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Finite-size anomalies of the Drude weight: Role of symmetries and ensembles

R. J. Sánchez1 and V. K. Varma2,3,4,5

1Bethe Center for Theoretical Physics, Universität Bonn, Germany
2The Abdus Salam ICTP, Strada Costiera 11, 34151, Trieste, Italy

3Initiative for the Theoretical Sciences, The Graduate Center, CUNY, New York, New York 10016, USA
4Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA

5Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 18 May 2017; published 12 December 2017)

We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D

of the spin-1/2 XXZ chain using exact diagonalization to systematically analyze its dependence on system
symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we
find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies �̃MN = cos(πM/N ) with
N,M ∈ Z+ coprimes and N > M , provided system sizes L � 2N , for which states with different spin-inversion
signature become degenerate due to the underlying sl2 loop algebra symmetry. All these loop-algebra degenerate
states carry finite currents which we conjecture [based on data from the system sizes and anisotropies �̃MN (with
N < L/2) available to us] to dominate the grand-canonical ensemble evaluation of D in the thermodynamic
limit. Including a magnetic flux not only breaks spin-inversion in the zero magnetization sector but also lifts
the loop-algebra degeneracies in all symmetry sectors—this effect is more pertinent at smaller � due to the
larger contributions to D coming from the low-magnetization sectors which are more sensitive to the system’s
symmetries. Thus we generically find a finite D for fluxed rings and arbitrary 0 < � < 1 in both ensembles. In
contrast, at the isotropic point and in the gapped phase (� � 1) D is found to vanish in the thermodynamic limit,
independent of symmetry or ensemble. Our analysis demonstrates how convergence to the thermodynamic limit
within the gapless phase (� < 1) may be accelerated and the finite-size anomalies overcome: D extrapolates
nicely in the thermodynamic limit to either the recently computed lower bound or the thermodynamic Bethe
ansatz result provided both spin inversion is broken and the additional degeneracies at the �̃MN anisotropies are
lifted.
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I. INTRODUCTION

Ideal conduction is observed when the mean free path of
particles exceeds the sample size and no scattering events
occur. A key distinguishing feature between such ideal metals
and other metals or insulators is their response to external
dc fields: Unimpeded acceleration of particles in the former
produces a delta function in its conductivity with a certain
spectral weight D, the Drude weight. A particularly convenient
way to compute this quantity is through the response of the
system’s ground [1] or excited state [2–4] eigenfunctions to
twisted boundary conditions: Only ideal metals will produce
a finite response, D > 0, to such a perturbation. While such
ballistic transport is generically expected in integrable systems
[5], computing D even for simple models can often be done
only numerically [6–15].

In this paper we compute the spin stiffness or Drude
weight D for the paradigmatic integrable quantum Heisenberg
chain at high temperatures, for various combinations of the
conserved symmetries and ensembles chosen. The important
role of the model’s discrete and dynamical symmetries in
the numeric computation of D has been emphasized before
[6,8]. We were motivated to revisit this long-studied problem
due to certain inexplicable ensemble-dependent convergence
rates of the finite system data to the thermodynamic limit
found, for certain interaction strengths, in some of our own
personal calculations as well as those in previous literature
[7,9,11]; the details will be presented along the way. We
attempt to resolve these issues by systematically enlisting the

contributions of the current carrying states in each symmetry
sector. In so doing we find what ensemble and what system
symmetries (parity, spin-inversion, sl2-loop symmetry) best
help to achieve quickest convergence to the thermodynamic
limit and explicate why. We found this last point particularly
relevant and revelatory in light of the recent lower bounds
for the high-temperature spin Drude weight [16] and the
particle-based hydrodynamic result [17] reported for the XXZ

and related models.
At inverse temperature β, and in the absence of any singular

long-time behavior of the current-current correlation function
〈ĵ (t)ĵ (0)〉 and Meisner weight, the Drude weight D has the
spectral representation [4,8]

D(β) = πβ
∑

n

e−βEn

LZ

∑
m,Em=En

|〈n|ĵ |m〉|2, (1)

where Ei is the eigenvalue associated to the eigenstate |i〉 of the
L-site model and Z is the corresponding partition function. Let
us remark here that we have explicitly confirmed the absence
of any long-time plateau in the time-dependent component of
the autocorrelation function 〈ĵ (t)ĵ (0)〉 for the finite systems
we consider, which may arise from almost-degenerate states
ignored in the equation above. Equation (1) thus yields the
long-time asymptotic value of the current-current correlation
function.

In the following we shall numerically evaluate Eq. (1) for
the spin-1/2 XXZ chain in the high-temperature limit, where
the meaningful quantity is limβ→0 β−1D(β). Finite frequency
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transport anomalies in this system at high temperature is
reported elsewhere [18].

II. MODEL AND SYMMETRIES

The spin-1/2 XXZ model with anisotropy � � 0 and
exchange integral J , for a L-site spin chain with periodic
boundary conditions is described by the Hamiltonian

Ĥ =
L∑

j=1

J

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1) + � Ŝz

j Ŝ
z
j+1, (2)

where the ladder spin operators (Ŝ+
j Ŝ−

j+1 + Ŝ−
j Ŝ+

j+1) flip pairs
of spins at sites j,j + 1. The model is invariant under spin
rotations m̂z about the z axis, lattice translations T̂ and
two discrete symmetries, namely (i) spin-inversion Ẑ with
eigenvalues z = ±1, defined such that

Ẑ
∣∣Sz

1,S
z
2, . . . , S

z
L

〉 = ∣∣ − Sz
1, − Sz

2, . . . , − Sz
L

〉
, (3)

where |Sz
1,S

z
2, ..., S

z
L〉 labels the spin configurations of the

chain and (ii) space reflection or parity P̂ , with eigenvalues
p = ±1, defined as

P̂
∣∣Sz

1,S
z
2, . . . , S

z
L

〉 = ∣∣Sz
L,Sz

L−1, . . . , S
z
1

〉
. (4)

Given that m̂z commutes with T̂ , these two symmetry
operations can be used to block diagonalize Eq. (2). The
resulting eigenstates can then be labeled by both the total
magnetization mz and the total crystal momentum K . On the
other hand, the discrete symmetries can only be used for block
diagonalization in specific subsectors [19]: (i) Ẑ commutes
with both P̂ and T̂ but only does so with m̂z in the sector with
zero total magnetization; (ii) P̂ commutes with m̂z but does
so with T̂ only in the subsectors with zero and π total crystal
momentum.

Besides this set of symmetry operations, the periodic XXZ

chain has additional symmetries at the dense set of commensu-
rate “roots of unity” anisotropies �̃MN = cos(πM/N ), with
N,M ∈ Z+ coprimes and N > M , for which there exists a
large class of zero-energy N -particle “excitations” [20,21],
in the language of Ref. [21]. These excitations give rise to
degeneracies between a parent state with mz = mmax

z and states
with mz = mmax

z − l N , where 0 � l � 2mmax
z /N . Deguchi

et al. [20] numerically studied these degeneracies and found
the corresponding multiplets have multiplicity(

2 mmax
z /N

l

)
, (5)

in the commensurable case mz = 0 (mod N ), and(
2
[
mmax

z /N
] + α

l

)
, (6)

in the incommensurable case mz �= 0 (mod N ), where [x] is
the greatest integer contained in x, and α = 0,1 or 2. In
particular, the degeneracies in the commensurable case were
related to the sl2-loop algebra [20], whose generators commute
with the XXZ Hamiltonian at roots of unity when mz =
0 (mod N ). However, the incommensurable sectors do not
have this symmetry. We shall refer to the quantum symmetry
in the full Hilbert space by �.
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FIG. 1. XXZ 20-site chain level-spacing distribution for states
within the sector of zero total magnetization for two different
anisotropies. The distribution is averaged over each spin-inversion
sector z, for every crystal momentum, as well as over parities for
K = {0,π}. Note the peak at δE = 0 for � = 0.5 signaling the
presence of additional degeneracies.

The additional degeneracies in the system at these special
�̃MN points can be readily verified by inspecting the level
spacing distribution [22]. Indeed, being an integrable model
(i.e., exactly solvable by Bethe ansatz) the XXZ chain has a
macroscopic number of conserved quantities which allow us to
fully diagonalize the Hamiltonian. The spacing distribution of
the resulting eigenvalues follows a Poisson distribution [23].
In contrast, as shown in Fig. 1, at the commensurate anisotropy
� = �̃1,3 = 1/2 the level spacing distribution deviates from
the Poisson distribution and displays a small peak at δE = 0,
signaling the presence of additional degeneracies.

We compute the spin stiffness (or Drude weight in the
equivalent fermionic picture) of the XXZ model through
Eq. (1). The “z” component of the current operator entering
this equation is given by

ĵ z =
L∑

j=1

i
J

2
(Ŝ+

j Ŝ−
j+1 − Ŝ−

j Ŝ+
j+1), (7)

and it is odd under parity and spin inversion, and even
under translations and spin rotations, i.e., Ôĵ zÔ = η jz, where
η = −1 for Ô = P̂ , Ẑ and η = 1 for Ô = T̂ , m̂z. Hence ĵ z

connects states with the same magnetization mz and total
crystal momentum K but with opposite parities z and p.

Finally, to study the role of the discrete symmetries in
the evaluation of Eq. (1), we break them using an irrational
magnetic flux. The effect of threading the periodic spin chain
with such a flux φ (we chose φ = √

2) is incorporated by
gauging it into the spin-ladder operators via the usual Peierls
substitution Ŝ±

j → e±iφj/LŜ±
j . Thus the flux parameter φ enters

both Eqs. (2) and (7). We shall find the presence of the flux
also lifts every �-related degeneracy, as we will expatiate more
fully in the next section.
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TABLE I. Current carrying states for blocks with fixed K and
mz, depending on the presence of spin-inversion Ẑ, parity P̂ , and
quantum � symmetries.

Symmetry Current carrying states

Ẑ, P̂ and � Degenerate multiplets
from � symmetry only.Ẑ and �

P̂ and � All pairwise degenerate
states of different parity,
including � multiplets.

Ẑ and P̂ None.
Ẑ

P̂ All pairwise degenerate
states of different parity.

� Every state, including the
additional degenerate �

multiplets.

None All states.

III. RESULTS

The numerical evaluation of Eq. (1) may be performed
either in the canonical or grand canonical ensemble. In the
former case we sum over eigenstates with a fixed total
magnetization mz, whereas in the latter the summation includes
eigenstates from all the different magnetization sectors. In
what follows we consider only spin chains with even L.

Let us start by summarizing a couple of empirical ob-
servations regarding the many-body states connected by the
current operator (7) when the Drude weight is evaluated within
the canonical ensemble. We shall see that when parity and
spin-inversion symmetries are broken, as, e.g., in symmetry
blocks with mz �= 0 and K �= {0, π}, or in the presence of the
flux φ, all nondegenerate eigenstates of Eq. (2) carry finite
currents. In particular, and for arbitrary anisotropy �, the
main contribution to the spin Drude weight comes precisely
from these nondegenerate eigenstates. In contrast, at roots of
unity anisotropies �̃MN , and in the absence of a flux, we shall
find evidence indicating that the set of degenerate eigenstates
associated with the � quantum symmetry give the dominant
contribution to D in the thermodynamic limit, and these are
the only current carrying states if spin-inversion symmetry is
present. Table I recaps the main points we discuss below.

A. Current carrying states

Let us now describe the contribution from various current
carrying states in the different magnetization sectors to D and
the influence of the flux on these contributions.

(i) mz = 0 sector: due to the discrete symmetries present in
this subsector, and to spin current being odd under their action,
only matrix elements from degenerate states of the form

〈m,K,z|ĵ z| − z,K,n〉, with K �= {0,π}
or

〈m,K,z,p|ĵ z| − p, − z,K,n〉, with K = {0,π},
and En = Em contribute to the Drude weight, Eq. (1).

TABLE II. Number of degenerate states in the sector of zero total
magnetization, for different system sizes and two anisotropy values.
Note how the first two degenerate states due to the � symmetry appear
at L = 2N = 12.

L deg(� = 0.25) deg(� = �̃1,6)

8 4 4
10 20 20
12 96 98
14 364 392
16 1364 1592

For anisotropy values different from �̃MN we find de-
generate states only within the sectors of K = {0,π}. These
states belong to different parity sectors but have the same
spin-inversion signature and hence are not connected by the
current operator. Therefore, there is no net current for any L

and the Drude weight vanishes exactly in the sector of zero
total magnetization. Note that at the isotropic point (� = 1)
the SU (2) symmetry was exploited to show explicitly that
D = 0 for any β [24].

For � = �̃MN , on the other hand, we find degenerate states
due to the additional quantum symmetry only for chains of size

L � Lmin ≡ 2N, (8)

the number of which rapidly increases with system size.
Indeed, the spectral degeneracies related to the � symmetry
are split between sectors of mz = 0 (mod N ) [20]. These have
multiplicities given by Eq. (5), which implies the existence of
�-degenerate states within sectors of fixed magnetization. For
instance, one can choose mmax

z = N and thus find the symmetry
sectors with magnetization mz = N − lN with 0 � l � 2 to
be degenerated. The smallest possible �-degenerate subspace
within a magnetization sector mz = 0 (mod N ) has dimension
2. It immediately follows that for system sizes L = Lmin = 2N

one should find the first pair of �-degenerate states within the
mz = 0 sector. Such a pair is degenerated with the parent state,
which has all spins up and magnetization mz = N .

We have checked numerically that this is indeed the case:
Consider the number of degenerate states within the zero
magnetization sector for the two anisotropies � = 0.25 and
� = �̃1,6, as shown in Table II. For L = 12 and � = �̃1,6

we find as expected the first two �-degenerate states. Their
common eigenvalue equals the eigenvalue of the mz = 6
(=N ) state, i.e., their parent state. For L = 14 the mz = 6
sector has 14 nondegenerate states. At � = �̃1,6 each of
these states becomes degenerated with two zero-magnetization
states—hence the 28 additional degenerate states within the
mz = 0 sector we observed when diagonalizing the model
(Table II). Likewise for L = 16 the mz = 6 sector has 113
nondegenerate and 7 degenerate states. Each of these 120
states is degenerated with two zero-magnetization states at
� = �̃1,6 resulting in 240 �-degenerate states. Yet we only
see 228 additional degenerate states in Table II; disagreements
like this are only apparent and are found every time the parent
sector shows some degeneracy [25].

Most importantly, these �-degenerate states are arranged
in pairs with opposite spin-inversion signature (as well as
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opposite parity within the K = 0,π sectors), and all of them
are found to carry finite currents. Hence �-degenerate states
alone, occurring only at the dense set of anisotropies �̃MN , are
responsible for the finite Drude weight at zero-magnetization
densities in a canonical ensemble calculation.

(ii) mz �= 0 sector: In the sectors of finite total magnetization
there is no spin-inversion symmetry and hence every state
potentially carries a current. The relevant matrix elements now
are

〈m,K|ĵ z|K,n〉, with K �= {0,π}
or

〈m,K,p|ĵ z| − p,K,n〉, with K = {0,π},
with En = Em. For � �= �̃MN and K = {0,π} we find
pairwise degenerate states of opposite parity, each of which
are connected through the spin current operator. The rest
of the K subsectors have no degeneracies, and all of their
(nondegenerate) states are found to carry finite currents.
Since all K sectors are about the same dimension, it follows
that nondegenerate current-carrying states yield the dominant
contribution to the Drude weight—an observation which has
been made before [8]. For � = �̃MN one finds additional
degeneracies in all K subsectors, the number of which rapidly
increases with system size. Furthermore, all of these additional
degenerate states are found to be connected by the spin current
operator.

Remarkably, from the system sizes and anisotropies �̃MN

(with N < L/2) available to us, �-degenerate states turn out
to give the dominant contribution to the Drude weight in the
thermodynamic limit when summing over all magnetization
sectors—see the discussion in Sec. III B and Fig. 3. These
observations, together with the fact that only �-degenerate
states contribute to D in the sector of zero total magnetization,
hint at the fundamental role of these degenerate states in
determining the transport properties of the infinite system.

(iii) mz = 0 sector and finite magnetic flux: If � �= �̃MN

and K = {0,π} we find the same number of degenerate states
as for the nonfluxed model. In this case however, since
parity and spin inversion are broken, degenerate states are
only connected to themselves (i.e., m = n) by the current
operator, and give, together with the nondegenerate states,
finite contributions to the summation in Eq. (1). For all the
other momenta one finds that all states are nondegenerate
and carry finite currents. Summarizing, the relevant matrix
elements in this case are

〈m,K|ĵ z|K,n〉 δmn.

Now if � = �̃MN we find the presence of the flux lifts all
the extra degeneracies coming from the additional quantum
symmetry. Hence, in sharp contrast to the nonfluxed cases,
the spin Drude weight does not have singular contributions at
any special set of anisotropies and thus is found to be finite
within the entire gapless phase. This suggests D might be
a continuous function of � when the model is pierced by a
magnetic flux on a finite ring.

(iv) mz �= 0 sector and finite magnetic flux: In this case we
find no degenerate state in any of the symmetry subsectors and
that all the (nondegenerate) states therein carry finite currents

regardless of �. All contributing matrix elements, within any
K sector, are therefore of the form

〈m,K|ĵ z|K,n〉 δmn.

B. Drude weights anomalies: symmetries and ensemble

We present infinite temperature Drude weight results in
Fig. 2, evaluated within the grand canonical (GCE) and
canonical ensemble (CE) in the mz = 0 sector, both with and
without a flux, for even-length chains of size L = 6–18. We
also show a second order (1/L)-polynomial fit to the data
points of L = 10–18 to guide the eye.

Per usual statistical mechanics GCE and CE should be
equivalent in the thermodynamic limit, especially if the
quantity measured is a meaningful one in this limit [26]. We
will find that although in the gapped phase D quickly becomes
independent of both ensemble and symmetries as L increases,
in the gapless phase the presence of spin-inversion symmetry
makes convergence towards the thermodynamic limit remark-
ably slow, depending on how fast the � degeneracies start
showing up upon increasing system size.

1. Gapless phase

For � < 1 it is rigorously known that the high temperature
transport is ballistic [27], i.e., D > 0 in any magnetization
sector, especially the zero magnetization sector where usual
local conserved quantities alone (together with Mazur’s in-
equalities) do not settle the issue. However computing the
actual value of D is a different matter, with D lower-bounded
more strictly recently [16], and even claimed to be exactly
computable [17]. The explicit expression for the bound at the
�̃MN points reads

β−1D � π

8

sin2(πM/N )

sin2(π/N )

(
1 − N

2π
sin(2π/N )

)
, (9)

which agrees with the thermodynamic Bethe ansatz (TBA)
result [9,28,29]

β−1D = π
γ − sin (2γ )/2

8γ
, (10)

with γ = cos−1 �, at the anisotropies �̃1N .
In the top panels of Fig. 2 we show the finite size data

for β−1D as a function of system size in the gapless phase,
for the two anisotropies � = �̃13,31 and �̃1,3. In both cases
we note (i) D always extrapolates in the thermodynamic limit
to a finite value O(1) and (ii) the fluxed cases, for finite L,
always gives larger D values. The second point is analogous
to the observation that in the GCE odd-length chains have
larger D values than even-length chains [7]. The reason behind
such a difference lies mainly in the presence/absence of spin-
inversion symmetry (for odd-length chains spin inversion is
always broken). Indeed, as pointed out above, in the absence
of spin inversion all eigenstates, whether degenerate or not, of
the XXZ Hamiltonian are connected by the current and give a
finite contribution to D. If the states have a definite z signature,
in contrast, many of the eigenstates of H , as, e.g., all states
with mz = 0 for � �= �̃MN , carry no current. Hence, for finite
systems D assumes greater values in the GCE for either fluxed
or odd-length periodic chains.
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FIG. 2. Finite size scaling of the Drude weight for different values of the anisotropy �, calculated within both canonical (CE) and grand
canonical ensemble (GCE), and in the presence and absence of a magnetic flux. The CE computations are carried out for states with zero total
magnetization. Symbol coding: � GCE with flux, � GCE without flux, � CE with flux, and � CE without flux. The dashed lines correspond
to second order polynomial fits and are to be taken as a guide to the eye. Top panels show results for the gapless phase, with the crosses
representing exact results in the thermodynamic limit [16,17], and the type of current carrying states that contribute to the finite-L D values
labeled as nondegenerate (NDg), degenerate (Dg), and �-degenerate states (Dg�); the dominant contributor is highlighted in bold. Bottom
panels show results for � � 1, consistent with vanishing Drude weight for L → ∞, independent of ensemble or symmetry.

Let us focus on � = �̃1,3 = 0.5 first. We see that inde-
pendent of keeping or breaking the discrete symmetries and
the type of ensemble chosen, the Drude weight values always
agree with one another, even for moderately small L ≈ 18.
Pivotally, they tend to extrapolate to the same value in the
thermodynamic limit which is in good agreement with the
lower bound (9)—marked with a cross in the figure.

For the second case � = �̃13,31 ≈ 0.25 the results seem
generally the same but distinctly different in one aspect: The
finite-size data for the GCE without flux seems to extrapolate
to a different thermodynamic limit from the fluxed GCE or
CE cases. The latter two here tend to extrapolate to the same
thermodynamic limit in good agreement with the lower bound,
Eq. (9). Note also the CE nonfluxed data is absent, for it is
exactly zero at these system sizes. We understand the source
of the discrepancy between nonfluxed GCE/CE and fluxed
GCE/CE—as well as to theoretical predictions—as follows:
We know from the previous section that for � = �̃13,31 the
degeneracies due to the � symmetry start showing up for spin
chains of length L � 2 × 31 = 62. We also know that these

degenerate states, the number of which rapidly increases with
system size, carry finite currents and thus should play some
role in determining the thermodynamic limit of D. In fact
only these states contribute to D in the zero magnetization
sector, whereas they give the largest contribution to the GCE
calculation of D in the thermodynamic limit. To illustrate this
last point we computed, within the nonfluxed GCE, ratios
between the contributions to Eq. (1) from nondegenerate
(degenerate) states and the total Drude weight, labeled with
filled (empty) symbols in Fig. 3, as a function of system size.
The squares corresponds to data for � = �̃1,3 and clearly
show that the contribution from degenerate states quickly
starts dominating the Drude weight upon increasing system
size. In fact � degeneracies are already present for chains of
length L � 6, and these increase from 2 for L = 6 to more
than 36 794 current-carrying states for L = 18 in the zero
magnetization sector alone, which amounts to more than 75%
of the total number of states within that sector. The subsequent
dominance of degenerate � states over nondegenerate states
thus explains why, in the top panels of Fig. 2, both nonfluxed
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FIG. 3. Nonfluxed GCE ratios of the contribution to the Drude
weight coming from degenerate/nondegenerate states only D(dg,ndg)
to the total Drude weight D (i.e., including both degenerate
and nondegenerate states). Filled (empty) symbols correspond to
nondegenerate (degenerate) contributions. Squares indicate data for
� = �̃1,3, circles for � = �̃2,5, and triangles for � = 0.25. Triangles
also correspond to any other incommensurate value or commensurate
value with N > L/2, as, e.g., �̃13,31 ≈ 0.25. The dashed lines are
second order polynomial fits included to guide the eye.

GCE and CE data approach the lower bound from below
upon increasing system size. In contrast the triangles in
Fig. 3, which correspond to the incommensurate anisotropy
� = 0.25, display a completely different behavior, namely
nondegenerate states always dominate the GCE calculation of
the Drude weight.

Remarkably, data points for other � �= �̃MN or �̃MN with
L < 2N (as, e.g., �̃13,31)—that is, data points with no �

symmetry—are found to overlap with the triangles in Fig. 3.
Indeed the circles in this same figure, which label data for
�̃2,5, overlap with the triangles for L < 2N = 10 whereas
for L � 2N = 10 the contribution from the � degeneracies
becomes finite and increases its relative weight in D with
increasing system size—clearly, the actual contribution of the
�-degenerate states is simply the difference between circles
(or squares for �̃1,3) and triangles. Therefore, finite spin chains
with no � symmetry display the same ratio of the Drude weight
computed from nondegenerate states to the total Drude weight,
regardless of the anisotropy.

One can thus firmly speculate that (i) in order to see the
GCE/CE nonfluxed data for �̃13,31 extrapolate to the exact
result in Fig. 2, the current-carrying �-degenerate states need
to be taken into account, which amounts to considering chains
of length L > 64, and that (ii) these states are precisely the
ones contributing to the Drude weight in the thermodynamic
limit. Unfortunately, system sizes as L > 64 are out of the
question when all exact eigenstates are needed. Nevertheless
these observations do suggest the fundamental role played by
�-degenerate states in contributing to the thermodynamic spin
Drude weight. This is particularly clear from the nonfluxed
CE results for �̃1,3 which agree in the thermodynamic limit
with Eq. (9) and for which we know only �-degenerate states
contribute. The reader will find additional data for different
�̃MN points supporting this claim in the Appendix.

We close this subsection with the following open questions
and remarks: First, consider � = 0.25 for which the �

symmetry is not present. For the system sizes considered
here the absolute value of the difference DL[� = 0.25] −
DL[�̃13,31] is always of the order of 10−4 or less, and so
the data for � = 0.25 is indistinguishable (not shown) from
that plotted in the top-left panel of Fig. 2. Due to the absence
of the � symmetry, however, the Drude weight computed
within the nonfluxed CE vanishes for all L. We may then
ask whether D computed within the nonfluxed GCE will
actually extrapolate to zero in the thermodynamic limit at
exactly � = 0.25, as well as at any other � �= �̃MN , as to
agree with the canonical ensemble result. Second, we noted
above that in the presence of a flux all �-related degeneracies
are lifted. In such cases no slow convergence is found for
any anisotropy and both CE and GCE fluxed data always
extrapolate to the same finite value in the thermodynamic
limit. This seems to imply D is a continuous function of
� in the presence of a flux. Third, we have noticed that
upon increasing the anisotropy, the contribution to the Drude
weight from the symmetry sectors of larger magnetization
densities slowly start dominating the summation in Eq. (1),
as exemplified by Fig. 4 for � = 1.5 (top panel), whereas the
trend is exactly the opposite for the smaller anisotropy � = 0.5
(bottom panel). This makes the nonfluxed GCE computation
for large � less susceptible to the physics of the zero and
low magnetization sectors and hence to the symmetry-related
anomalies. In fact, we have carried out computations for the
large anisotropies �̃1,6 ≈ 0.87 and �̃1,8 ≈ 0.92 and confirmed
that, even when the current-carrying �-degenerated states
have yet to appear, the nonfluxed GCE data extrapolates
to the same thermodynamic limit as the fluxed GCE and
CE data (see, e.g., the lower left panel in Fig. 6 in the
Appendix).

2. Isotropic point and gapped phase

Away from the gapless phase the high-temperature Drude
weight is known to vanish, as follows from the spin-reversal
invariance of the thermodynamic macrostates sustained by
the system at these anisotropies [17] and as predicted from
numeric simulations [7,30–32]. We confirm this picture holds
for GCE and CE, again with and without a flux, in the bottom
panels of Fig. 2.

For � � 1 the � symmetry is absent [20,21] and the non-
fluxed CE data with mz = 0 case gives once more identically
zero D due to spin inversion (and hence it is not shown).
Accordingly, the fluxed GCE results, which include finite
contributions from the zero magnetization sector, are above
the nonfluxed ones.

The main difference one notes here, in contrast to the two
gapless points from above, is that the fluxed CE D values
are lower than those for the GCE (both with and without
a flux). This is so because, as already mentioned, for these
anisotropies and available system sizes, the contributions
from the symmetry sectors of finite magnetization densities
dominate the summation in Eq. (1) (see Fig. 4). The GCE
results thus show less dependence on flux, and hence on Ẑ and
P̂ upon increasing �, as was already seen in Fig. 2.
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FIG. 4. Finite size scaling of the Drude weight in the canonical
ensemble for two � values, calculated in the presence (full symbols)
and absence (empty symbols) of a magnetic flux, for different
magnetization sectors. Crosses indicate mz = 0 values in the presence
of a flux. As mz and L increase the effect of flux disappears for
both anisotropies; note however that for larger � the mz = 0 states
contribute the least, whereas it is the opposite for smaller �. This
explains why, when the weighted average is taken, mz = 0 CE data is
above (below) the GCE data as seen in the upper (lower) right panel
of Fig. 2 for these two anisotropies. Note that our D computation is
for fixed mz (rather than mz/L) and hence the tendency to extrapolate
to zero, as well as the nonmonotonicity at large L seen in the top
figure.

C. Extrapolation anomalies within the gapless phase

Despite seemingly good convergence of the numerical
results to the lower bound of Ref. [16] when all symmetries
are broken—that is, in the presence of the flux—we will now
see that there are caveats.

Herbrych et al. [9] found that for anisotropies � > 0.5 the
Drude weight generically scales as 1/L and extrapolates to
the TBA result, Eq. (10). This result is intriguing for we know
Eq. (10) is only valid at the set of anisotropies �̃1,N , and so
one expects, from our previous analysis as well as the results
in Ref. [16], D at �̃MN might generically extrapolate to Eq. (9)
instead. They also pointed out that for some anisotropies � <

0.5, the Drude weight does not scale as 1/L due to finite-
size low-frequency contributions in the regular part of the
Kubo conductivity, which lead to a finite correction δD in the

thermodynamic limit. It was found, in particular, that when
such a correction was not taken into account, the Drude weight
data did not extrapolate to Eq. (10).

We complement these observations by reporting that, for
a set of anisotropies in the region (� < 0.5) where the low-
frequency anomalies were found, and if no correction δD is
considered, D for fluxed rings extrapolates to the lower bound,
Eq. (9), as was already seen in the top left panel of Fig. 2 for
�̃13,31 ≈ 0.25. The center panel of Fig. 5 showing results for
�̃3,7 ≈ 0.22 together with the additional data set �̃4,9 ≈ 0.17,
�̃2,5 ≈ 0.31, and �̃3,8 ≈ 0.38 in the Appendix further support
this observation.

Interestingly enough, as shown in the left and right panels
of Fig. 5, when approaching either the point �̃1,2 = 0 or
�̃1,3 = 0.5 the finite-size data extrapolates instead to the TBA
solution, Eq. (10). Additional calculations at commensurate
anisotropies �̃ ≈ 0.1 and �̃ ≈ 0.4 seem to extrapolate to
D values lying in between Eq. (10) and the lower bound.
Such a crossover between these two analytic results must be a
finite-size effect.

At the moment we are unable to theoretically account for the
convergence to these two distinct results, apart from highlight-
ing that the low-frequency anomalies of Ref. [9] seem to vanish
when close to the points �̃1,2 and �̃1,3, i.e., precisely when the
data extrapolates to Eq. (10). We have also run simulations for
different �̃MN > 0.5 in order to further compare our results
with those of Ref. [9]. However our naive extrapolation does
not allow us to clearly discern whether the data extrapolates to
Eq. (10) or to the lower bound, because the numerical values
of these two results start getting closer upon increasing �.

IV. SUMMARY AND DISCUSSION

We studied the influence of symmetries—namely parity,
spin-inversion, and � symmetries—and ensemble (canonical
or grand canonical) on the high temperature spin Drude weight
in the anisotropic XXZ chain. Introducing a flux provides a
convenient way to break these symmetries and to study their
effect upon the numeric evaluation of the Drude weight.

At arbitrary (incommensurate) anisotropies, for which the
� symmetry is absent, we found that the dominant contribution
to the (finite-size) Drude weight comes from nondegenerate
states. In particular, we found that degenerate states do not
carry any current in the presence of spin inversion symmetry.
The latter observation allowed us to identify the finite-size
discrepancies between GCE computations for even- and odd-
length chains reported in the literature as a consequence of the
absence/presence of spin-inversion symmetry in the model.

In contrast, at commensurate “roots of unity” anisotropies
� = cos(πM/N ) with N , M ∈ Z+ coprimes and N > M ,
additional degeneracies associated to the underlying � sym-
metry start showing up for system sizes L � 2N , where
N can be large depending on the anisotropy. Remarkably,
from the system sizes and commensurate anisotropies (with
N < L/2) available to us, we find these degenerate states—the
number of which rapidly increases with system size—give the
dominant contribution to D in the thermodynamic limit, and
these are the only current-carrying states if spin inversion is
present. Thus, in the canonical ensemble and for states with
zero total magnetization, D is only finite at the dense set of
commensurate anisotropies �̃MN for L � 2N . These findings
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FIG. 5. Finite size scaling of the Drude weight computed in both fluxed CE (�) and GCE (�) within the gapless phase. The crosses
represent the exact lower bound results, Eq. (9), and the stars the thermodynamic Bethe ansatz results, Eq. (10).

seem to support the recently found (fractal) structure of D

within the gapless phase of the model. It remains an interesting
open question how to reconcile the observed relevance of
�-degenerate eigenstates of the model in contributing to
the thermodynamic Drude weight and the thermodynamic
Bethe ansatz calculation, i.e., the classification of the model’s
eigenstates into high-weight and descendant states of, e.g., the
sl2-loop symmetry (regular Bethe eigenvectors of the XXZ

model at roots of unity have been shown to be highest weight
vectors of the sl2-loop algebra in some restricted mz sectors
[33]). We leave this classification for future work.

In the presence of a flux spin inversion is broken and the �

degeneracies were found to be lifted. In this case the spin Drude
weight does not have singular contributions at any special
set of anisotropies, which suggests D might be a continuous
function of � when the model is pierced by a magnetic flux on
a finite ring. We found that within the gapless phase (� < 1)

the finite-size Drude weight extrapolates to either the recently
computed lower bounds or to the TBA solution, Eq. (10),
independent of the ensemble used. In particular, convergence
towards Eq. (10) is found whenever the previously reported
low-frequency anomalies [9] are absent. We confirm absence
of ballistic transport for � � 1, both in the grand canonical
ensemble and the zero magnetization sector, with or without
the discrete symmetries preserved.

Finally, we remark that with increasing anisotropy the
contribution to the Drude peak from the zero magnetization
sector goes from being the most dominant to the least
dominant. Given that only this magnetization sector is
affected by spin-inversion symmetry, the role of the latter
decreases with increasing the anisotropy in a grand canonical
ensemble calculation.

These zero-frequency anomalies show up, in addition to
new ones, in the corresponding finite-frequency and finite-
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FIG. 6. Finite size scaling of the Drude weight for additional commensurate anisotropies �̃MN , ordered by decreasing N and computed
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momentum response functions too, and will therefore be
directly relevant to experimental probes. This is reported in
a follow-up work [18].
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APPENDIX: GAPLESS PHASE: ADDITIONAL
DATA POINTS

Figure 6 shows the finite size scaling of the spin
Drude weight for additional commensurate anisotropies �̃MN ,

computed within both canonical (CE) and grand canonical en-
semble (GCE), and in the presence and absence of a magnetic
flux. The panels are ordered by decreasing N , or equivalently
by the increasing number of system sizes with the � symmetry
(i.e., the L > 2N limit). The vertical red lines mark the
system size L = 2N for which the first pair of � degeneracies
shows up.

Two points are noteworthy: First, note how when decreasing
N convergence of nonfluxed CE and GCE data improves.
This follows because the number of current-carrying � states
increases with our available system sizes, i.e., as the number
of data points on the left of the vertical red line increases, it
becomes conspicuous that the effect of the ensemble under
consideration becomes less vital. Second, note how all the
fluxed data sets extrapolate well to the lower bound, Eq. (9),
marked with a cross in the figure. These additional results
support our claim in the main text that for �̃MN < 0.5 the
finite-size data for fluxed chains generically extrapolates to
the lower bound.
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