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Reentrant topological phase transition in a bridging model between Kitaev and Haldane chains
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We present a reentrant phase transition in a bridging model between two different topological models: Kitaev
and Haldane chains. This model is activated by introducing a bond alternation into the Kitaev chain [A. Y. Kitaev,
Phys. Usp. 44, 131 (2001)]. Without the bond alternation, the finite pairing potential induces a topological state
defined by the zero-energy Majorana edge mode, while finite bond alternation without the pairing potential
makes a different topological state similar to the Haldane state, which is defined by the local Berry phase in
the bulk. The topologically ordered state corresponds to the Su-Schrieffer-Heeger state, which is classified as
the same symmetry class. We thus find a phase transition between the two topological phases with a reentrant
phenomenon, and extend the phase diagram in the plane of the pairing potential and the bond alternation by
using three techniques: recursive equation, fidelity, and Pfaffian. In addition, we find that the phase transition is
characterized by both the change of the position of Majorana zero-energy modes from one edge to the other edge
and the emergence of a string order in the bulk, and that the reentrance is based on a sublattice U(1) rotation.
Consequently, our paper and model not only open a direct way to discuss the bulk and edge topologies but
demonstrate an example of the reentrant topologies.
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I. INTRODUCTION

The Kitaev chain [1] has attracted much attention because
of a topological aspect associated with Majorana fermions [2]
in condensed matters. In this model, every real-space fermion
is transformed into Majorana fermions, and the Hamiltonian
can be rewritten by a canonical form constructed by paired
Majorana fermions. Since a pair of Majorana fermions corre-
sponds to a fermionic number operator, a coupling constant
plays the role of chemical potential of the fermions. Kitaev
has indicated the existence of unpaired Majorana fermions on
the edges of an infinite-length chain [1], that is, an emergent
zero-energy mode called the Majorana zero mode (MZM),
which changes the fermionic parity. The MZM appears if the
Majorana number defined by ±1 has the nontrivial value −1,
and thus the phase with MZM is regarded as a Z2 topological
phase defined by the Majorana number.

This model is also obtained by the Jordan-Wigner transfor-
mation of an XY-type spin- 1

2 chain with nonzero XY anisotropy.
The ground-state degeneracy of the MZM corresponds to
that of Néel states, |↑ ↓↑ · · · ↓〉 and |↓ ↑↓ · · · ↑〉. Another
topology has been reported by Hatsugai [3] in the Heisenberg
spin chain with a bond alternation but no anisotropy. This
model is the so-called the spin-Peierls model [4–8], which
also corresponds to the Su-Schrieffer-Heeger (SSH) model
[9–11]. The preceding study [3] has shown that an emergent
alternating Z2 topological order defined by local Berry phase
in a valance-bond solid is regarded as a dimer-singlet ground
state. In addition, this phase is smoothly connected to that
in a spin chain the nearest-neighbor interaction of which
alternates between ferromagnetic and antiferromagnetic. Since
the ground state of the alternating spin chain is equal to
the Haldane state of the S = 1 one-dimensional spin system
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[12], the Z2 topological order originates from a string order
emerging in the Haldane chain [13–16]. Another recent study
on the Haldane chain also reported that this S = (an odd
integer) Haldane chain is classified as a symmetry-protected
topological phase [17], where the Majorana number is trivial,
M = 1. Therefore, the bond alternation can activate a Z2

topologically ordered phase in the Kitaev chain, and a phase
transition between the two different Z2 topological phases is
expected. In this paper, we thus investigate effects of the bond
alternation on the topological phases.

Recently, some pioneering works on these effects have
shown the phase diagram with a topological transition [18–21].
In these studies, an SSH-type ground state has been reported
with a determination of symmetry class, which is the same
as the topological state with an MZM. However, these studies
have not mentioned the topological properties of bulk, and
thus, in this paper, we make this clear with an extended phase
diagram obtained by alternative approaches.

The contents of this paper are as follows. In Sec. II,
we present the spinless-fermion Hamiltonian of the Kitaev
chain with bond alternation under open boundary condition.
The Hamiltonians of Majorana fermions and S = 1

2 spins
are also obtained by exact transformations. Additionally, we
mention two limits of this model: finite pairing potential
without bond alternation and finite bond alternation without
pairing potential, where the Majorana number is regarded as
a topological invariant. Section III is devoted to system-size
parity and phase diagrams defined by the Majorana number in
the plane of the pairing potential and the bond alternation.
Phase boundaries are determined by three techniques: the
recursive equation, fidelity, and Pfaffian of the Majorana
fermions. In these calculations, we obtain the phase boundaries
consistent with a change of the Majorana number caused by
switching the position of Majorana edge modes. Furthermore,
we discuss the dispersion relation with relation to a winding
number of the spinless fermions, and show a change of string
order though the topological transition numerically obtained
by variational matrix-product state (MPS) method in Sec. IV.
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In the dispersion relation, we find a characteristic difference
between two phase boundaries. In Sec. V, a summary is given
with a comment on potential application of our system.

II. MODEL

We consider the Hamiltonian of an N -site Kitaev chain with
bond alternation given by

Hbulk = t

N−1∑
j=1

(1 − γ eiπj )(c†j cj+1 + λc
†
j c

†
j+1 + H.c.), (1)

where γ and λ are bond alternation and normalized pairing
interaction, respectively. The creation and annihilation opera-
tors of j th-site spinless fermion are represented by c

†
j and cj .

We take the open boundary condition for the chain.
The Hamiltonian (1) can be exactly mapped into two

models: a Majorana fermion model and a spin- 1
2 model. The

former is obtained by the introduction of Majorana fermions,
aj = c

†
j + cj and bj = i(c†j − cj ), into the Hamiltonian Hbulk:

Hbulk = it

2

N−1∑
j=1

(1 − γ eiπj )[(1 − λ)ajbj+1 − (1 + λ)bjaj+1],

(2)

where the Majorana fermions have an anticommutation rela-
tion, {ai,aj } = {bi,bj } = 2δi,j and {ai,bj } = 0. The Jordan-
Wigner transformation, cj = eiφj σ−

j , and its Hermite conju-
gate give the latter model:

Hbulk = t

2

N−1∑
j=1

(1 − γ eiπj )
[
(1 + λ)σx

j σ x
j+1 + (1 − λ)σy

j σ
y

j+1

]
,

(3)

with φj = π
∏

i(<j ) [ 1
2 (σ z

i + 1)]. Here, we use the Pauli matri-

ces σ and the ladder operators σ± = 1
2 (σx ± iσ y).

To confirm the presence of the MZM, we rewrite the
Majorana Hamiltonian (2) as the following canonical form:

Hbulk = it

2

∑
k

εka
′
kb

′
k (4)

with a′
k = ∑

j uk,j aj and b′
k = ∑

j vk,j bj obtained by the
orthogonal transformation of Majorana fermions. Both a′

k

and b′
k satisfy the Majorana-type anticommutation relation.

Equation (4) is nothing but the singular-value decomposition
of the matrix form Hc for the Majorana Hamiltonian (2)
with respect to the vectors a = (a1,a2, . . . ,aN ) and b =
(b1,b2, . . . ,bN ):

Hbulk = it

2
a Hc bT = it

2
a UT ϒcV bT , (5)

where ϒc is a diagonal matrix with singular values (ϒc)k,k′ =
εkδk,k′ , and the special orthogonal matrices correspond to
(U)k,j = uk,j and (V)k,j = vk,j with det[U] = det[V] = 1. If
there is a mode k0 satisfying εk0 = 0, Majorana fermions
a′

k0
and b′

k0
commute with the Hamiltonian, [a′

k0
,Hbulk] =

[b′
k0

,Hbulk] = 0. Combining this fact with the following re-
lation,

i

2
a′

k0
b′

k0
= d

†
k0

dk0 − 1

2
, (6)

corresponding to the number operator of the fermion defined
by dk0 = a′

k0
+ ib′

k0
, we can say that there is a zero-energy

fermion constructed by the two Majorana operators a′
k0

and
b′

k0
. This is thus an MZM.
At γ = 0, the condition for the MZM with εk0 = 0

corresponds to the following recursive equations:

uk0,j+2 = −	uk0,j and vk0,j+2 = −	−1vk0,j (7)

with 	 = (1 − λ)/(1 + λ) and boundary constraints

uk0,2 = uk0,N−1 = 0 and vk0,2 = vk0,N−1 = 0. (8)

In the N = 2n + 1 system (n ∈ N), there are always so-
lutions such as uk0,2i = 0 and uk0,2i+1 = (−	)iuk0,1 (i =
1,2, . . . ,n) with uk0,1 =

√
(1 − 	2)/(1 − 	2n+2), leading to

[a′
k0

,Hbulk] = 0. The presence of the solution is a consequence
of the Kramers doublet due to half-integer magnetization in
the odd-number N -site spin system.

If N is an even and finite number, there is no solution for
the MZM except for λ = ±1. For 	 �= 1, however, a coupling
energy exponentially decreases with increasing the system
size, leading to εk0 = 0. Therefore, we find solutions for the
MZM in the thermodynamical limit N → ∞ keeping N even.
In this case, the Majorana fermion a′

k0
localizes at one edge

and b′
k0

localizes at the other edge, because their amplitudes
uk0,j decrease if vk0,j increases with increasing j , and vice
versa. This MZM constructed by the Majorana fermions
localizing at the edges is important for exhibiting a nontrivial
topological number, i.e., Majorana number M = −1 defined
by the Pfaffian. Hereafter, we call the MZM constructed by a′

k0

(b′
k0

) the a-type (b-type) MZM and the phase characterized by
M = −1 the MZM phase.

Before discussing topological transition in our Hamilto-
nian, we explain the case for λ = 0, that is, a bond-alternating
isotropic XY spin chain. Finite bond alternation 0 < γ � 1
gives rise to a valance-bond solid in the ground state, where the
singlet is locally constructed on the bonds with larger exchange
interaction (1 + γ )t/2. This phase is smoothly connected to
that in the region of γ > 1, where the ground state is similar to
the Haldane state of the S = 1 one-dimensional spin system,
because neighboring bonds alternate between ferromagnetic
and antiferromagnetic ones. This state has topological order
defined by the local Berry phase, known as the symmetry-
protected topological phase [17], where the Majorana number
is trivial, M = 1. Therefore, our model has potential for phase
transition between the MZM phase and the Z2 topologically
ordered phase similar to the Haldane state.

III. TOPOLOGICAL PROPERTIES OF MAJORANA
FERMIONS

In this section, we discuss phase transition between the
MZM phase and the Z2 topologically ordered phase. We use
three techniques: recursive equation to obtain a solution of
the MZM, fidelity around the critical point, and Pfaffian for
the twisted boundary condition in each phase.
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A. Recursive equation

We start with the recursive equation analysis on the
topological transition [22]. Similar to the case of γ = 0,
the recursive equations for the MZM are obtained by the
singular-value decomposition as follows:

uk0,j+2 = −	
juk0,j and vk0,j+2 = −	−1
jvk0,j , (9)

where 
j = (1 − γ eiπj )/(1 + γ eiπj ) and boundary con-
straints are the same as Eq. (8). There are two pos-
sible modes for each type of MZM, i.e., an even-
site mode where uk0,2i−1 = 0 for the a-type MZM
(vk0,2i−1 = 0 for the b-type MZM) and an odd-site mode
where uk0,2i = 0 for the a-type MZM (vk0,2i = 0 for the
b-type MZM) with i = 1,2, . . . < (N − 1)/2.

If N is even, we impose a fixed-end boundary constraint on
the left (right) edge for the even-site (the odd-site) mode. In
this case, the Eqs. (9) give the following four cases, provided
that neither |	| = |
1| nor |	| = |
1|−1.

(1) |	| < min{|
1|,|
1|−1}. Since |	
1| < 1, we find two
solutions in the thermodynamical limit N → ∞: the odd-site
mode with uk0,2i+1 = (−	
1)iuk0,1 and the even-site mode
with vk0,N−2i = (−	
1)ivk0,N . Thus, the a-type and b-type
MZMs localize on the left and right edges, respectively.

(2) |
1| < |	| < |
1|−1. The number of solutions in this
case is not 2 but 4. The boundary constraints allow both even-
site and odd-site modes for each type of MZMs. Therefore,
there are both the a-type and b-type MZMs on both edges.

(3) |
1|−1 < |	| < |
1|. We cannot find any solution in
this case.

(4) |	| > max{|
1|,|
1|−1}. This case is opposite to case
1. Since |	−1
1| < 1, solutions in the thermodynamical limit
appear as the even-site mode with uk0,N−2i = (−	−1
1)iuk0,N

and the odd-site mode with vk0,2i+1 = (−	−1
1)ivk0,1. Thus,
the a-type and b-type MZMs appear on the right and left edges,
respectively.

The conditions for |	| and |
1| are determined by the
parameters λ and γ , since 	 = (1 − λ)/(1 + λ) and 
1 =
(1 + γ )/(1 − γ ). For example, case 1 corresponds to the
condition λ ∈ (λc1,λc2) with λc1 = min{|γ |,|γ |−1} and λc2 =
max{|γ |,|γ |−1}.

Figure 1 shows phase diagram for the γ -λ plane, where each
phase represents the corresponding case mentioned above as
indicated by the number in each phase. We note that this phase
diagram is an extended version of Ref. [18], i.e., we determine
phases in the region of |λ| > 1 and/or |γ | > 1 by extending
the region near |λ| = |γ | = 1 [23].

In Fig. 1, we find that the phase boundaries are composed
by not only |λ| = |γ | but |λ| = |γ |−1. The phase boundary
|λ| = |γ |−1 is understood by a global U(1) rotation of spins
belonging to a sublattice in the spin model (3). The reason is
as follows. For example, if we consider the region of λ > 1,
the local U(1) rotation around the x axis, Rx

j = exp [iπσ x
j /2],

changes the sign of the y (z) component of spin: −σ
y (z)
j =

Rx
j σ

y (z)
j (Rx

j )†. Therefore, the global U(1) rotation of odd sites
Rx = ∏

i Rx
2i−1 (i = 1,2, . . . � (N + 1)/2) changes only the

sign of σ
y

j σ
y

j+1 terms in Eq. (3), which means a duality
between two points locating at λ > 1 and 0 < λ < 1 in the
phase diagram. Similarly, the global rotation of odd bonds

-2
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2-2

1. L:R4. R:L
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γ
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3. R:R  (odd)

2. L:L  (odd)
LR:LR (even)

FIG. 1. Phase diagram of the Kitaev chain with bond alternation.
The solid line |λ| = |γ | and dashed line |λ| = |γ |−1 show the
phase boundary obtained by the recursive equation and the Pfaffian.
There are four phases that are distinguished by colored regions
corresponding to the four cases mentioned in the main text: green,
phase 1 (case 1); purple, phase 2 (case 2); red, phase 3 (case 3); and
blue, phase 4 (case 4). Letters such as “L:R” denote the positions of
the a-type and b-type MZMs, which are separated by a colon, i.e.,
“L:R” means that the a-type MZM is located on the left edge and
the b-type MZM is on the left edge. The term “odd” (“even”) in the
bracket denotes that N is odd (even). The phases without the bracket
give the same result; both cases of the odd and even number are the
same regardless of even or odd number. M is the Majorana number
obtained by the Pfaffian.

Rz = ∏
j Rz

j (j = 1,2,5,6,9,10, . . . � N ) maps the region of
γ > 1 to that of 0 < γ < 1.

Remarkably, we can see a reentrant phenomenon as the
pairing potential λ (the bond alternation γ ) increases with
fixed γ (λ): e.g., if we change the pairing potential λ from
−2.0 to 2.0 with fixed bond alternation γ = 0.75, we come
across four phase transitions and two reentrances to phase 3.
Phase 1 and phase 4 give M = −1 corresponding to the MZM
phase where the a-type MZM is located on one of the edges
while the b-type MZM is on the other edge. Phase 2 and phase
3 give M = 1, which corresponds to the Z2 topologically
ordered phase. If N is odd, an MZM always exists because
the boundary constraints are imposed on even-site modes.
However, the phase boundaries are the same as the case of
an even number of N .

B. Fidelity

To confirm the phase transition, we investigate fidelity
defined as

Fd(λ,γ ; δλ,δγ ) =
∑

j

∣∣uk0,j (λ,γ )uk0,j (λ + δλ,γ + δγ )
∣∣,
(10)

where uk0,j (λ,γ ) satisfies the recursive equation (9) for a given
bond alternation γ and pairing interaction λ, corresponding to
the a-type MZM. Here, we consider only finite-size systems
with an odd number of sites, because there is no solution
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FIG. 2. Amplitude of Majorana edge mode uk0,2i+1 (i =
0,1, . . . ,99) for fixed (a) γ = 0 and (b) γ = 0.75 in a N = 199 sites
system. Inset: Fidelity Fd(λ,γ ; δλ = 0.01,δγ = 0).

for MZMs in finite-size systems with even number. Since
uk0,j is considered as a wave vector of superposing real-space
Majorana fermions, the fidelity is expressed in the limit
δλ → 0 and δγ → 0 as

Fd(λ,γ ; δλ,δγ ) =
[

1 − 1

2

(
δλ

∂

∂λ
+ δγ

∂

∂γ

)]∑
j

∣∣uk0,j

∣∣2
.

(11)

If there is a MZM satisfying
∑

j |uk0,j |2 = 1, the fidelity goes
to unity. However, at the point where the MZM disappears, fi-
delity cannot be defined and shows discontinuity. Furthermore,
for small but finite values of δλ and δγ , fidelity sharply drops
at the point where the position of the MZM changes from one
edge to the other edge, because there is only a negligibly small
overlap between the two MZMs at the left and right edges.

Figure 2 shows uk0,j as a function j in the N = 199 chain.
At δγ = 0, uk0,j exhibits large amplitude near the left (right)
edge for λ = 0.1 (λ = −0.1) as shown in Fig. 2(a). This is
consistent with the behavior of uk0,j expected from the phase
diagram (Fig. 1). Changing λ from 0.1 to −0.1, we have
switching of the a-type MZM from the left to right edge at
λ = 0 where the drop of fidelity appears. This is clearly seen
in the inset of Fig. 2(a). In Fig. 2(b), uk0,j at γ = 0.75 is
shown. Since there are two boundaries at λ = 0.75 and 4/3
along the γ = 0.75 line in Fig. 1, the main amplitude of uk0,j

in Fig. 2(b) is located at the left (right) region for λ = 0.7 and
1.3 (λ = 0.8 and 1.4). The drop of fidelity at λ = γ = 0.75 in
the inset of Fig. 2(b) is similar to that at λ = γ = 0 because
the two points are on the same boundary. On the other hand,
the drop at λ = 4/3 comes from the different phase boundary
in Fig. 1.

C. Pfaffian

To clarify whether the phase transition corresponds to a
topological transition, we examine the Majorana number when
the twisted boundary condition is imposed. We assume that the
number of sites is even, because bond alternation cannot be
defined consistently in a ring with an odd number.

The twisted boundary condition is introduced by adding
boundary Hamiltonian

Hbound. = t(1 − γ eiπN )(eıφc
†
Nc1 + eıφλc

†
Nc

†
1 + H.c.), (12)

where φ is the phase of the twisted boundary. The full
Hamiltonian is rewritten by

Hbulk + Hbound. = it

4

∑
j,l

djhj,k(φ)dk, (13)

where d2j−1 = aj , d2j = bj . By using antisymmetric matrix
h(φ) = {hj,k(φ)} = −{hk,j (φ)} and the Pfaffian of h(φ), the
Majorana number is given by M = sgn{Pf[h(0)] × Pf[h(π )]}
[24,25]. The Pfaffian of antisymmetric 2n × 2n matrix A
generally reads

Pf[A] =
2n∑

k=2

(−1)kA1,kPf[A{1,k}], (14)

where A{1,k} is the 2(n − 1) × 2(n − 1) minor matrix of A
that is obtained by deleting the first and kth rows as well as
those columns. After performing a recursive procedure (see
Appendix A), we obtain the Pfaffian of the coupling matrix h
as follows:

Pf[h(φ)] = [(1 + γ )N + (1 − γ )N ](λ2 − 1)N/2

+ (1 − γ 2)N/2[(1 − λ)N + (1 + λ)N ] cos φ.

(15)

We thus obtain the Majorana number:

M = sgn
[(

1 + 
N
1

)2
(−	)N − (−
1)N (1 + 	N )2

]
. (16)

We can easily verify that the boundary where M changes from
1 (trivial) to −1 (nontrivial) corresponds to the phase boundary
in Fig. 1.

IV. BULK PROPERTIES OF SPINLESS FERMIONS

Next, we discuss bulk properties in our model: dispersion
relations of the quasiparticle and a string order of the Haldane
state.
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A. Dispersion relation and winding number

The momentum k representation of the Hamiltonian is given
by

Hbulk + Hbound.|φ=0 = t

2

∑
k

c†kHkck + const (17)

with

Hk =

⎛
⎜⎝

cos k iλ sin k iγ sin k λγ cos k

−iλ sin k − cos k −λγ cos k −iγ sin k

−iγ sin k −λγ cos k − cos k −iλ sin k

λγ cos k iγ sin k iλ sin k cos k

⎞
⎟⎠,

(18)

where we use the Nambu representation in the fermionic
vector space ck = (ck,c

†
−k,ck+π ,c

†
−k−π )T . The matrix Hk is

rewritten as a linear combination of direct products of the
Pauli matrices σ :

Hk = (σz ⊗ σz − λγ σy ⊗ σy) cos k

− (λσz ⊗ σy + γ σy ⊗ σz) sin k. (19)

In this formalism, we can obtain a block-diagonal matrix as
follows:

UkHkU†
k = [−(1 + λγ ) cos k σz + (λ + γ ) sin k σy]

⊕ [(1 − λγ ) cos k σz − (λ − γ ) sin k σy] (20)

with a unitary matrix

Uk = exp

[
i
π

4
σy ⊗ (2 − σx)

]
. (21)

Therefore, we find the eigenvalues ε±
1 and ε±

2 by diagonalizing
the submatrices:

ε±
1 = ±

√
(1 + λγ )2 + (λ + γ )2 + (λ2 − 1)(γ 2 − 1) cos(2k)

2
(22)

and

ε±
2 = ±

√
(1 − λγ )2 + (λ − γ )2 + (λ2 − 1)(γ 2 − 1) cos(2k)

2
.

(23)

If we consider positive values of λ and γ , it is enough to
discuss only ε±

2 to determine the bulk gap because |ε±
2 | < |ε±

1 |.
Therefore, the bulk gap closes at k = π

2 for λ = γ and at k = 0
for λ = γ −1. This implies that the two different boundaries in
Fig. 1 have different characteristics even in the momentum
space, where the bulk gap closes at the different momentum.

Furthermore, we can define a winding number in Eq. (20)
by mapping the Pauli matrices to the unit vectors (σy,σz) →
( ŷ,ẑ) [26]. This mapping gives an R2 ⊕ R2 representation
of the block-diagonalized Hamiltonian (20), that is, ex-
tended Anderson pseudovectors [26,27] obtained as v1 ⊕ v2
with v1 = −(1 + λγ ) cos k ẑ + (λ + γ ) sin k ŷ and v2 = (1 −
λγ ) cos k ẑ − (λ − γ ) sin k ŷ. Thus, the winding number is
defined by

nw = 1

2

∑
i=1,2

∮
k

d (arg vi)

2π
, (24)

where the integrated region is given by k ∈ [0,2π ], which is
consistent with the result in Ref. [18]. The Majorana number
is also given by the winding number M = cos (πnw), which is
consistent with the Majorana number obtained by the Pfaffian.

B. String order of the Haldane state

Finally, we investigate a string order of the Haldane state
as a topological order parameter in the bulk. As a natural
extension of the string order in an S = 1 Haldane chain,
we examine a correlation function of the string order as
follows:

Cstr(r) = 1

4

〈(
σ z

Lr
+ σ z

Lr+1

)⎛⎝ Rr−1∏
j=Lr+2

σ z
j

⎞
⎠(

σ z
Rr

+ σ z
Rr+1

)〉
,

(25)

where the left (right) site is defined by Lr = N/2 − r/2 +
θ (γ ) [Rr = N/2 + r/2 + θ (γ )] with the Heaviside step func-
tion θ (x). This correlation function is easily calculated for two
cases: (i) λ = 1,γ = 0 and (ii) λ = 0,γ = −1. Case i and case
ii correspond to the topological state (M = −1) with a MZM
and the topologically ordered state with a trivial Majorana
number M = 1, respectively. The ground state of case i is
given by a MPS representation:

|
±
(i)〉 = 2−N/2

⎛
⎝ N∏

j=1

e±c
†
j

⎞
⎠|0〉, (26)

where |0〉 denotes the vacuum, i.e., cj |0〉 = 0 for

an arbitrary j [28]. The relation 〈0|e±cj σj e
±c

†
j |0〉 =

〈0|[nj ± (cj + c
†
j )]|0〉 = 0 gives the trivial correlation func-

tion Cstr(r) = 0. On the other hand, the ground state of case ii
is a direct product of singlet states as follows:

|
(ii)〉 = 2−N/4

[
N/2∏
i=1

v
(L)
2i−1 · v

(R)
2i

]
|0〉, (27)

where the left and right vector operator are defined by
v

(L)
j = (c†j ,1) and v

(R)
j = (1, − c

†
j ), respectively. In this case,

the correlation function has a nonzero constant value Cstr(r) =
1/4. Figure 3 shows the correlation function of the string order
Cstr(r) with fixed γ = −0.75. This is numerically obtained by
variational MPS calculation for an N = 512 system [29,30].
In Fig. 3, we can see that the correlation function converses
to finite value with increasing the length r in the M = 1
phase, whereas it exponentially decreases in the topological
phase with an MZM (M = −1). Therefore, the M = 1 phase
corresponds to the Haldane state, where the nonzero string
order parameter emerges in the bulk.

V. SUMMARY

We theoretically study the effects of bond alternation on the
Kitaev chain, as an extension of preceding work [18]. Three
analytical approaches, the recursive equation of the MZM,
the fidelity of the MZM amplitude, and the Pfaffian of the
coupling matrix, are used to examine the phase transition
between the MZM phase and the Z2 topologically ordered
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FIG. 3. Correlation function of the string order for various λ with
fixed γ = −0.75.

phase. In the extended phase diagram, it is found that there are
two phase boundaries with a reentrant phenomenon, where the
bulk gap closes at different momenta. In addition, we find that
the phase transition is caused by switching the edge position
of MZMs, and we can distinguish the two phase transitions
with the Majorana number M obtained by the Pfaffian.
Several preceding studies have reported that the MZM is
robust against perturbations such as a repulsive interaction and
disorders [28,31–36], and thus the Kitaev model is expected
as a quantum memory [37,38], e.g., in a quantum nanowire
[39,40]. Consequently, our paper not only provides a simple
model bridging the bulk and edge topologies but also indicates
the possibility of the reentrant topological phase transition in
real systems [23,41].

Note added in proof. Recently, a paper [42] discussing
effects of interaction in our model was published.
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APPENDIX: CALCULATION OF THE PFAFFIAN

In this section, we perform the calculation of Pf[h(φ)]
where the 2N × 2N matrix h(φ) is antisymmetric hj,k(φ) =
−hk,j (φ). The elements of h(φ) in our model are given by

h2j−1,2j+2 = γj (1 − λ), h2j,2j+1 = −γj (1 + λ) (A1)

for j = 1, · · · ,N − 1, and at the boundary

h1,2N−1 = −γN (1 + λ) sin φ,

h2,2N = −γN (1 − λ) sin φ, (A2)

h2,2N−1 = −γN (1 − λ) cos φ,

h1,2N = γN (1 + λ) cos φ, (A3)

where γj = 1 − γ eiπj . Next, we consider the following
relation:

Pf[A] =
2n∑

k=2

(−1)kA1,kPf[A{1,k}] (A4)

where A{1,k} is the 2(n − 1) × 2(n − 1) minor matrix of A
that is obtained by deleting the first and kth rows, and those
columns. The first step of the expansion reads

Pf[h] = γ1(1 − λ)Pf[h{1,4}] + γN (1 + λ)Pf[h{1,2N−1}]

× sin φ + γN (1 + λ)Pf[h{1,2N}] cos φ. (A5)

In the same manner, we obtain

Pf[h{1,4}] = −γ1(1 + λ)Pf[h{1,2,3,4}] + γN (1 − λ)

× Pf[h{1,2,4,2N−1}] cos φ − γN (1 + λ)

× Pf[h{1,2,4,2N}] cos φ, (A6)

Pf[h{1,2N−1}] = −γ1(1 + λ)Pf[h{1,2,3,2N−1}]

− γN (1 − λ)Pf[h{1,2,2N−1,2N}] sin φ, (A7)

Pf[h{1,2N}] = −γ1(1 + λ)Pf[h{1,2,3,2N}]

− γN (1 − λ)Pf[h{1,2,2N−1,2N}] cos φ. (A8)

Here, it is noted that N is even and γ2j−1 = γ1, γ2j = γ2, so
that we obtain the following equations:

Pf[h{1,2,3,4}] = [ − γ 2
1 (1 − λ2)

]N/2−1
,

Pf[h{1,2,2N−1,2N}] = [ − γ 2
2 (1 − λ2)

]N/2−1
, (A9)

Pf[h{1,2,3,2N}] = [γ1γ2(1 + λ)2]N/2−1,

Pf[h{1,2,4,2N−1}] = [γ1γ2(1 − λ)2]N/2−1, (A10)

and Pf[h{1,2,3,2N−1}] = Pf[h{1,2,4,2N}] = 0. We use these equa-
tions in the expansion of the Pfaffian:

Pf[h{1,4}] = −γ1(1 + λ)
[ − γ 2

1 (1 − λ2)
]N/2−1

+ γ̄1(1 − λ)[γ1γ2(1 − λ)2]N/2−1 cos φ, (A11)

Pf[h{1,2N−1}] = −γ2(1 − λ)
[ − γ 2

2 (1 − λ2)
]N/2−1

sin φ,

(A12)

Pf[h{1,2N}] = −γ1(1 + λ)[γ1γ2(1 + λ)2]N/2−1

− γ2(1 − λ)
[ − γ 2

2 (1 − λ2)
]N/2−1

cos φ.

(A13)

We finally obtain

Pf[h] = [(1 + γ )N + (1 − γ )N ](λ2 − 1)N/2

+ (1 − γ 2)N/2[(1 − λ)N + (1 + λ)N ] cos φ.

(A14)
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