compounds: TbTe3 as a system
with unidirectional CDW and HoTe3 exhibiting a bidirectional
CDW. In TbTe3 the CDW ordering is observed well above
room temperature (TCDW1 = 336 K). In HoTe3 the first and
the second CDW transitions take place at TCDW1 = 283 K and
TCDW2 = 110 K correspondingly [19].

II. EXPERIMENT

Single crystals of TbTe3 and HoTe3 were grown by a self-
flux technique under purified argon atmosphere as described
previously [27]. Thin single-crystal samples with a square
shape and with a thickness less than 1 μm were prepared
by micromechanical exfoliation of relatively thick crystals
glued on a sapphire substrate. The untwinned character of
selected crystals and the spatial arrangement of crystallo-
graphic axes were controlled by x-ray diffraction. Room
temperature resistivity of crystals was 26–28 μ� cm for TbTe3

and 12–13 μ� cm for HoTe3 that is in accordance with
previously reported results [19,26]. The quality of crystals was
confirmed by high value of resistance residual ratio (RRR),
R(300 K)/R(4 K): 70–90 for HoTe3 and more than 100 for
TbTe3.

The magnetic field was applied parallel to the b axis, and
in-plane magnetoresistance was recorded using the van der
Pauw method, sweeping the field between +6.5 and −6.5
T. Measurements were performed at fixed temperature in the
temperature range 350–20 K with the step �T = 10 K.

III. EXPERIMENTAL RESULTS

The temperature variation of the field dependence of mag-
netoresistance, defined as MR = [Rxx(B) − Rxx(0)]/Rxx(0),
in the temperature range from 10 K up to the temperature
well above TCDW is shown in Fig. 1 for HoTe3 (a) and for
TbTe3 (b) in a log-log plot. Both compounds demonstrate
nearly the same behavior: magnetoresistance changes by more
than four orders of magnitude as temperature T decreases
from 300 K to 20 K. Simultaneously, the power-law field
dependence of MR changes monotonically from quadratic (red
straight line segment) at high T and at low B to linear (blue
straight line segment) at low T and high B. Note that in the
studied magnetic field range (up to 6.5 T) we never observed
any deviation of MR from quadratic law at temperatures above
the Peierls transition temperatures. The examples of MR(B)
dependencies measured at T above TCDW (330 K and 290 K
for TbTe3 and HoTe3, respectively) and below TCDW (40 K for
both compounds) are shown in Fig. 2. Note that, at the same
temperature T = 40 K, the linear Rxx(B) is more pronounced
for HoTe3 in which two CDWs exist at this temperature.

To make this quadratic-to-linear MR crossover clearer, in
Figs. 3(a) and 3(b)we plot MR as a function of square magnetic
field, B2 for HoTe3 and for TbTe3 correspondingly. Solid
black lines are quadratic dependencies which coincide with
the experimental curves at low magnetic fields. At a certain
magnetic field, B∗, experimental dependencies deviate from
these lines. Temperature dependence of this characteristic field
B∗ is shown in Fig. 4. As can be seen, B∗ increases rapidly
or even diverges when T approaches the CDW transition
temperature.
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FIG. 1. Magnetoresistance of HoTe3 (a) and TbTe3 (b) as a
function of magnetic field, B, in log-log scale at different temper-
atures. Blue and red straight line segments indicate linear and square
dependencies correspondingly.

IV. THEORETICAL MODEL AND DISCUSSION

Thus most charge density wave systems with imperfect
nesting exhibit a linear magnetoresistance that is, probably,
related to the CDW electronic structure. To propose a possible
explanation of this linear MR we invoke a usually neglected
scattering mechanism of quasiparticles on the fluctuations of
the order parameter of a charge density wave, which violate
the space uniformity and lead to the momentum relaxation
of quasiparticles. The scattering on CDW fluctuations is
the strongest near the so-called “ hot spots” on the Fermi
surface (FS). Somewhat similar mechanism of linear MR
but above the CDW transition temperature was proposed in
Refs. [28,29]. In Ref. [28] the scattering in the hot spots,
with large momentum and low energy transfer, involves
umklapp processes. In Ref. [29] it involves the scattering
by soft phonons, appearing due to the proximity to Peierls
instability. In our case these hot spots are the FS areas where
the FS reconstruction due to CDW is the strongest. Usually
the hot spots are the ends of the ungapped FS parts. The
electron dispersion in such hot spots depends strongly on
the CDW structure, and the electrons in such hot spots may
be easily scattered by CDW fluctuations. Thus, in cuprate
high-Tc superconductors such hot spots are the ends of Fermi
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FIG. 2. MR(B) for TbTe3 (a) and HoTe3 (b), at temperatures
above TCDW (open blue circles) and below TCDW (open red squares).

arcs, but the FS reconstruction is driven by the pseudogap or
antiferromagnetic ordering, rather than by CDW. In organic
metals, e.g., α–(BEDT-TTF)2KHg(SCN)4, where the CDW
leads to the FS reconstruction and changes its topology [30],
such hot spots are the points of intersection of the original FS
and the FS shifted by the CDW wave vector. In these hot spots
the electron dispersion changes strongly, somewhat similar
to the change of electron dispersion at the boundaries of the
Brillouin zone in the weak-coupling approximation [3], where
the energy gap is formed due to periodic potential, which is
the CDW in our case. Since the periodic potential and the
formed energy gap in the electron spectrum is of the order of
CDW order parameter and much less that the Fermi energy, in
high magnetic field the electron trajectories in these hot spots
are subject to magnetic breakdown in addition to the direct
scattering by CDW fluctuations. This leads to an additional
indirect scattering mechanism of conducting electrons, which
may be rather strong [30].

The electron scattering in the hot spots leads to the linear
field dependence of the scattering rate and, hence, to the linear
magnetoresistance. To show this linear field dependence of
the electron mean-free time τ we assume that in each hot spot
an electron is scattered with some probability whs < 1; the
possible origin of this scattering is discussed later. If this hot-
spot scattering is the main scattering mechanism of conducting
electrons, the corresponding electron mean-free time τhs =
ths/whs, where ths is the mean time of electron motion between
these hot spots. This time ths is determined by the FS details
[3]. In magnetic field H electrons move in momentum space
along the Fermi surface due to the Lorentz force, dp/dt =
(e/c)[v⊥ × H ], and periodically pass through such hot spots.
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FIG. 3. Magnetoresistance of HoTe3 (a) and TbTe3 (b) as a
function of square magnetic field, B2, at different temperatures. Solid
black lines demonstrate the deviation of MR(B) dependencies from
a square law at some value of magnetic field, B∗.

Hence the mean-free time τhs is proportional to the length of
the Fermi surface between hot spots divided by magnetic-field
H strength and by electron velocity in real space v⊥ [3]:

τhs = (c/eHwhs)
∫

dl/v⊥. (1)

If the electron trajectory in magnetic field is closed, its
motion is periodic given by the cyclotron (or Larmor) period
TL = 2π/ωc, where the cyclotron frequency ωc = eh̄H/m∗c
and m∗ is the electron effective mass. Then τhs � TL/whsnhs,
where nhs is a number of hot spots along the cyclotron period.
If the electron trajectory in the magnetic field is open, it
also periodically passes through hot spots and the length of
the Fermi surface between hot spots is approximately given
by the length 2π/a∗ of the first Brillouin zone divided by
the number of hot spots on this open trajectory, where a∗
is the lattice constant. Then, according to Eq. (1), τhs ∼
(c/eHwhs)2π/a∗|v⊥|nhs. We see that both for closed and open
electron trajectories the hot-spot mean-free time is inversely
proportional to magnetic field: τhs ∝ 1/H .

In the τ approximation for isotropic in-plane dispersion
the conductivity tensor σ in magnetic field H is given by the
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FIG. 4. Temperature dependence of the characteristic field B∗ for
HoTe3 (blue) and TbTe3 (red). Dashed lines are guides to the eye.

well-known formula [3]

σ = nee
2

m∗(ω2
c + 1/τ 2

)
(

τ−1 ωc

−ωc τ−1

)
, (2)

which gives for the resistivity tensor

R = σ−1 = m∗

nee2

(
τ−1 −ωc

ωc τ−1

)
. (3)

When τ is independent of magnetic field, as in the simplest
models of electron scattering by impurities or by phonons,
Eq. (3) predicts no magnetoresistance: �Rxx(H ) ≡ Rxx(H ) −
Rxx(0) = 0. The absence of magnetoresistance in this model
is the result of the Hall electric field, which balances the
Lorentz force. This balance can be maintained and leads to
zero magnetoresistance only if the drift velocity v, included in
the equations of motion, is the same for all charge carriers.
Therefore, in metals with several types of charge carrier,
e.g., electrons or holes from different Fermi-surface parts,
the quadratic magnetoresistance appears, which saturates at
high magnetic field. Thus, for the simplest isotropic model of
only two types of carriers the calculation based on the kinetic
equation gives (see Eq. 7.163 of Ref. [4])

�Rxx(H )

Rxx(0)
= σ1σ2(ωc1τ1 − ωc2τ2)2

(σ1 + σ2)2 + (ωc1τ1σ1 + ωc2τ2σ2)2 , (4)

where the subscripts 1 and 2 denote the charge carriers of the
first and second type, respectively. The quadratic dependence
here comes from ωc in the numerator and the saturation at
ωcτ � 1 comes from ωc in the denominator. Usually, the
relaxation time depends on the speed vi of an individual charge
carrier, so that one cannot describe the motion of the carriers
in terms of a single drift velocity even for metals with a single
electron band. Therefore, even in single-band metals in weak
field one observes the quadratic magnetoresistance [5]

�Rxx(H )

Rxx(0)
≡ Rxx(H ) − Rxx(0)

Rxx(0)
= α(ωcτ )2

1 + β(ωcτ )2 , (5)

where the coefficients α ∼ β ∼ 1, which saturates in strong
field when ωcτ � 1. This quadratic magnetoresistance in weak
fields can be understood also in terms of the curvature of
electron trajectories, which geometrically reduces the electron
mean-free path li = τvi by the quantity ∼li(li/rL)2, where
rL � li is the Larmor radius [3]. Since li ∝ τ , this effect can
be taken into account in Eq. (3) by the renormalization of
the electron mean-free time τ (H ) in weak magnetic field H

according to [3]

τ (0)

τ (H )
= 1 + α(ωcτ )2

1 + β(ωcτ )2 , (6)

which leads to Eq. (5).
If the electron scattering is dominated by the scattering in

the hot spots, instead of Eq. (6) we have τ (H ) ≈ τhs ∝ 1/H ,
and Eq. (3) gives Rxx ∝ H . However, in real compounds
the total scattering rate τ−1 is a sum of the contribution
from various mechanisms, including those from the scattering
by impurities τ−1

i and by phonons τ−1
ph . The scattering by

phonons at high temperature is somewhat similar to scattering
by short-range impurities, as in both cases the momentum
transfer during each scattering is large and comparable to the
Fermi momentum. In rather weak magnetic field, when the
Landau levels are not separated and the magnetic quantum
oscillation can be neglected [31], the scattering rates τ−1

i

and τ−1
ph depend on magnetic field according to Eq. (6).

Then τ−1 ≈ τ−1
i + τ−1

ph + τ−1
hs , and the linear MR appears

only in rather strong magnetic field, when τ−1
hs > τ−1

i + τ−1
ph ≡

τ−1
i+ph, i.e., when ωcτi+ph � 2π/whsnhs, or when the quadratic

magnetoresistance saturates. At high temperature, when the
scattering rate by phonons τ−1

ph becomes larger than τ−1
hs ≈

ωcwhsnhs/2π , one should observe a usual quadratic MR.
On the contrary, at lower temperature and in higher field in
the CDW state, when τ−1

hs > τ−1
i+ph, the linear MR should

be observed as a general phenomenon. This crossover is
clearly seen on experimental data in Figs. 1–3 and, according
to the theoretical model, the crossover field increases with
temperature, as shown in Fig. 4.

Let us discuss the possible microscopic origin of the elec-
tron scattering in the hot spots in more detail. The mechanism
of linear MR above the CDW transition temperature TCDW,
proposed in Ref. [29], assumes a strong scattering by soft
phonons with a wave vector close to the nesting vector QN

due to the Peierls instability. Then the hot spots are those
connected by the CDW wave vector, as shown in Fig. 5(a).
However, in our experiment the linear MR is observed much
below TCDW. Then the expected hot spots are the ends of
the ungapped FS parts, as shown in Fig. 5(b). In these hot
spots the FS reconstruction due to CDW is the strongest,
and the electron dispersion depends strongly on the CDW
order parameter. Therefore, electrons in such hot spots may
be easily scattered by CDW fluctuations. Unfortunately, the
available experimental data do not give detailed information
about the Fermi surface in RTe3 compounds in the CDW
state: the ARPES data [21] do not have sufficient resolution
to determine even the FS topology in the CDW state, while
the magnetic quantum oscillations in the CDW state are
complicated by the second CDW transition in some RTe3

materials and by magnetic breakdown. Therefore, there are
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FIG. 5. Position of hot spots on the Fermi surface of RTe3 above
(a), as proposed in Ref. [29], and below (b) the CDW transition
temperature (our work).

possibly other hot spots in the ungapped FS parts, and without
detailed information about the FS in the CDW state we cannot
predict the coefficient in the dependence τhs ∝ 1/H .

There are two types of CDW fluctuations: amplitude and
phase fluctuations. Both may arise, e.g., due to the CDW
pinning by crystal defects or local inhomogeneities. The
amplitude CDW defects may strongly scatter the conducting
electrons, e.g., due to the inhomogeneous magnetic breakdown
(MB) [30], because the MB probability depends exponentially
[29,32] on the gap opened in the electron spectrum due to the
CDW. At the ends of the gapped region the gap values decrease,

as explicitly shown by ARPES data [21], and the magnetic
breakdown become possible even in low field. Moreover, the
amplitude fluctuations of the CDW gap may lead to spatial
variations of the boundary between gapped and ungapped FS
parts. Therefore, in Fig. 5(b) we place the hot spots at the ends
of the gapped region. The MB amplitude depends strongly
not only on the gap value, but also on the electron velocity
and dispersion in the MB region [32], which is also affected
by the amplitude fluctuations of CDW. The inhomogeneous
MB probability leads to the strong electron scattering in the
MB regions, playing the role of hot spots. Note that this strong
scattering mechanism may be important not only for transverse
but also for the longitudinal MR and may even lead to the
phase inversion of magnetic quantum oscillations [30]. The
CDW phase fluctuations mean local variations of the CDW
wave vector, which also change the electron dispersion in
our hot spots and affect the MB probability in addition to
the direct scattering in these hot spots by the CDW periodic
potential with inhomogeneous wave vector. Hence the CDW
fluctuations may indeed lead to the strong electron scattering
in the hot spots of the Fermi surface and, consequently, to
linear MR.

Our theoretical model is in many aspects similar to that in
Ref. [29], but there are some important differences. First, the
model in Ref. [29] is developed and applied only slightly above
the CDW transition temperature TCDW, while our model can
be applied much below TCDW. Second, the model in Ref. [29]
is applied only to the unreconstructed FS, while we apply our
model to the strongly reconstructed FS. Third, in Ref. [29] the
CDW fluctuations have the wave vector equal to the nesting
vector, while in our model any Fermi-surface reconstruction
due to CDW leads to scattering by CDW fluctuations, even if
there are no ungapped Fermi-surface points connected by the
CDW wave vector. Fourth, we propose a temperature-driven
crossover between the quadratic and linear magnetoresistance,
which cannot be found in the model of Ref. [29] where
the CDW fluctuations are considered only in the vicinity of
transition temperature.

In conclusion, we have shown that in the CDW state of RTe3

compounds there is a crossover from linear magnetoresistance
at low temperature to the usual quadratic magnetoresistance at
higher temperature. We propose a general explanation of this
phenomenon as being related to the electron scattering in the
hot spots of the Fermi surface due to the spatial fluctuations or
inhomogeneity of the charge density wave order parameter.
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