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Temperature and doping induced instabilities of the repulsive Hubbard model on the Lieb lattice
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The properties of a phase at finite interactions can be significantly influenced by the underlying dispersion
of the noninteracting Hamiltonian. We demonstrate this by studying the repulsive Hubbard model on the two-
dimensional Lieb lattice, which has a flat band for vanishing interaction U . We perform real-space dynamical
mean-field theory calculations at different temperatures and dopings using a continuous-time quantum Monte
Carlo impurity solver. Studying the frequency dependence of the self-energy, we find that a nonmagnetic metallic
region at finite temperature displays non-Fermi-liquid behavior, which is a concomitant of the flat-band singularity.
At half-filling, we also find a magnetically ordered region, where the order parameter varies linearly with the
interaction strength, and a strongly correlated Mott insulating phase. The double occupancy decreases sharply
for small U , highlighting the flat-band contribution. Away from half-filling, we observe the stripe order, i.e.,
an inhomogeneous spin and charge density wave of finite wavelength, which turns into a sublattice ordering at
higher temperatures.
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I. INTRODUCTION

Singularities in the noninteracting density of states (DOS),
such as a Van Hove singularity or a flat band, inflate the
instabilities towards various ordered states at finite interac-
tions. Such singularities can affect magnetically ordered states
[1] and enhance superconductivity [2], and have substantial
consequences in two dimensions (2D) [3]. A flat band, which
can be represented by δ function in the energy spectrum, is
even more singular than a Van Hove singularity and leads
to correlation induced novel phases which are qualitatively
different from the phases appearing in presence of a Van Hove
singularity [4]. Influence of the flat bands or quasiflat bands on
different emergent novel phases of interacting lattice fermions,
such as ferromagnetism [5–8], flat-band superfluidity [9–11],
high-Tc superconductivity of electron-doped compounds [12],
non-Fermi-liquid behavior [13,14], and topological phases
[15] have been explored theoretically. Experimentally, effects
of flat bands have been reported in various real materials such
as tetragonal La4Ba2Cu2O10 [4], LaCo5 and CePt5 [16], and
can be realized using ultracold atoms [17–20], where lattice
geometry, and thus the singularities, can be well controlled.
Breakdown of the Fermi-liquid (FL) theory in a class of
metallic systems [21,22], as seen in transport properties, can be
attributed to such singularities in the DOS [3]. The diverging
DOS can significantly affect the stripe order, which appears
at finite doping, and has been extensively studied in the
context of the pseudogap region of cuprate high-temperature
superconductors [23].

Flat bands can be realized using different lattice model
Hamiltonians [4,5,24,25]. A simple model displaying a flat
band is the Lieb lattice, a bipartite lattice, as shown in Fig. 1.
The noninteracting 2D Lieb lattice has been realized using
ultracold atoms [17,26], photonic lattices [27,28], and also
electronically [29,30]. To explore flat-band ferromagnetism,
the repulsive Hubbard model on the 2D Lieb lattice has pre-
viously been studied using real-space dynamical mean theory
(R-DMFT) combined with a numerical renormalization group
(NRG) impurity solver at half-filling and zero temperature
[6]. The findings are in agreement with the Lieb theorem [5],

which states that the ground state of the repulsive Hubbard
model on a bipartite lattice in any dimension with an unequal
number of sites in each sublattice must have a nonzero net
magnetic moment at half-filling. Finite-temperature effects on
an anisotropic three-dimensional Lieb lattice have been studied
using R-DMFT+NRG [31]. For a weak interplane coupling,
the authors find remnants of 2D Lieb lattice behavior in differ-
ent physical observables. For a specific choice of parameters,
the double occupancy increases with increasing temperature
violating the FL theory. Finite-size determinantal quantum
Monte Carlo has also been employed to explore the flat-band
contribution to the interaction-induced magnetic ordering [7]
at half-filling. The magnetic behavior is characterized by
the local moment and the real-space spin correlations. The
approach, however, suffers from a sign problem away from
half-filling.

In general, as stated by the Mermin-Wagner-Hohenberg the-
orem [32,33], a continuous symmetry cannot be spontaneously
broken at finite temperature in 2D systems. However, one can
define a finite-temperature scale related to the development of
short-range magnetic order [34]. Such a scale has well-defined
signatures in physical observables and has been observed
in fermionic cold-atom experiments recently [35–40]. As
DMFT neglects long-range fluctuations, it breaks the Mermin-
Wagner-Hohenberg theorem and formally allows a long-range
magnetization to develop at a temperature T d

N [41]. This
temperature scale, while it does not correspond to a true phase
transition point, gives an estimate of the temperature where
short-range magnetic correlations become significant. In this
paper, our main goal is to elucidate the influence of a flat band
on the breakdown of FL theory in the nonmagnetic metallic
region appearing at a finite temperature, finite interactions, and
half-filling. We observe various intriguing regimes, such as a
magnetically ordered state where local magnetization scales
linearly with the interaction strength, and a nonmagnetic Mott
insulator. We also study the stripe order, evident away from
half-filling, which is naturally viable with R-DMFT. R-DMFT,
an extension of DMFT, has been successfully employed to
study, e.g., topological systems, interfaces, and trapped corre-
lated systems [42–44]. Here, we apply R-DMFT coupled with
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FIG. 1. Upper panel: (a) The noninteracting dispersion of the
Lieb lattice for a finite dimerization δ > 0. There are upper and lower
dispersive bands and an isolated dispersionless band with zero energy,
i.e., E(kx,ky) = 0, for all lattice momenta kx and ky . (b) A schematic
representation of the Lieb lattice, where blue dots mark the A type
of sites while red dots mark the B and C types. The rectangle drawn
with a dashed line is the smallest possible unit cell that captures
the magnetic ordering emerging for a finite interaction strength U .
Lower panel: noninteracting density of states corresponding to the
dispersion shown above.

a continuous-time interaction expansion (CTINT) quantum
Monte Carlo [45] impurity solver.

The paper is structured as follows. We first introduce the
dimerized Hubbard model on the Lieb lattice, followed by
the formalism of the real-space dynamical mean-field theory,
which is used to incorporate the effects of correlations and
quantum fluctuations. In Sec. III A, we present the phase
diagram in the presence of interactions, which is the central
result of this work. We show the flat-band-induced non-Fermi-
liquid behavior in Sec. III B. In Secs. III C and III D, we discuss
the behavior of the double occupancy and the dimerization
effects on the physical observables, respectively. In Sec. III E,
we present our findings about the doping effects and discuss
the observed stripe ordering and also show a phase diagram
for the doped case at a fixed finite temperature.

II. THE MODEL AND THE FORMALISM

A. Dimerized Hubbard model on the Lieb lattice

The Lieb lattice in two dimensions is characterized by a
three-site unit cell where the sites are labeled as A, B, and C,
as shown in Fig. 1. The Hamiltonian of the Hubbard model on
this lattice can be expressed as H = Ht − μN + HU , where

the first term is the tight-binding part represented in standard
second quantized notation as

Ht = −
∑
j,σ

[[tx(1 + δ)c†A,j,σ cB,j,σ + tyc
†
A,j,σ cC,j,σ + H.c.]

+ [tx(1 − δ)c†A,j,σ cB,j−x̂,σ + tyc
†
A,j,σ cC,j−ŷ,σ + H.c.]],

(1)

where c
†
A(B/C),j,σ is the creation operator corresponding to

the site A(B/C) for the unit cell at j = (x,y). x̂ = (1,0) and
ŷ = (0,1) are the unit vectors. The first line corresponds to
the intra-unit-cell hoppings and the rest represents hopping
between neighboring unit cells. In this work, we set tx = ty =
t , and tune the x-directional hoppings via the dimerization
parameter δ. Such dimerization leads to the isolated flat band
as shown in Fig. 1(a) and can be used to tune the weight of
the flat band in real space. The second term μN of the full
Hamiltonian is the chemical potential, where the total particle
number is N = ∑

s,j,σ c
†
s,j,σ cs,j,σ , and s = A, B, or C. The

last term is the onsite Hubbard interaction which can be defined
as

HU = U
∑
s,j

(
ns,j,↑ − 1

2

)(
ns,j,↓ − 1

2

)
, (2)

where U > 0 is the interaction strength.
The eigenvalues of the noninteracting Hamiltonian Ht can

be given as

E± = ±
√

|�x |2 + |�y |2,
E0 = 0, (3)

where �x = 2tx cos2 kx

2 + i 2txδ sin2 kx

2 , �y = 2ty cos2 ky

2 ,
kx = 2πp/N (p = 1,..,N ), and ky = 2πq/M(q = 1,..,M),
giving rise to a three-band structure (Fig. 1). E± are the
eigenvalues for the upper and lower bands, respectively, and E0

corresponds to the flat (nondispersive) band of the Lieb lattice
[15]. E± acquires the semimetal dispersion for δ = 0 touching
the flat band at the point (kx,ky) = (π,π ). The corresponding
eigenfunctions for different bands can be given as

ψ± = 1

2

(
± c

†
A,k,σ + �x√

|�x |2 + |�x |2
c
†
B,k,σ

+ �y√|�x |2 + |�y |2
c
†
C,k,σ

)
|0〉,

ψ0 = 1√|�x |2 + |�y |2
(�∗

yc
†
B,k,σ − �∗

xc
†
C,k,σ )|0〉, (4)

where c
†
A(B/C),k,σ = 1√

MN
c
†
A(B/C),j,σ eik·j . With the tuning of

the dimerization parameter δ, the weight of the flat band
can be tuned between B and C sites and thus the flat-band
contribution can be distributed between the local quantities, as
discussed in Sec. III D. In the next section, we will discuss our
implementation of the dynamical mean-field theory for this
model.
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B. Real-space dynamical mean-field theory

To investigate the effects of correlations on the Lieb lattice,
we have employed real-space dynamical mean-field theory
(R-DMFT) which captures the simple magnetic states as well
as the stripe ordered states with wavelengths more than two
sites appearing in the doped regime [46,47]. DMFT maps a
lattice problem to an effective single impurity problem taking
into account the lattice effects in a self-consistent manner [48].
A central quantity is the self-energy �ijσ (iωn), where i and j

index the lattice sites, σ is a spin index, and ωn = π (2n + 1)T ,
where T is the temperature, are the Matsubara frequencies.
Within single-site DMFT the self-energy is assumed to be
local to each site i and uniform over the whole lattice, so
that �ij (iωn) ∼ δij�(iωn). For magnetized states, however,
the uniformity assumption breaks, as the magnetization can
be different for different lattice sites. To study such states, we
thus use R-DMFT where the self-energy is still local but varies
spatially, i.e., �ij,σ (iωn) = �i

σ (iωn)δij [49].
In practice, the self-energy is allowed to vary spatially

within an enlarged unit cell, which can be larger than the
basic three-site unit cell of the Lieb lattice. At half-filling, it
is expected that the three-site unit cell (Fig. 1) is sufficient
to investigate the interaction-induced order parameters, while
larger magnetic unit cells should be considered to capture the
stripe order appearing in the doped case. In the doped regime,
we have considered unit cells with numbers of sites up to 36,
where the three-site cell is stacked 12 times linearly.

More rigorously, the R-DMFT method for a given unit cell
can be described as follows. The local Green’s function of the
lattice system limited to a single unit cell can be calculated as

Gσ (iωn) = 1

Nk

∑
k

(
G0

kσ (iωn)−1 − �σ (iωn)
)−1

, (5)

where the bold quantities are matrices whose dimension equals
the number of sites within the unit cell and Nk is the number
of k points. Thus, the matrix element Gσ (iωn)ij is the Green’s
function between sites i and j of the unit cell. The nonin-
teracting Green’s function G0

kσ (iωn)−1 = (μσ + iωn)1 − Tk,
where 1 is the unit matrix and Tk is the superlattice Fourier
transform of the hopping matrix. This equation has exactly
the same form as the coarse-graining relation of the cellular
DMFT [50]. However, in the R-DMFT case, the self-energy is
assumed to be diagonal in the site indices, even though it can
be different for different sites.

For each site i in the (enlarged) unit cell, there is an effective
single impurity Anderson model, which is defined by the
dynamical Weiss mean field

Gi
σ (iωn)−1 = (Gσ (iωn)ii)

−1 + �i
σ (iωn)ii . (6)

Given the Weiss function Gi
σ for all i, we calculate the self-

energy of each of the impurity problems using a continuous-
time quantum Monte Carlo (CTINT) algorithm [45]. These
new self-energies are then used again in Eq. (5) and the process
is iterated until a converged solution is found.

In the half-filled case, we define the local magnetization for
different sites in the unit cell as

mA(B/C) = nA(B/C),↑ − nA(B/C),↓, (7)

where nA(B/C),σ = GA(B/C),σ (τ → 0−) is the density of spin-σ
particles at the chosen site. The striped magnetic order in the
doped regime can be observed using

m(rx,ry) = ∣∣nrx,ry ,↑ − nrx,ry ,↓
∣∣, (8)

where rx(y) are the positions of the sites in the unit cell.
Similarly, we denote the total density as

n(rx,ry) = nrx,ry ,↑ + nrx,ry ,↓. (9)

For the half-filled case, we also calculate the double occupancy
D = 〈n↑n↓〉 to study the correlation effects in the presence of
the flat band.

III. RESULTS AND DISCUSSION

The main purpose of this work is to explore the influence
of the flat band, present in the dispersion of the noninteracting
Lieb lattice, on the different emergent phases in the presence
of a finite two-body interaction U at finite temperature T and
doping x. The doping is defined as the deviation of the density
from half-filling, i.e.,

x = N/Nsites − 1, (10)

where N is the total number of particles and Nsites is the total
number of sites. We give a brief summary of our findings
as follows: First, we present the T vs U phase diagram
at half-filling, i.e., x = 0, and δ = 0, in Fig. 2. For the
particle-hole symmetric interaction term [Eq. (2)], x = 0 is
given by the chemical potential μA(B/C) = 0. We show the
local magnetization at different sites mA(B/C) for varying
Hubbard interaction at different temperatures T in Fig. 3, the
lowest temperature being T = 0.01 for the R-DMFT+CTINT
calculations. Due to the presence of the flat band which is
distributed over the B and C sites, an infinitesimally small
value of U at the zero-temperature limit localizes the particles
with a sharp increase in the local magnetic moment. At finite
temperatures, there is a magnetically ordered metallic phase
discussed in Fig. 4. The nonmagnetic metallic region at finite
temperature displays non-Fermi-liquid (NFL) behavior, which
is the concomitant of the flat-band singularity, as shown by
the nonanalytic structure of the local self-energy in Fig. 5.
We also study the effect of the flat band on the double
occupancy 〈n↑ n↓〉, a direct measure of correlation effects
[51], and present it in Fig. 6 for varying interactions at different
temperatures. We show the effect of the dimerization parameter
δ in Fig. 7. For the doped case x 
= 0, we show the emergence
of the stripe order with finite wavelengths (see Figs. 9 and 10).
We also discuss the melting of such stripe order and present a
schematic U vs x phase diagram in Fig. 12.

A. Finite-temperature phase diagram at half-filling

The finite-temperature phase diagram of the repulsive
Hubbard model at half-filling, i.e., x = 0, is shown in Fig. 2.
We allow the breaking of the SU(2) spin rotation symmetry
to capture the magnetically ordered phase. In the main panel,
we show the variation of T d

N with U . There is a domelike
structure similar to that obtained for the square lattice [41,52].
For T < max(T d

N ) the system traverses to three different
regions as the interaction strength is increased. At, for instance,
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FIG. 2. Upper panel: finite-temperature phase diagram of the
Hubbard model on the Lieb lattice for x = 0 and δ = 0. The filled
squares with dashed line represent the Néel temperature T d

N , obtained
using DMFT [41] at interaction strength U . The triangles with the
dotted lines represent the critical temperature T �

c at interaction U ,
where a transition from the magnetically ordered metallic state to the
magnetically ordered gapped state occurs. The symbol � represents
the spectral weight at Fermi level (metallic behavior) and is defined
in the text. The open circles with dashed line represent a linear fit
with α = 0.05. The open diamonds with dashed lines show another
fitted curve for the strongly correlated regime where the constant
β = 2.64. Lower panel: the color scale corresponds to the magnitude
of m = max(mA,mB,mC). The squares are the data points where we
have carried out R-DMFT+CTINT calculations.

temperature T = 0.20, there is a nonmagnetic NFL metallic
region to the left of the dome, a magnetically ordered state
within the dome, and a nonmagnetic Mott insulating state
to the right of the dome. There is a finite region of the
phase diagram where we observe a magnetically ordered metal
which ultimately gets gapped below T �

c at a given interaction
strength U .

In the weakly correlated regime, T d
N (U ) (shown by filled

squares with dashed lines) varies linearly as a function of U

with Uc ∼ 0. To show this, we have carried out a linear fit,
i.e., αU with α = 0.05, represented by open circles with a
dashed-dotted line. In previous studies, a linear behavior of
the critical temperature has been predicted by the Bardeen-
Cooper-Schrieffer (BCS) theory for the attractive Hubbard
model in presence of the flat band [9,53,54]. In a recent
DMFT study, such linear behavior has also been reported

FIG. 3. Magnetic order mA(B/C) for varying U and different T .
The critical interaction increases with increasing T .

for three-dimensional layered Lieb lattice with anisotropic
hopping [31]. There, for interlayer hopping tz = 0.1, when
the flat-band contribution is significant, a linear behavior of
the ordering temperature with varying interaction strength U

has been observed. The onset of the linear behavior occurs at a
finite value of T and U due to the finite value of tz. The linear
behavior of the ordering temperature with U has also been
argued by solving a mean-field gap equation in the presence
of the flat band [31]. Linear behavior of the pairing in the
attractive Lieb lattice Hubbard model, which is equivalent to
the zero doping case via the particle-hole transformation has
also been shown [9].

In the strong coupling limit, where particles localize due
to strong correlations, the model can be well described by
an effective antiferromagnetic Heisenberg model and thus the

FIG. 4. Main panel: the magnetic order parameter m =
max(mA,mB,mC) and the spectral weight at Fermi level � =
max(�A,�B,�C) varying with U for T = 0.20. There is a finite
region where the magnetic phase has a finite �, signifying the metallic
behavior. Inset: similar behavior has been presented for T = 0.13.
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FIG. 5. Upper panel: imaginary part of the local self-energy, i.e.,
−Im�(iωn) vs Matsubara frequency ωn, for different sites A, B, and
C, for U = 0.70 and T = 0.05. For these parameters, the system
is in the nonmagnetic metallic regime (see Fig. 2). Lower panel:
−Im�(iωn) for the different sites vs ωn for U = 16 and T = 0.18
when system is in the Mott insulating regime. Here, the dimerzation
parameter δ = 0, but we have observed the same quantitative behavior
also for δ 
= 0.

ordering temperature varies inversely with the interaction, i.e.,
T d

N ∝ 1/U . We present the fitted function 2.64/U by open
diamonds with a dashed line. In the lower panel of Fig. 2, we
show the magnetic order parameter m = max(mA,mB,mC) as
a function of U and T interpolated from the data points marked
by the squares.

To explore the magnetically ordered phase, we plot mA(B/C)

as a function of U at different temperatures T and δ = 0 in
Fig. 3. For the smallest temperature T = 0.01, the magnetic
order for the B and C sites changes sharply at Uc ∼ 0.20 from
0.0 to 0.5 while it smoothly assumes a finite value for site A.

FIG. 6. Double occupancy, i.e., D = 〈n↑n↓〉, for the different
sites A, B, and C vs U for different T . For the purpose of clarity, we
have added an offset in y axis. The size of the offset is 0.0, 0.1, 0.2,
and 0.3 for T = 0.01, 0.05, 0.13, and 0.20, respectively.

The total magnetization per unit cell, i.e., mtot = mA + mB +
mC ≈ −1.0, is independent of U , in accordance with Lieb
theorem [5]. Also, the magnetic order behaves linearly with
varying U up to U ∼ 4.0. For a moderate temperature, e.g.,
T = 0.05, the critical value of the interaction strength Uc shifts
to 0.90 and magnetic order assumes a finite value sharply and
simultaneously for all the sites. The linear behavior is still
visible in mA(B/C)(U ). There is smooth crossover from flat-
band ferromagnetic behavior to strong coupling Heisenberg
ferrimagnetic behavior with increasing interaction U . For high
temperatures, such as the case T = 0.13 and beyond, the linear
behavior is no more visible and the net magnetization per unit
cell is U dependent and thus the Lieb theorem is no more
satisfied. The enhanced magnetism for U ∼ 0, even when δ =
0, is the consequence of the present flat band in the dispersion,
and the contributions of the other bands are negligible [9]. For

FIG. 7. Main panel: magnetic order for A, B, and C sites for
varying U at T = 0.05. The dimerization parameter is δ = 0.6. Inset:
the double occupancy for the same parameters as in the main panel.
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a system with semimetal dispersion, e.g., honeycomb lattice,
there is associated finite critical value of Hubbard interaction at
which semimetal to antiferromagnetic transition occurs [55],
in contrast, the system gets magnetized immediately with the
onset of U for the Lieb lattice. The emergent physics appears
to be mainly driven by the presence of the flat band at small
interactions.

To understand the magnetically ordered metallic region,
we show the magnetic order, i.e., m = max(mA,mB,mC),
and a measure of spectral weight at Fermi level, i.e., � =
max(�A,�B,�C), in Fig. 4. �A(B/C) = −GA(B/C)(τ = 1/2T )
[56] [where GA(B/C)(τ ) is the local imaginary-time Green’s
function] is zero for a gapped system, while it assumes a
finite value for a gapless system. In the main panel, we
show � and m for T = 0.20. There is a finite region of
U between 3.75–5.75, where both quantities assume finite
value, showing the existence of magnetically ordered metallic
region. In the inset, we show a similar analysis for T = 0.13,
where the region is still finite but smaller than for T = 0.20.
The magnetically ordered metallic region gets narrower with
decreasing temperature as shown in Fig. 2.

B. Non-Fermi-liquid behavior

We explore the finite-temperature quasiparticle behavior
in the normal state in the weak coupling regime in the
presence of a flat band. We find the breakdown of the usual
Fermi-liquid behavior in the region by observing the scattering
rate, i.e., the imaginary part of the local self-energy, for
the different sites within the unit cell. There have been a
few studies using perturbation theory and a renormalization
group approach predicting non-Fermi-liquid behavior due
to the presence of, for example, Van Hove or power-law
singularities in the dispersion of the noninteracting part of
the Hamiltonian [57–60]. Phenomenological marginal Fermi-
liquid [61] behavior, where the self-energy has a linear
frequency dependence, has been proposed in the context of
the cuprates. A diverging noninteracting density of states leads
to a soft gap in the effective hybridization function of DMFT
and consequently to a non-Fermi-liquid signature in the local
self-energy [3,62]. Non-Fermi-liquid behavior has also been
studied using theories which include nonlocal correlations
[63,64]. For a well-defined Fermi liquid, the self-energy for
low Matsubara frequencies ωn can be written as

�(iωn) = a iωn + b, (11)

where a and b are real constants. The quasiparticle weight
Z = m/m∗, where m is the bare mass and m∗ is the mass in
the presence of many-body effects, can be defined in terms of
the self-energy as

Z =
(

1 − ∂ Im�(iωn)

∂ωn

|n→0

)
. (12)

We observe the imaginary part of the self-energy at the
lowest numerically calculated Matsubara frequency ω0 and
at the next consecutive frequency ω1. For the Fermi-liquid
behavior |Im(iω0)| < |Im(iω1)|, while for the non-Fermi
liquids |Im(iω0)| > |Im(iω1)|. Additionally, the scattering rate
[65] per unit cell, an estimate of the conductivity, can be

given as

τ−1 = τ−1
A + τ−1

B + τ−1
C , (13)

where τ−1
A(B/C) = −Im�(iωn = 0) is diverging and thus violat-

ing the Fermi-liquid behavior. In the upper panel of Fig. 5, we
show the imaginary part of the self-energy in the nonmagnetic
region of the phase diagram shown in Fig. 2. The self-energy
for the B(C) site, which carries the flat band, diverges for
small frequencies |ωn|, while the self-energy for the site A is
still analytical. In the lower panel, we show the self-energy
for the Mott insulating regimes of the phase diagram. The
self-energies for all sites, i.e., A, B, and C, are diverging for
ωn → 0, a key feature of Mott insulators. Non-Fermi-liquid
behavior in the presence of a flat band has been discussed
for a multiband lattice Hamiltonian in the presence of an
attractive Hubbard interaction using perturbation theory [66].
We conclude that the presence of the flat band, causing singular
behavior at the Fermi level, leads to the NFL behavior at finite
temperature in the nonmagnetic weakly interacting regime.
Such NFL behavior present at weak coupling will be missed
within static mean field theories, where the dynamical part
of the self-energy is zero. To further explore the interaction
effects in the presence of the flat band, we additionally present
the double-occupancy behavior with U and T .

C. Double occupancy

The double occupancy D represents the probability of
two particles to occupy the same site. It is 0.25 in the zero
interaction limit while it vanishes in the Mott insulating
large-U limit. Double occupancy at a given site with the
DMFT+CTINT solver can be evaluated from the Monte Carlo
perturbation order [67] given by

〈k〉MC = −βU

〈(
ni↑ − 1

2

)(
ni↓ − 1

2

)
− ε2

〉
, (14)

where ε is the impurity solver parameter chosen to be small
for the half-filled case. Further, the double occupancy can be
given as

D = 〈ni↑ni↓〉 = n

2
− 〈k〉MC

βU
− 1

4
+ ε2, (15)

where n = n↑ + n↓ = 1 for half-filling. In Fig. 6, we show
the double occupancy varying with increasing U for different
sites in the unit cell at different temperatures. For weak
interactions and low temperatures, the double occupancy
decreases smoothly for site A while it changes sharply for
the B and C sites with a kink at the transition point. Double
occupancy is smaller for the B and C sites that carry the flat
band compared to the A site for a given interaction U and
temperature T . For large temperatures, the kink is visible
in double occupancy for all the sites. In the presence of
the flat band, even infinitesimal interaction favors enhanced
localization of the particles demonstrated by the sharp change
of the double occupancy. In the strongly interacting limit, the
double occupancy for all the sites A, B, and C coalesces and
vanishes.

The double occupancy for a site can directly be compared
with the local moment m2

z measured in the experiments [51],
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FIG. 8. Schematic diagram of the unit cell chosen for studying
the stripe order.

given as 〈
m2

z

〉 = 1 − 2〈ni↑ni↓〉. (16)

Recently, using finite-size determinant quantum Monte Carlo,
〈m2

z〉 with varying U for the Lieb lattice has been re-
ported [68], with results consistent with our findings from
R-DMFT+CTINT calculations.

D. Tuning the flat-band contribution

As discussed in Sec. II A, the contribution of the flat band
at different sites in the unit cell can be tuned by varying the
dimerization parameter δ. We show the magnetic ordering
mA(B/C) for the site A(B/C) for varying interaction strength U

at temperature T = 0.05 for finite δ in the main panel of Fig. 7.
For a moderate value of U , |mC | > |mB | showing that the C

site has more weight of the flat band than the B site, unlike
in the δ = 0.0 case discussed in Sec. III C where the B and C

sites are equivalent. The mB and mC tend to the same value in
the large-U limit, where the flat-band behavior crosses over to
a strong coupling behavior. The trend in the double occupancy
in presence of the dimerization is similar to the the magnetic
order as shown in the inset of Fig. 7.

We conclude that introducing such partial dimerization in
the hopping can be used as a tool to infer the contribution of
the flat band to different spatially resolved quantities.

E. Doping induced stripe order

To explore the possible stripe order for the Lieb lattice
away from half-filling, we have carried out R-DMFT+CTINT
calculations using unit cells with a maximum of 36 sites.
In Fig. 8, we show a schematic diagram of the unit cell
with 18 sites. Real-space positions of the sites in the unit
cell are labeled by the indices (rx,ry). Sites of the same
color have equivalent order parameters at half-filling and zero
dimerization. We uniformly dope the system by choosing a
finite chemical potential μ(rx,ry) independent of rx and ry ,
and observe the emergent stripe order, which simultaneously
displays spin density wave and charge density wave order. The
doping x is defined as

x =
∑
rx ,ry

n(rx,ry)

N
− 1, (17)

where n(rx,ry) = n(rx,ry, ↑) + n(rx,ry, ↓) is the density of
site with index (rx,ry) and N is the total number of sites in
the unit cell. We also explore the effect of temperature on such
stripe order.

We show n(rx,0) and n(rx,1) for different sites of the unit
cell for the zero doping case in Figs. 9(a) and 9(c), respectively.
Here, the density is uniform with n(rx,ry) = 1 for all rx .
The variation of m(rx,0) and m(rx,1) [see Eq. (8) has been

FIG. 9. (a) n(rx,0) [Eq. (9)] vs rx . Blue diamonds with a dashed-
dotted line, black solid circles with a solid line, and red squares with
a dashed line correspond to x = 0.0, 0.07, and 0.14, respectively.
(b) m(rx,0) [Eq. (8)] vs rx . Colors and symbols are in accordance with
(a). (c) n(rx,1) vs rx . (d) m(rx,1) vs rx . The value of the temperature
is T = 0.05 and interaction is U = 6.0.

presented in Figs. 9(b) and 9(d), respectively. The m(rx,0) has
a sub-lattice ordering while the m(rx,1) is constant for all rx ,
consistent with the bipartite structure of the Lieb lattice.

For moderate doping x = 0.07, there is a charge density
wave (CDW) with a finite wavelength shown by n(rx,0) and
n(rx,1) in Figs. 9(a) and 9(c), respectively. Similarly, a spin
density wave (SDW) emerges with the wavelength of 12 sites
as presented in Figs. 9(b) and 9(d) by the behavior of m(rx,0)
and m(rx,1), respectively. This is a so-called vertical stripe
state, where the simultaneous SDW and CDW are directed
along the bonds of the lattice (as opposed to, e.g., diagonally).
We have also carried out R-DMFT+CTINT calculations with
a larger number of sites in the unit cell by doubling the size
to 36 sites. The stripe order is stable for the larger unit cell as
well.

Increasing the doping further to x = 0.14, the finite-
wavelength charge order turns into a sublattice ordering where
the A sites have a different density than the B and C sites, but
the translational and rotational symmetries of the lattice are
not broken. This has been shown in Figs. 9(a) and 9(c). The
magnetic ordering m(rx,ry) vanishes for all sites as visible in
Figs. 9(b) and 9(d). The decrease in wavelength with increasing
doping is consistent with mean-field findings [69] and has been
reported for high-Tc superconductors [70]. The increase in the
wave vector (decrease in wavelength) can also be argued from
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state appearing
for doped attractive Hubbard model, which can be related
to the stripe order. The increasing doping corresponds to
increased imbalance in the Fermi-surface mismatch of the
two components and, thus, a large wave vector is required
for pairing to be possible [71].
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FIG. 10. The density n(rx,ry) and magnetic ordering m(rx,ry)
[in (a) and (b), ry = 0; in (c) and (d), ry = 1] has been shown for
different doping for T = 0.10 and U = 6.0. Blue diamonds with
a dashed-dotted line, black solid circles with a solid line, and red
squares with a dashed line correspond to x = 0.0, 0.07, and 0.14,
respectively.

To explore finite-temperature effects on the stripe order,
we study the doped system for the increased temperature
T = 0.10. The symbols and colors are according to Fig. 9. In
Figs. 10(a) and 10(c) we show the densities n(rx,0) and n(rx,1)
at half-filling (x = 0.0), where they are uniform and equal
to 1.0 for all rx , similarly to the T = 0.05 case. Increasing
the doping to x = 0.07, a sublattice ordering emerges in
the densities n(rx,0) and n(rx,1). This structure prevails for
m(rx,0) and m(rx,1) as well, as shown in Figs. 10(b) and 10(d),
respectively. The simultaneous sublattice ordering in m(rx,ry)
and n(rx,ry) can also be well seen in the lower panel of Fig. 11.
This state resembles the diagonal stripe order [72,73], where
the direction of the stripes is at an angle to the lattice bonds.

For the large doping x = 0.14, the sublattice ordering in
the density survives as shown in Figs. 10(a) and 10(c), while
the local magnetization m(rx,ry) vanishes which can be seen
in Figs. 10(b) and 10(d).

An important finding of this work is the presence of the
charge order without spin ordering at higher x in contrast
to the square lattice where charge and spin order melt
simultaneously within R-DMFT [74]. Findings of R-DMFT
for the square lattice contradict the experimental data on the
high-Tc superconductors showing charge ordering for a wide
temperature range with no magnetic ordering [70] and the
inconsistency [74] is attributed to the absence of nonlocal
correlations inherent to the R-DMFT approach. In contrast,
the sublattice ordering in the charge sector of the doped Lieb
lattice originates from the inequivalent sites in the unit cell
rather than from intersite correlations, which can be captured
within the R-DMFT approach. It also provides further evidence
that the unveiled stripe order is a robust property of the Lieb
lattice.

FIG. 11. Upper panel: the magnetic ordering m(rx,ry) and density
n(rx,ry) for different (rx,ry) for x = 0.07 and T = 0.05. Size of
the arrows represents the magnitude of m(rx,ry), while the color of
the circles represents the magnitude of n(rx,ry) at (rx,ry). In the
shaded region, the density is maximal with vanishing magnetic order
displaying the vertical sripe ordering. Lower panel: m(rx,ry) and
n(rx,ry) for different (rx,ry) for x = 0.07 and T = 0.10 showing
sublattice ordering. The magnitude of the charge and spin orders is
constant along the diagonal.

To visualize the difference between vertical and diagonal-
like stripe order, we present a two-dimensional spin, i.e.,
m(rx,ry), and charge, i.e., n(rx,ry), distribution on the Lieb
lattice for x = 0.07, T = 0.05 and x = 0.07, T = 0.10 in
Figs. 11(a) and 11(b), respectively. We stack the unit cell shown
in Fig. 8 in the y direction. It is important to mention here that
the actual R-DMFT calculation has only been done for that 18-
site unit cell mentioned in Fig. 8. We also note that the repulsive
Hubbard model can be mapped to an attractive Hubbard model
with a single spin channel particle-hole transformation, i.e.,

ci↓ ←→ ε(i)c†i↓,

ci↑ ←→ c
†
i↑, (18)

where ε(i) = 1 for one sublattice of the bipartite lattice and
ε(i) = −1 for the other. Also, different order parameters for
the two cases can be connected [75]. For example, the stripe
order for the doped repulsive Hubbard model can be connected
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FIG. 12. Phase diagram for the Hubbard model on the Lieb lattice
away from half-filling and T = 0.05. Filled squares are the transition
point obtained using R-DMFT+CTINT calculation. Dashed line is a
guide to the eye.

to the FFLO state of the doped attractive U Hubbard model
with a finite spin imbalance μ↑ 
= μ↓ [71,76]. Therefore, stripe
order observed for repulsive Hubbard model on the Lieb lattice
predicts the presence of FFLO state in the attractive regime.

We summarize our calculation in the phase diagram of
the Hubbard model on 2D Lieb lattice obtained by varying
doping, i.e., 0.03 < x < 0.16, and the interactions shown in
Fig. 12 at a fixed temperature T = 0.05. We have carried out R-
DMFT+CTINT calculations using unit cells with 36 sites. For
the small interactions, for instance U = 1.0, we find a stripe
order with sublattice ordering similar to the one appearing at
T = 0.10 and U = 6.0 (see Fig. 10) for x < 0.06, while the
system is nonmagnetic for x > 0.06. For large U , stripe order
with a finite wavelength has been observed. With the increasing
interaction strength U , the critical value of the doping, i.e., xc,
for the transition from stripe order to the nonmagnetic order
increases and saturates to xc ∼ 0.15 for large U . For U < 1.0
and finite doping, shown by the shaded region, the DMFT
calculation did not converge with good accuracy. One of the
possible reasons could be the sharp change in the magnetic
order parameter for the given interaction and temperature at
half-filling (Fig. 3).

IV. SUMMARY AND OUTLOOK

We have applied the R-DMFT combined with a CTINT
impurity solver to elucidate the influence of flat band on
various emergent phases of the repulsive Hubbard model
on the 2D Lieb lattice. At half-filling, we present a full
finite-temperature phase diagram and discuss our findings
in the various regimes. DMFT, which incorporates quantum

fluctuations beyond mean-field theories, captures the many-
body correlation induced NFL and Mott insulating phases
and highlights the contribution of the flat band as well.
Lieb theorem of the ferromagnetism holds true only for
small temperatures, as evident in our findings. There is a
smooth crossover from weak coupling ferromagnetic to strong
coupling ferrimagnetic behavior with varying interaction. The
linear behavior of the critical temperature with varying U in
weak coupling regime is congruous with Ref. [53]. The finite-
temperature nonmagnetic NFL regime is the concomitant of
the flat-band singularity, as shown by the nonanalytic structure
of the local self-energy. The stripe order in the doped regime
for the 2D Lieb lattice is one of the key findings of this work
and can be related to FFLO phase of the attractive U Hubbard
model. The stripe order is stable for comparatively smaller
interaction strengths than on the square lattice [46].

In this work, we only consider the local self-energy approx-
imation where spatial fluctuations are ignored. We have also
carried out cellular DMFT [50] calculations at half-filling with
a three-site cluster and the results are in agreement with the
R-DMFT calculation for small-U values, where the flat-band
contribution is significant. The local magnetization obtained
using R-DMFT is consistent with the cellular DMFT for
moderate interaction strengths while it deviates quantitatively
only for large U at a given T . This suggests that the phase
diagrams obtained from both methods are qualitatively similar.
The quantitative deviation can be due to nonlocal correlations
which get significant for large interactions. We prefer the
R-DMFT approach over the cellular DMFT in the doped case
for two reasons: The method gets computationally extravagant
due to the large unit cells needed to capture the stripe order
and the QMC method has an inherent sign problem away from
half-filling.

There have been a few real materials [4,16] and some
density functional theory (DFT) predictions [13,14] displaying
a flat-band dispersion and its signature on different interaction-
induced instabilities, e.g., magnetism and superconductivity.
Our findings about the repulsive Hubbard model on the Lieb
lattice can be relevant to such materials. The high controllabity
and tunability of the ultracold-atom systems combined with the
possibility of studying magnetism and Mott transitions in 2D
systems [20] is promising for the realization of the Hubbard
model on the Lieb lattice in the near future.
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[3] R. Žitko, J. Bonča, and T. Pruschke, Phys. Rev. B 80, 245112
(2009).

[4] H. Tasaki, Prog. Theor. Phys. 99, 489 (1998).
[5] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[6] K. Noda, A. Koga, N. Kawakami, and T. Pruschke, Phys. Rev.

A 80, 063622 (2009).
[7] N. Hartman, W.-T. Chiu, and R. T. Scalettar, Phys. Rev. B 93,

235143 (2016).
[8] R. Arita, Y. Suwa, K. Kuroki, and H. Aoki, Phys. Rev. Lett. 88,

127202 (2002).
[9] A. Julku, S. Peotta, T. I. Vanhala, D.-H. Kim, and P. Törmä,

Phys. Rev. Lett. 117, 045303 (2016).
[10] S. Peotta and P. Törmä, Nat. Commun. 6, 8944 (2015).
[11] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P. Törmä,

Phys. Rev. B 95, 024515 (2017).
[12] V. A. Khodel, J. W. Clark, K. G. Popov, and V. R. Shaginyan,

JETP Lett. 101, 413 (2015).
[13] H. Shinaoka, S. Hoshino, M. Troyer, and P. Werner, Phys. Rev.

Lett. 115, 156401 (2015).
[14] A. Hausoel, M. Karolak, E. Sasoglu, A. Lichtenstein, K. Held,

A. Katanin, A. Toschi, and G. Sangiovanni, Nat. Commun. 8,
16062 (2017).

[15] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83,
063601 (2011).

[16] M. Ochi, R. Arita, M. Matsumoto, H. Kino, and T. Miyake,
Phys. Rev. B 91, 165137 (2015).

[17] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y.
Takahashi, Sci. Adv. 1, e1500854 (2015).

[18] D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F.
Huber, G. Ji, and M. Greiner, Science 351, 953 (2016).

[19] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[20] T. Esslinger, Annu. Rev. Condens. Matter Phys. 1, 129
(2010).

[21] E. Miranda and V. Dobrosavljevi, Rep. Prog. Phys. 68, 2337
(2005).

[22] N. S. Vidhyadhiraja and P. Kumar, Phys. Rev. B 88, 195120
(2013).

[23] M. Vojta, Phys. C (Amsterdam) 481, 178 (2012).
[24] K. Sun, Z. Gu, H. Katsura, and S. D. Sarma, Phys. Rev. Lett.

106, 236803 (2011).
[25] R. Takahashi and S. Murakami, Phys. Rev. B 88, 235303

(2013).
[26] H. Ozawa, S. Taie, T. Ichinose, and Y. Takahashi, Phys. Rev.

Lett. 118, 175301 (2017).
[27] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C.

Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys.
Rev. Lett. 114, 245503 (2015).

[28] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett.
114, 245504 (2015).

[29] M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van
Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith,
D. Vanmaekelbergh, and I. Swart, Nat. Phys. 13, 672 (2017).

[30] R. Drost, T. Ojanen, A. Harju, and P. Liljeroth, Nat. Phys. 13,
668 (2017).

[31] K. Noda, K. Inaba, and M. Yamashita, Phys. Rev. A 91, 063610
(2015).

[32] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

[33] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[34] T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi, Phys. Rev.

Lett. 104, 066406 (2010).
[35] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.

Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Science 353, 1260 (2016).

[36] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and
M. Greiner, Science 353, 1253 (2016).

[37] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy,
R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner,
Nature (London) 545, 462 (2017).

[38] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger,
Science 340, 1307 (2013).

[39] J. H. Drewes, L. A. Miller, E. Cocchi, C. F. Chan, N. Wurz,
M. Gall, D. Pertot, F. Brennecke, and M. Köhl, Phys. Rev. Lett.
118, 170401 (2017).

[40] P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. Schauß, S. S.
Kondov, E. Khatami, T. Paiva, N. Trivedi, D. A. Huse, and
W. S. Bakr, Science 357, 1385 (2017).

[41] L. Fratino, P. Sémon, M. Charlebois, G. Sordi, and A.-M. S.
Tremblay, Phys. Rev. B 95, 235109 (2017).

[42] P. Kumar, T. Mertz, and W. Hofstetter, Phys. Rev. B 94, 115161
(2016).

[43] M. O. J. Heikkinen, D.-H. Kim, and P. Törmä, Phys. Rev. B 87,
224513 (2013).

[44] M. Snoek, I. Titvinidze, and W. Hofstetter, Phys. Rev. B 83,
054419 (2011).

[45] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

[46] R. Peters and N. Kawakami, Phys. Rev. B 89, 155134
(2014).

[47] T. I. Vanhala and P. Törmä, arXiv:1708.06749.
[48] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[49] M. Snoek, I. Titvinidze, C. Töke, K. Byczuk, and W. Hofstetter,

New J. Phys. 10, 093008 (2008).
[50] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.

Phys. 77, 1027 (2005).
[51] R. Jordens, N. Strohmaier, K. Gunter, H. Moritz, and T.

Esslinger, Nature (London) 455, 204 (2008).
[52] J. Kuneš, Phys. Rev. B 83, 085102 (2011).
[53] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B

83, 220503 (2011).
[54] T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94,

233 (2011).
[55] M. Hohenadler, F. P. Toldin, I. F. Herbut, and F. F. Assaad, Phys.

Rev. B 90, 085146 (2014).
[56] E. Gull, P. Werner, X. Wang, M. Troyer, and A. J. Millis,

Europhys. Lett. 84, 37009 (2008).
[57] S. Gopalan, O. Gunnarsson, and O. K. Andersen, Phys. Rev. B

46, 11798 (1992).
[58] R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).
[59] I. Dzyaloshinskii, J. Phys. I (France) 6, 119 (1996).
[60] A. A. Katanin and A. P. Kampf, Phys. Rev. B 68, 195101

(2003).
[61] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abra-

hams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).

245127-10

https://doi.org/10.1103/PhysRevB.80.245112
https://doi.org/10.1103/PhysRevB.80.245112
https://doi.org/10.1103/PhysRevB.80.245112
https://doi.org/10.1103/PhysRevB.80.245112
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevA.80.063622
https://doi.org/10.1103/PhysRevA.80.063622
https://doi.org/10.1103/PhysRevA.80.063622
https://doi.org/10.1103/PhysRevA.80.063622
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevLett.88.127202
https://doi.org/10.1103/PhysRevLett.88.127202
https://doi.org/10.1103/PhysRevLett.88.127202
https://doi.org/10.1103/PhysRevLett.88.127202
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1134/S0021364015060065
https://doi.org/10.1134/S0021364015060065
https://doi.org/10.1134/S0021364015060065
https://doi.org/10.1134/S0021364015060065
https://doi.org/10.1103/PhysRevLett.115.156401
https://doi.org/10.1103/PhysRevLett.115.156401
https://doi.org/10.1103/PhysRevLett.115.156401
https://doi.org/10.1103/PhysRevLett.115.156401
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1103/PhysRevB.91.165137
https://doi.org/10.1103/PhysRevB.91.165137
https://doi.org/10.1103/PhysRevB.91.165137
https://doi.org/10.1103/PhysRevB.91.165137
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/sciadv.1500854
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1088/0034-4885/68/10/R02
https://doi.org/10.1088/0034-4885/68/10/R02
https://doi.org/10.1088/0034-4885/68/10/R02
https://doi.org/10.1088/0034-4885/68/10/R02
https://doi.org/10.1103/PhysRevB.88.195120
https://doi.org/10.1103/PhysRevB.88.195120
https://doi.org/10.1103/PhysRevB.88.195120
https://doi.org/10.1103/PhysRevB.88.195120
https://doi.org/10.1016/j.physc.2012.04.013
https://doi.org/10.1016/j.physc.2012.04.013
https://doi.org/10.1016/j.physc.2012.04.013
https://doi.org/10.1016/j.physc.2012.04.013
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevB.88.235303
https://doi.org/10.1103/PhysRevB.88.235303
https://doi.org/10.1103/PhysRevB.88.235303
https://doi.org/10.1103/PhysRevB.88.235303
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.118.175301
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1038/nphys4105
https://doi.org/10.1038/nphys4105
https://doi.org/10.1038/nphys4105
https://doi.org/10.1038/nphys4105
https://doi.org/10.1038/nphys4080
https://doi.org/10.1038/nphys4080
https://doi.org/10.1038/nphys4080
https://doi.org/10.1038/nphys4080
https://doi.org/10.1103/PhysRevA.91.063610
https://doi.org/10.1103/PhysRevA.91.063610
https://doi.org/10.1103/PhysRevA.91.063610
https://doi.org/10.1103/PhysRevA.91.063610
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1103/PhysRevLett.118.170401
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1103/PhysRevB.95.235109
https://doi.org/10.1103/PhysRevB.95.235109
https://doi.org/10.1103/PhysRevB.95.235109
https://doi.org/10.1103/PhysRevB.95.235109
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.83.054419
https://doi.org/10.1103/PhysRevB.83.054419
https://doi.org/10.1103/PhysRevB.83.054419
https://doi.org/10.1103/PhysRevB.83.054419
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134
https://doi.org/10.1103/PhysRevB.89.155134
http://arxiv.org/abs/arXiv:1708.06749
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1103/PhysRevB.83.220503
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1134/S0021364011150045
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1103/PhysRevB.90.085146
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1209/0295-5075/84/37009
https://doi.org/10.1103/PhysRevB.46.11798
https://doi.org/10.1103/PhysRevB.46.11798
https://doi.org/10.1103/PhysRevB.46.11798
https://doi.org/10.1103/PhysRevB.46.11798
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1051/jp1:1996127
https://doi.org/10.1051/jp1:1996127
https://doi.org/10.1051/jp1:1996127
https://doi.org/10.1051/jp1:1996127
https://doi.org/10.1103/PhysRevB.68.195101
https://doi.org/10.1103/PhysRevB.68.195101
https://doi.org/10.1103/PhysRevB.68.195101
https://doi.org/10.1103/PhysRevB.68.195101
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996


TEMPERATURE AND DOPING INDUCED INSTABILITIES . . . PHYSICAL REVIEW B 96, 245127 (2017)

[62] S. Schmitt, Phys. Rev. B 82, 155126 (2010).
[63] A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A.

Georges, Phys. Rev. B 79, 045133 (2009).
[64] A. Liebsch and N.-H. Tong, Phys. Rev. B 80, 165126 (2009).
[65] A. Amaricci, G. Sordi, and M. J. Rozenberg, Phys. Rev. Lett.

101, 146403 (2008).
[66] M. Tovmasyan, S. Peotta, P. Törmä, and S. D. Huber, Phys. Rev.

B 94, 245149 (2016).
[67] F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116

(2007).
[68] N. C. Costa, T. Mendes-Santos, T. Paiva, R. R. dos Santos, and

R. T. Scalettar, Phys. Rev. B 94, 155107 (2016).
[69] J. Xu, C.-C. Chang, E. J. Walter, and S. Zhang, J. Phys.: Condens.

Matter 23, 505601 (2011).

[70] J. Fink, E. Schierle, E. Weschke, J. Geck, D. Hawthorn, V.
Soltwisch, H. Wadati, H.-H. Wu, H. A. Dürr, N. Wizent, B.
Büchner, and G. A. Sawatzky, Phys. Rev. B 79, 100502 (2009).

[71] J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, and P. Törmä,
arXiv:1706.07076.

[72] J. M. Tranquada, AIP Conf. Proc. 1550, 114 (2013).
[73] P. Corboz, T. M. Rice, and M. Troyer, Phys. Rev. Lett. 113,

046402 (2014).
[74] M. Raczkowski and F. F. Assaad, Phys. Rev. B 82, 233101

(2010).
[75] A. F. Ho, M. A. Cazalilla, and T. Giamarchi, Phys. Rev. A 79,

033620 (2009).
[76] A. Moreo and D. J. Scalapino, Phys. Rev. Lett. 98, 216402

(2007).

245127-11

https://doi.org/10.1103/PhysRevB.82.155126
https://doi.org/10.1103/PhysRevB.82.155126
https://doi.org/10.1103/PhysRevB.82.155126
https://doi.org/10.1103/PhysRevB.82.155126
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.80.165126
https://doi.org/10.1103/PhysRevB.80.165126
https://doi.org/10.1103/PhysRevB.80.165126
https://doi.org/10.1103/PhysRevB.80.165126
https://doi.org/10.1103/PhysRevLett.101.146403
https://doi.org/10.1103/PhysRevLett.101.146403
https://doi.org/10.1103/PhysRevLett.101.146403
https://doi.org/10.1103/PhysRevLett.101.146403
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.94.245149
https://doi.org/10.1103/PhysRevB.76.035116
https://doi.org/10.1103/PhysRevB.76.035116
https://doi.org/10.1103/PhysRevB.76.035116
https://doi.org/10.1103/PhysRevB.76.035116
https://doi.org/10.1103/PhysRevB.94.155107
https://doi.org/10.1103/PhysRevB.94.155107
https://doi.org/10.1103/PhysRevB.94.155107
https://doi.org/10.1103/PhysRevB.94.155107
https://doi.org/10.1088/0953-8984/23/50/505601
https://doi.org/10.1088/0953-8984/23/50/505601
https://doi.org/10.1088/0953-8984/23/50/505601
https://doi.org/10.1088/0953-8984/23/50/505601
https://doi.org/10.1103/PhysRevB.79.100502
https://doi.org/10.1103/PhysRevB.79.100502
https://doi.org/10.1103/PhysRevB.79.100502
https://doi.org/10.1103/PhysRevB.79.100502
http://arxiv.org/abs/arXiv:1706.07076
https://doi.org/10.1063/1.4818402
https://doi.org/10.1063/1.4818402
https://doi.org/10.1063/1.4818402
https://doi.org/10.1063/1.4818402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevB.82.233101
https://doi.org/10.1103/PhysRevB.82.233101
https://doi.org/10.1103/PhysRevB.82.233101
https://doi.org/10.1103/PhysRevB.82.233101
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevLett.98.216402
https://doi.org/10.1103/PhysRevLett.98.216402
https://doi.org/10.1103/PhysRevLett.98.216402
https://doi.org/10.1103/PhysRevLett.98.216402



