
PHYSICAL REVIEW B 96, 245116 (2017)

Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

Hoi Chun Po,1,2 Lukasz Fidkowski,3,4 Ashvin Vishwanath,1,2 and Andrew C. Potter5

1Department of Physics, University of California, Berkeley, California 94720, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

5Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
(Received 27 April 2017; published 12 December 2017)

We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic
driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels
that propagate a quantized fractional number of qubits along the sample edge during each driving period. These
phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical
phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these
phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring
the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with
these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and
bulk “anyon time-crystal” order characterized by dynamical transmutation of electric-charge into magnetic-flux
excitations in the bulk.
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I. INTRODUCTION

Time periodic driving serves not only as a powerful tool to
engineer effective Hamiltonians [1–3], but also as a means to
produce intrinsically dynamical topological phases that do not
exist in the static limit [4–13]. Namely, by subjecting a system
to a local time-dependent Hamiltonian H (t) = H (t + T ) with
period T , one can realize anomalous edge dynamics that
cannot be implemented by any local Hamiltonian acting
only near the edge. This opens the door to new methods
for coherently manipulating quantum dynamics that would
otherwise be impossible in a lower-dimensional system.

Striking examples include rational chiral Floquet (CF)
phases [6,11,13] whose edges form chiral quantum channels
that unidirectionally pump discrete packets of quantum in-
formation during each drive period. These phases arise in
2D systems whose bulk dynamics are trivial, U (T )bulk ≈ 1,
so that all of the action of U (T ) occurs in a quasi-1D
strip around the sample edge. Such locality preserving 1D
time-evolution operators is exhaustively characterized by a
topological invariant ν = ln r , where r is a rational fraction that
measures the ratio of quantum information being transferred
to the right versus that to the left across any point in the
system boundary [14]. In a purely 1D system (i.e., one that is
not the edge of a 2D system), one can always consider open
boundary conditions, in which case, there must be an exact
balance of quantum state flow, r = 1, so that states cannot pile
up or be depleted from the ends of the system (otherwise, the
quantum dynamics cannot respect both unitarity and locality).
However, the boundary of a 2D system forms a closed loop,
which allows it to evade this restriction and realize any rational
index, ν = ln r [11]. Such rational CF phases are, loosely
speaking, dynamical analogs of integer quantum Hall phases
familiar from thermal equilibrium settings, which can also
occur in noninteracting systems, have ordinary bulk properties,
and chirally propagating edges that are protected even in
the absence of any symmetry. Despite these similarities,

rational CF phases are sharply distinct from such equilibrium
phenomena. For example, their edge states exhibit a discrete
pumping of quantum information rather than continuous flow
of heat and charge, and they have topological invariants with
a completely different structure (rational versus integer).

In equilibrium settings, strong interactions can effectively
fracture the original microscopic particles into emergent
excitations with fractional (anyonic) statistics, leading to new
types of topological behavior like the fractional quantum Hall
effect. Given the rough parallels between rational CF phases
and the integer quantum Hall effect, it is natural to ask: can
strong interactions also produce new “fractional” CF phases?

In this paper, we explore CF phases in systems in which
strong interactions lead to nontrivial bulk dynamics character-
ized by emergent anyon excitations with fractional statistics
(Abelian topological order). The presence of emergent bulk
anyons with fractional statistics leads to distinct topolog-
ical bulk and edge characteristics from the CF phases of
unfractionalized bosons and fermions described in Ref. [11].
Namely, the external driving can supply the energy to pump
otherwise immobile or confined defects around the boundary
of the system. The defects of Abelian topologically ordered
systems can be non-Abelian objects with irrational quantum
dimension (sometimes called twist defects or genons [15]).
These non-Abelian defects rely on the presence of topological
order, and arise despite the absence of mobile or deconfined
non-Abelian particles. We show that the Floquet drive can
induce a chiral motion of non-Abelian twist defects along
the boundary, resulting in the one-way transfer of irrational
amounts of quantum information along the edge during
each drive period. This enables new CF phases with chiral
indices that are square roots of rational numbers, inspiring
the label: “radical CF phases.” We demonstrate an unexpected
bulk-boundary correspondence between the radical CF edge
and bulk dynamics that exchanges electric and magnetic
anyon excitations during each period. We construct solvable,
stroboscopically driven versions of Kitaev’s honeycomb spin
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model that realize these radical CF phases, and describe how
to stabilize them against drive-induced heating by fast driving
[16–18] or disorder induced many-body localization (MBL)
[16,17].

II. MODEL

We begin by constructing a solvable lattice model, which
will enable controlled insight into the general structure of
radical CF phases. Starting from an ordinary lattice of spin-1/2
degrees of freedom with two states per site, our strategy will be
to dynamically induce Z2 topological order and subsequently
liberate the emergent fermionic excitations. The edge of the
model will then act as a chiral edge pump for non-Abelian
(Majorana) defects of this topological order that each carry an
irrational amount, ln

√
2, of quantum information.

We will first construct an idealized fixed-point drive with
uniform couplings. Weakly perturbing away from this solvable
point in this uniform model, leads to a long-lived pre-thermal
phase [16–18], which eventually heats to an incoherent high-
temperature state after an exponentially long time. This heating
can be avoided (perhaps entirely1) by coupling the system to
a cooling bath [18], or, more strikingly, by introducing strong
disorder to drive the system into a many-body localized (MBL)
phase [19–21] that remains quantum coherent without the need
for cooling, as we will discuss in Sec. V.

Our construction is based on a stroboscopically driven
version of Kitaev’s honeycomb spin model [22], consisting
of spin-1/2 degrees of freedom, �Sr , sitting on sites r of a
honeycomb. We label the three distinct types of bonds of the
honeycomb as x, y, and z [Fig. 1(a)]. The system is then
subjected to a three-step stroboscopic time evolution obtained
by sequentially applying the Hamiltonians

Hj =

⎧⎪⎨
⎪⎩

3
T
h[x], 0 � t < T

3
3
T
h[y], T

3 � t < 2T
3

3
T
h[z], 2T

3 � t < T

; h[j ] = πJ

4

∑
〈rr ′〉∈j

Sj
r S

j

r ′ ,

(1)

where j ∈ {x,y,z}. Various proposals for physically imple-
menting such interactions in systems of cold polar molecules
have been previously presented [23,24]. However, for our
purposes, this model serves simply as a tractable platform
to theoretically explore the novel phenomena of chiral Floquet
phases in fractionalized systems.

The resulting time evolution for one period is

U (T ) = T e−i
∫ T

0 H (t)dt = e−ih[z]
e−ih[y]

e−ih[x]
, (2)

where T denotes time-ordering. In the limit of weak driving
(J 	 1), U (T ) realizes a conventional static phase with Z2

topological order featuring an emergent gapless Majorana
fermion [22]. However, we will instead consider the strong
driving limit with J = 1.

1Whether stable MBL can occur in dimension higher than one
remains remains an important, unsettled matter of principle [39]. For
strong disorder, the dynamics will behave as in an MBL system, at
worst, up to superexponentially long-time scale and possibly forever.

......

(a)

(b)

FIG. 1. Spin-1/2 honeycomb model. (a) Depiction of a solvable
lattice model for the radical chiral Floquet phase and its associated
Majorana fermion description. (b) The topological and trivial phases
of a chain of complex fermions (blue boxes indicate fermion sites)
can be viewed as two topologically distinct ways to pair (black lines)
adjacent Majorana fermions (open circles). Under an open boundary
condition, these two phases are distinguished by the presence or
absence of unpaired edge Majorana fermions, but with periodic
boundary conditions they are related by a chiral translation of the
Majorana fermions (arrows).

Following Ref. [22], this model can be solved by writing
each spin-1/2 in terms of four Majorana fermion variables,
{cr ,b

x,y,z
r }, as

Sj
r = icrb

j
r , (3)

This fermion description has extra artificial degrees of freedom
not present in the original spin model, corresponding to a
Z2 gauge redundancy generated by (cr ,�br ) → (−1)(cr ,�br ),
and must be subjected to the gauge-neutral sector via the
on-site constraints (−iSx

r S
y
r Sz

r ) = (crb
x
r b

y
r b

z
r ) = 1 in order to

faithfully describe the spin-1/2 system. We can draw the
Majorana fermion degrees of freedom such that cr resides on
the honeycomb sites, and bi

r reside on the links of type i [see
Fig. 1(a)]. It is convenient to pair the �br Majorana operators
into Z2 gauge link variables σr,r ′ = ib

j
r b

j

r ′ , where j ∈ {x,y,z}
according to the type of link 〈r,r ′〉, and where we take an
arbitrary fixed orientation of r → r ′ on each type of bond.

Each factor of e−ih[j ]
“hops” the c-Majoranas,

eih[j ]
cre

−ih[j ] = cr+êj
σr,r+êj

, where êj is the oriented unit
vector along the type-j bonds. The gauge link variables σrr ′ are
invariant under the Floquet evolution, which we can express
as a conservation of gauge flux FP through each hexagonal
plaquette P :

U (T )†FP U (T ) = FP ; FP =
∏

〈rr ′〉∈∂P

σr,r ′ . (4)

In the bulk, the c Majorana fermions are driven in small
counterclockwise loops, encircling their respective plaquettes
after two driving periods [Fig. 1(a)] and accumulate a Z2-
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(−1) (−1)

FIG. 2. Evolution of Pauli operators. The three Pauli operators
associated to each site (filled or open circle) are represented
graphically as a colored, thickened line along the corresponding bond.
The same color scheme as in Fig. 1 is used, where red, green. and
blue, respectively, represent Xr , Yr , and Zr . The triangles indicate the
positions of the original sites, and the arrows indicate time evolution
by U (T ).

valued Aharonov-Bohm phase FP along the way. While
seemingly innocuous at first glance, this phase will play a
crucial role in enabling the radical CF edge physics.

We emphasize that, while the above model provides an
effective description in terms of Majorana fermion degrees of
freedom, it arises from a pure spin model with no microscopic
fermions. Rather, the fermions and Z2 gauge fluxes are
emergent anyonic degrees of freedom that arise from the
special character of the Floquet drive.

III. TOPOLOGICAL DYNAMICS

Next, we analyze the topological aspects of dynamics in
this driven honeycomb spin model. In particular, we will show
that the edge dynamics in one Floquet cycle correspond to a
unit translation of the emergent Majorana fermions, whereas
the bulk features a form of Floquet enriched topological order
amounting to a dynamical anyon transmutation between the
electric and magnetic excitations.

A. Edge chiral transport

In contrast to their bulk counterparts, the c-Majoranas at
the edge are driven in a large clockwise loop around the entire
system boundary, such that a single Majorana fermion crosses
any cut through the edge during each driving cycle. Since each
Majorana degree of freedom has “half” the number of degrees

of freedom as a fermion, it corresponds to
√

2 quantum states,
and hence we expect a radical chiral unitary index ν = ln

√
2.

We can confirm this expectation by the following trick:
instead of computing the index ν for U (T ) directly, we can
consider the time evolution for two periods, U (2T ). Since
the dynamics in each period are identical, U (2T ) transfers
twice the amount of quantum information as U (T ), implying
ν2T = 2ν. Unlike U (T ), however, U (2T ) is governed by a
rational chiral unitary invariant, ν2T , that can be computed
by the algebraic method of Refs. [11,14]. The quantum
information pumped across a cut in the edge during each period
is quantified by taking a basis of observables on one side of the
cut, evolving them forward in time, and evaluating its overlap
with observables on the other side. The chiral topological index
is then the difference in quantum information being pumped to
the right versus that being pumped to the left per period. A di-
rect computation (Appendix A), using strings of spin operators
S

x,y,z

i as a basis for operators, shows that ν2T = ln 2, i.e.,

ν = 1
2ν2T = ln

√
2, (5)

confirming that this model indeed realizes a radical CF phase.

B. Bulk anyon transmutation

To characterize the bulk dynamics, we can pair the bulk
Majoranas on the left and right sides of each hexagonal plaque-
tte into complex fermion orbitals, ψP = 1

2 (cPL
+ iW�

P

cPR
),

where W�

P

≡ σ↙σ←σ↖ is a gauge string connecting the sites

PR/L via a counterclockwise loop over the top of plaquette
P [dashed curved arrow in Fig. 1(a)]. The plaquette fermion
orbitals can be either occupied or empty, corresponding to local
fermion parity, PP = (−1)ψ

†
P ψP = ±1, respectively. During

each drive period, the plaquette parity acquires an Aharonov-
Bohm phase on plaquettes with gauge flux: PP → FPPP .
In other words, the plaquette fermion parity is conserved
on gauge-flux-free plaquettes (FP = +1), and is flipped on
plaquettes with a flux (FP = −1).

To physically interpret this result, first, note that the absence
of quantum dynamics for the bulk gauge degrees of freedom
indicates that the Floquet operator induces dynamical Z2

topological order, with three topologically distinct types of
anyon excitations: a fermion ψ (PP=−1, FP=+1), a bosonic
flux m (PP=+1, FP=−1), and their bosonic bound state:
e = m × ψ . Each of these types of excitations has mutual
statistics (−1) with the others. During each driving period,
the number of ψ excitations is conserved, but the e anyons
are transmuted into m anyons and vice versa, a phenomena
dubbed Floquet enriched topological order (FET) [25].

While we have illustrated these phenomena for a special
point in the phase diagram of the model, the addition of
disorder into Eq. (2) can produce many-body localization
(MBL), and stabilize these properties over an extended region
of parameter space. Since the bulk Floquet evolution does not
produce kinetic motion of any of the bulk anyon particles,
it appears naturally amenable to MBL. Indeed, as explained
in Ref. [25], one can argue that a disordered version of
this Hamiltonian produces a stable MBL phase, albeit one
that exhibits discrete time-translation symmetry breaking
[26–29] due to the continual period-2T flip-flopping of e
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and m particles [25]. We will expand on these arguments
in Sec. V.

IV. BULK-BOUNDARY CORRESPONDENCE

In the solvable point of the driven honeycomb spin model
described above, we saw that the radical chiral Floquet nature
of the edge was accompanied by bulk FET order. Here, we will
argue that these two phenomena are always linked. To build
some intuition, we first recall that the e ↔ m exchanging FET
order can be viewed as arising from a dynamical pumping
of loops of 1D topological chains of the ψ fermions onto
the system boundary during each Floquet period [25], which
toggles the 1D chain of fermions at the edge between the
topological and trivial phases. Since the fermion parity of the
1D topological fermion chain is flipped by insertion of a π

flux [30], this pumping adds a fermion to each bulk gauge
flux, thereby interchanging e and m particles. By formally
decomposing each complex fermion degree of freedom at the
edge into a pair of Majorana fermions, one can see that the
chiral Majorana translation at the edge of the radical CF phase
toggles the 1D topological invariant of the edge [Fig. 1(b)]. In
this picture, the chiral translation of Majorana defects at the
edge by an odd number of sites modifies the pairing patterns
of the Majorana fermions, which amounts to changing the
topological phase of this 1D complex fermion chain [30].

To support this heuristic picture, we will specialize to the
limit of noninteracting Majorana fermions in a static gauge-
flux background. In this limit, we can solve the dynamics
by first specifying a gauge-flux sector in the bulk, and then
evaluating the action of U (T ) on the Majorana fermion
operators. The generalization of this argument to interacting
fermion systems can be found in Ref. [31], where we discuss
the general form of Floquet bulk-edge decoupling [11] in
the presence of static bulk gauge fluxes, and generalize the
rigorous machinery of Ref. [14] to incorporate fermionic
superalgebras.

A. Chiral edge invariant

We will begin by identifying a chiral edge invariant. We will
consider a large finite cylinder, for which, due to the localized
nature of U , we can consider the restriction of this evolution
to a finite strip near one end of the cylinder:

U †(T )crU (T ) =
∑
r ′

Or,r ′cr ′ . (6)

Here, Or,r ′ is an orthogonal matrix, whose indices, r,r ′ label
positions along the edge of the cylinder.

Denote the number of chiral Majorana edge modes asso-
ciated with O as C, which is related to the chiral unitary
invariant by ν = C ln

√
2. With translation invariance, C can

be computed by the momentum space winding number via a
simple generalization of the results of Ref. [6] to Majorana
fermions:

C
trans. inv.=

∫
dk

2π
tr(Õ−1(k)i∂kÕ(k)), (7)

where Õα,β(k) = ∫
dx eikxOx,α;0,β , and the trace is over the

flavor indices α,β.

Since we are interested in disordered systems, we would
like to reformulate this invariant in a way that does not rely
on momentum conservation. A useful formal tool is to replace
the integral over momentum in Eq. (7) by an adiabatic flow
under the insertion of “flux.” Though the fermion charge is not
conserved in the present problem with Majorana fermions, we
can still formally define a version of O with flux θ ∈ (−π,π ]
threaded through the bond between x = 0 and x = 1 along the
edge:

(Oθ )xx ′ =

⎧⎪⎨
⎪⎩

Oxx ′eiθ for − Lx

2 < x ′ � 0 < x < Lx

2

Oxx ′e−iθ for − Lx

2 < x � 0 < x ′ < Lx

2

Oxx ′ otherwise

, (8)

where we have suppressed the flavor index, and Lx denotes
the circumference of the cylinder edge.

A minor, but formally necessary technical detail is that
some truncation scheme is required to make the flux insertion
compatible with periodic boundary conditions. While various
equivalent methods are possible, here, we have simply turned
off the eiθ phase twist at a distance Lx/2 from the origin. The
effects of this finite-size truncation can be safely ignored in
large systems. Namely, since |Oxx ′ | results from finite time
evolution with a local (2D) Hamiltonian, the spatial extent
matrix elements are constrained by a Lieb-Robinson bound,
which gives rise to a length scale 
LR set by the finite time
T and the (maximum) Lieb-Robinson velocity associated
with the instantaneous Hamiltonians, i.e., |Ox,x ′ | falls off
exponentially as ∼ e−|x−x ′ |/
LR for distances |x − x ′| > 
LR.
For similar reasons, Oθ will be exponentially close to a unitary
matrix: ||OθO

†
θ − I|| � e−Lx/
LR .

By introducing the adiabatic flow parameterized by θ , the
chiral edge invariant can now be written as [32]

C =
∫ π

−π

dθ

2π
tr

(
O

†
θ i

∂

∂θ
Oθ

)
, (9)

where the trace runs over all spatial and flavor indices. One
can verify this reproduces Eq. (7) for translation-invariant
edges. If Oθ were exactly unitary, then C would be a winding
number which is precisely quantized to integer values. For a
large but finite Lx , this integer quantization is accurate up to
exponentially small corrections of order e−Lx/
LR , due to the
truncation at x = ±Lx/2, and becomes exact as Lx → ∞.

We remark in passing that this invariant can also be
formulated directly in the limit of an infinitely long edge,
Lx = ∞, where the flux threading can then be implemented by
a unitary operator: Oθ = eiθPOe−iθP , where P is a projection
onto the subspace with x > 0:

Pxx ′ = δxx ′ ≡
{

1 forx > 0
0 forx � 0 . (10)

Putting this form of Oθ into Eq. (9), one finds

C = tr(O−1[P,O]), (11)

In this form, C is the trace of a difference between two
projection operators, whose eigenvalues are 0 or 1, and
therefore C is precisely quantized to an integer and cannot be
altered by smooth deformations (local unitary transformations
of O). Related quantities were identified in Refs. [14,22] as a
“flow” index for causal unitary matrices.
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B. FET bulk invariant

To diagnose the FET order, we would like to compare the
change in fermion parity with and without a π flux threading
the edge. In the FET phase, Floquet evolution toggles the edge
between topological and trivial states, and hence pumps an
opposite amount of fermion parity dependent on the presence
or absence of a π flux. In a non-FET phase, the parity pumped
is independent of the flux. Such parity pumping is captured by
comparing the determinants of O with and without a π flux
inserted. To see this, observe that the fermion parity operator
for the edge, PF,edge = iNsites

∏
r cr , evolves as

U (T )†PF,edgeU (T ) = (det O)PF,edge, (12)

which follows from the antisymmetry of the fermion product
and the orthogonality of O. Here, Nsites is the number of
Majorana sites and the phase factor is chosen to ensure
P 2

F,edge = 1.
From these considerations, we can write the FET invariant

as a comparison between O0 and Oπ :

IFET = det
(
OπO−1

0

)
, (13)

which is −1 in the FET phase, and +1 otherwise. We
note in passing that various equivalent forms for IFET like
(det Oπ/ det O0), or (det Oπ · det O0), are possible. However,
the above formulation is convenient as it remains well defined
in the infinite-size limit.

C. Relation between C and IFET

From these formulations it is straightforward to relate the
chiral edge and bulk FET invariants. Since O is real (Oθ =
O∗

−θ ):

C =
∫ π

−π

dθ

2π
tr(O†

θ i∂θOθ ) =
∫ π

0

dθ

π
tr(O†

θ i∂θOθ ), (14)

and therefore

IFET = det
(
OπO−1

0

)
= exp (tr(ln Oπ − ln O0))

= exp

(
−iπ

∫ π

0

dθ

π
i∂θ tr ln Oθ

)

= exp

(
−iπ

∫ π

0

dθ

π
tr(O†

θ i∂θOθ )

)

= e−iπC. (15)

This establishes the bulk-edge correspondence,

e2πiνedge/ ln 2 = IFET, (16)

between the edge chiral unitary invariant and the bulk FET
invariant, in the limit of vanishing gauge fluctuations and
noninteracting emergent fermions. A more formal proof that
also applies to the general interacting case can be obtained
using superalgebra methods [31].

The concurrent appearance of FET order also explains
how this model can exhibit irrational values of the chiral
edge index. If the Floquet evolution was to factorize into
commuting bulk and edge components, the chiral unitary index
would necessarily be rational [11,14]. Note that the presence

of bulk topological order alone is not sufficient for eluding
the rational restriction. As an example, U (2T ) of our model
is topologically ordered and has a rational index. However,
this decomposition fails in a radical CF phase precisely due
to the presence of the FET order. Specifically, in the sector
with an odd number Z2 gauge fluxes in the bulk, the Floquet
evolution transfers an odd number of fermions from bulk to
boundary, such that the bulk and boundary factors in U (T )
would be anticommuting fermionic operators. This failure to
factorize exposes a loophole in the rational classification [11],
and allows for radical chiral edge invariants.

V. STABILITY FROM STRONG DISORDER

Thus far, we have analyzed in detail a special zero-
correlation-length point of the driven honeycomb model, and
derived a bulk-boundary correspondence which is applicable
as long as the gauge fluxes are nondynamical and the
emergent Majorana fermions are noninteracting. In particular,
the derived bulk-boundary correspondence is compatible with
the introduction of disorder. Next, we discuss how strong
disorder can produce a bulk MBL phase and subsequently
lends rigidity to the described physical properties under the
incorporation of small perturbations.

To this end, we add a fourth driving step with strongly
disordered random coupling to the local conserved quantities
of the clean driving steps in Eq. (1), so that U (T ) becomes
Ũ (T ) = e−ihdise−ih[z]

e−ih[y]
e−ih[x]

, with

hdis = −
∑
P

∑
a=e,m,ψ

μa,P na,P . (17)

Here, μa,P is a random potential for an anyon excitation of
type a on plaquette P , and na,P denotes the corresponding
number operator.

The local plaquette fermion number, nψ,P , and the total
gauge flux ne,P + nm,P are conserved by the clean part of the
drive, U (T ). However, the difference between the number of
e and m particles is flipped by U (T ) due to the FET order.
Although hdis does not fully commute with U (T ), we can
still readily write down the exact eigenstates of the disordered
drive, Ũ (T ).

Denote a fixed configuration of anyon excitations by C, and
let C ′ be the related configuration obtained by interchanging
all e and m particles in C. We can write down the energy
of configurations C and C ′ with respect to the disorder
Hamiltonian hdis:

EC = −
∑
a,P

μa,P na,P (C) ≡ E0(C) + �E(C),

EC′ = −
∑
a,P

μa,P na,P (C) ≡ E0(C) − �E(C),

E0(C) = −
∑
P

μψ,P nψ,P (C) + μe,P + μm,P

2
ne,P (C),

�E = −
∑
P

μe,P − μm,P

2
ne,P (C). (18)
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From this, we can readily identify a pair of Floquet eigenstates
of Ũ (T ),

|ψ±〉 = 1√
2

(ei�E/2|C〉 ± e−i�E/2|C ′〉), (19)

which have quasienergies ε+ = E0(C), ε− = E0(C) + π , i.e.,
they differ exactly by π . Such eigenstate structure is remi-
niscent of that for a Floquet time crystal with spontaneous
period doubling [26]. In the present problem, a system initially
prepared in state |C〉 will oscillate between |C〉 and |C ′〉 from
one period to the next, provided that C contains at least one e

or m excitation such that C �= C ′.
The discussion above, however, does not fully characterize

the eigenstate degeneracy of the system. This is because, for a
generic configuration C, there are actually an extensive number
of other pairs of eigenstates that also have quasienergies
(E0(C),E0(C) + π ), which can be obtained simply by flipping
any subset of e particles in C with m particles, resulting in an
overall degeneracy

D(C) = 2
∑

P (ne,P (C)+nm,P (C)−1) (20)

for each of the quasienergies E0(C) and E0(C) + π . We remark
that such degeneracy implies the e and m particles behave
effectively as entities with a quantum dimension of 2 under
our radical CF drive [25].

This degeneracy will be resolved by quantum fluctuations
upon moving away from the zero-correlation length limit,
by even an infinitesimal amount. However, due to the FET
structure, the degenerate states cannot be split in such a
way that preserves both their localized properties and time-
translation symmetry [25,33].

At strong disorder, a natural outcome is for quantum
fluctuations to spontaneously select time-crystalline MBL
states of the form shown in Eq. (19). To proceed, let us
consider the evolution for two periods, U (2T ), which can
be written in the absence of an edge, as evolution under
some effective topologically ordered Hamiltonian Heff, with
a symmetry between e and m particles, which derives from
the dynamical permutation of e and m particles in U (T ) [25].
Let us consider moving away from the zero-correlation-length
limit by applying a generic but weak T -periodic perturbation,
which corresponds to an e ↔ m symmetry preserving pertur-
bation to Heff → Heff + V . Starting from a localized anyon
configuration C, we can restrict our attention to the degenerate
space of anyon configurations with the same quasi-energy
(modulo π ) as C, which we can model as a fermionic Hilbert
space where each e/m particle is a fermion site that can either
be occupied or empty. The perturbation V induces quantum
fluctuations that mix these degenerate states, which can be
viewed as virtual anyon particle-hole pair fluctuations.

To obtain a controlled description, we will assume that
there is a low density of e and m particles in C, with a
typical separation r . By “low density” we mean r is much
larger than the localization length scale ξ ≈ 1/ ln(�μψ/�0),
where �μψ denotes the root-mean-square variation of the
disorder potential μψ , and �0 denotes the strength of quantum
fluctuations.

There are two distinct types of important virtual processes.
First, a virtually excited fermion landing on an e (m) particle
and converts it into an m (e) particle (such processes must

occur in pairs to stay within the degenerate manifold of states
associated with C). With this process alone, we can model the
system as a free fermion system, with a lattice of fermion sites
corresponding to either e or m particles, which we will label
by sites i, governed by the free fermion Hamiltonian Hψ ≈∑

ij �ijψiψj + h.c., where �ij ≈ �0e
−rij /ξ are generically

exponentially decaying in the distance between i and j , and
ψi destroys a fermion on site i.

The second type of virtual processes of interest are those
in which a pair of virtually excited e particles (or an
equivalent pair of virtual m particles) encircles a pair of
fermion “sites,” which gives a topological phase depending
on the fermion occupation numbers of the sites. This cor-
responds to an interaction term between fermions Hint ≈∑

ij Vij (ψ†
i ψi − 1

2 )(ψ†
j ψj − 1

2 ) + . . . , with Vij ≈ �0e
−2rij /ξ ,

and where the “. . .” indicates contributions from virtual fluc-
tuations that encircle higher numbers of fermion sites, which
are suppressed by exponential distance factors compared to
the leading term.

The problem of solving for the excited eigenstates of
Hψ + Hint is complicated but has been studied extensively
in analogous 1D models [34], and we may draw lessons
from this previous work. Namely, in 1D, it was shown, at
strong disorder via a real-space renormalization group (RG)
treatment, that the interaction terms were preserved under the
RG flow, whereas the hopping terms flowed to zero. In the
interaction dominated regime, the system naturally breaks the
particle-hole symmetry, and forms a particle-hole asymmetric,
fully localized state. An essentially identical strong disorder
RG-based argument in 2D strongly suggests that the system
will flow to the interaction dominated regime, even though the
pair-tunneling amplitudes �ij are typically much larger than
the interaction strengths Vij to begin with.

In the present context, the spontaneous particle-hole sym-
metry broken state corresponds to an MBL phase in which
the dynamical e ↔ m symmetry of the original model is
broken, i.e., at strong disorder we expect an MBL Floquet
time crystal with eigenstates close (up to finite-depth local
unitary transformation) to the form in Eq. (19).

VI. PARAFERMIONIC GENERALIZATIONS

The driven Z2-topologically ordered example we described
exhibits chiral edge pumping of effectively non-Abelian
objects with irrational quantum dimension

√
2, despite that the

system’s excitations consist only of integer-dimension Abelian
anyons. The resolution to this apparent contradiction is the
following: since we are explicitly driving the system in a
time-dependent fashion, energy is not conserved, and we may
pump certain confined defects of the Abelian topological order
around the edge, without these defects appearing as deconfined
bulk quasiparticles. Namely, the Majorana fermions in the
above example can be viewed as the ends of topological chains
of the emergent fermionic quasiparticles (or equivalently as
“twist” defects that exchange e and m particles [15,35]), which
have irrational quantum dimension d = √

2. We can readily
extend this construction to realize radical CF phases with ν =
ln

√
N for arbitrary integer N , whose edges chirally translate

parafermionic defects with quantum dimension d = √
N .
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To this end, we can adapt the driving protocol of Eq. (2),
to the ZN generalization of Kitaev’s honeycomb model
constructed by Barkeshli et al. [36]. We again consider a
honeycomb, but we replace the spin-1/2 operators Si

r with

the N -state spin operators, τ
x,y,z
r , which satisfy (τ i

r )
N = 1

and τ z
r = (τ x

r τ
y
r )

†
. In addition, the operators on different sites

commute, i.e., [τ i
r ,τ

j

r ′ ] = 0 for (r �= r ′), and on the same site
they furnish the algebra

τ x
r τ y

r = e2πi/Nτ y
r τ x

r , (21)

together with identical relations under the cyclic permutations
of the (x,y,z) indices. Following Ref. [36], we may describe
the N -state spins as quartets of parafermionic twist defects
with quantum dimension

√
N (generalizing the Majorana

fermion description for N = 2), which we can embed spatially
around the honeycomb in the {c,bx,y,z} positions shown in
Fig. 1. Generalizing the fusion relations for Majorana defects
(N = 2), these ZN twist defects, which we will denote by
σ , can fuse to any number of the anyonic ψ particles:
σ × σ = ∑N−1

j=0 ψj and ψj × σ = σ .
As for the spin-1/2 version, it is convenient to pair the

bond-centered twist defects, b
rr′ , on bonds 〈rr ′〉 of type 
rr ′ ∈
{x,y,z}, into ZN valued gauge link variables, σrr ′ = e2πij/N ,
where j is the number of ψ particles in the fusion of the two
bond-centered twist defects. Again, the ZN gauge flux through
each plaquette,

FP =
∏

〈rr ′〉�P

τ 
rr′
r τ


rr′
r ′ =

∏
〈rr ′〉�P

σr,r ′ , (22)

is conserved throughout the Floquet evolution, though this flux
operator is now a ZN object, having eigenvalues e2πi/N . Here,

rr ′ denotes the type (x, y, or z) of the link 〈rr ′〉.

On flux-free plaquettes (FP = 1), the fusion channel (∈
{1,ψ,ψ2, . . . ,ψN−1}) of the c parafermions on the left and
right corners of the hexagon is also conserved. To make contact
with the algebraic anyon language describing a ZN gauge
theory, we will identify the configuration where there is a
plaquette with zero flux, and parafermions fusing to ψ , as a
ψ particle excitation. Similarly, we will label plaquettes with
parafermions fusing to 1, and a single flux, (FP = e2πi/N ) as
m excitations, and plaquettes with both parafermions fusing to
ψ and FP = e2πi/N as an e = m × ψ excitation.

Again, the terms e−ih[j ] = ∏
〈rr ′〉∈j τ

j
r τ

j

r ′ exchange the c-
parafermion defects at the ends of j -type bonds. During one
Floquet cycle, the two twist defects on the left and right side
of a bulk plaquette are braided in a counterclockwise fashion,
and hence encircle the ZN gauge flux through the plaquette.
For plaquettes with j fluxes (FP = e2πij/N ), braiding of twist
defects originally in the fusion channel σ × σ = ψk around
the flux changes the fusion channel of the twist defects by
ψj−k , producing bulk FET order in which the ZN gauge
charges (e) and fluxes (m) are dynamically interchanged.

At the edge, we again see that the Floquet evolution
performs a clockwise chiral translation of one parafermionic
twist defect per unit cell. Since the parafermion defects have
quantum dimension

√
N , this produces an irrational chiral

Floquet index: ν = ln
√

N .

VII. DISCUSSION

We have so far considered a system with bosonic (spin)
degrees of freedom, where the emergence of a radical chiral
edge requires Majorana fermion defects arising from emergent
fermion degrees of freedom. In fermionic systems where
Majorana defects are already present, a radical CF phase with
ν = ln

√
2 can be obtained without any accompanying bulk

topological order [11,31]. However, for physical problems, this
either requires the breaking of fermion-number conservation
(by pair-superfluidity), which prevents MBL [33], or is realized
as a prethermal phenomenon [18].

A natural question to ask is: do these examples exhaust
the possible set of Abelian chiral Floquet phases? or do
they only represent a partial set? For the systems with Z2

topological order and ν = ± ln
√

2, the edge Floquet evolution
either commutes or anticommutes with the bulk evolution
depending on the gauge-flux sector of the bulk. The edge
of this system can be rigorously characterized by extending
the construction of Ref. [14] to systems with Z2 graded
tensor product structure [31]. These results establish that the
rational CF phases and radical CF phase with ν = ln

√
2 form

a complete set for systems with Z2 topological order. This
suggests that the radical phases may exhaust the possibilities
for other Abelian topological orders, however, rigorously
establishing this result would require extending the algebraic
construction of Refs. [14,31] to parafermionic algebras, which
are comparatively far less well understood, and would require
substantial formal mathematical developments, which we
leave for future work.

Furthermore, while we have focused on the case of Abelian
bulk topological order for the compatibility with MBL [33],
which can stabilize the system against bulk heating, one
could also consider metastable chiral Floquet phases arising
in systems with non-Abelian bulk topological order in a
prethermal regime [16,18]. A direct anyonic generalization
of the bosonic SWAP model of Ref. [11] could be obtained by
taking a square lattice of non-Abelian particles, and replacing
the SWAP gates by pairwise braidings, resulting in a chiral
translation of non-Abelian anyons at the system boundary.
Intuitively, such construction gives rise to a phase with chiral
unitary index ν = ln d, where d is the quantum dimension of
the anyon in question. Developing a systematic understanding
of such non-Abelian CF phases is an important challenge for
future work.

We close by briefly commenting on possible experimental
signatures of radical CF phases. A crude signature of the
chiral edge motion is that it ensures the edge will thermalize
regardless of the disorder strength [11], resulting in decay
of nonthermal initial conditions at the edge [37]. A more
direct signature of the radical chiral edge motion would be
to measure the correlation between the state of a spin at site
i along the edge at time t = 0, and at site i + nT/2 at time
t = nT later. For example, in the honeycomb model, U (4T ),
(n = 4) is precisely the identity in the bulk, and states at the
edge will get transferred by 2 sites along the edge. Finally,
the bulk-boundary correspondence ensures that these chiral
edge signatures will be accompanied by a bulk time-crystalline
order, which can be observed by persistent 2T -periodic
oscillations in generic local observables [26,27,38].
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APPENDIX: COMPUTATION OF THE CHIRAL INDEX
FOR THE SPIN-1/2 HONEYCOMB MODEL

In this note, we solve U (2T ) exactly by recognizing a
connection of the model to the stabilizer formalism of quantum
error correction. We will then establish that the chiral unitary
index ν is well defined despite the bulk topological order, and
equal to ν[U (2T )] = ln 2.

The connection to the stabilizer formalism enters since
the evolution operator U (T ) (1) takes the special form of
a Clifford circuit, whose properties we briefly recount here.
Consider a quantum system of n qubits (spin-1/2’s) labeled
by r = 1, . . . ,n. For each qubit, we have the Pauli operators
Xr , Yr , and Zr , and we consider the Pauli group of n

qubits: Pn ≡ {α �1 ⊗ �2 ⊗ · · · ⊗ �n with α ∈ {1,i,−1,−i},
and �r ∈ {1,Xr,Yr ,Zr}. We say a unitary operator U is
a Clifford operation if UσU † ∈ Pn ∀� ∈ Pn, i.e., if Pauli
products remain Pauli products after conjugation by U . Up
to an irrelevant overall U(1) phase, a Clifford operation is
uniquely determined by its action on the Pauli group. One
can readily verify that U (T ) has this property, which we will
exploit to efficiently compute the chiral index of U (2T ).

1. Factorization of U(2T ) into bulk and edge pieces

As discussed in the main text, U (2T ) admits a complete
set of conserved local operators, {FP ,PP }, where P labels
hexagonal plaquettes, which together with the property that
U (2T ) : cr → FPr

cr and the translation invariance of the
three-step drive, constrain the form of U (2T ) (up to an
important overall phase) to

U (2T )
?= Gφ ≡

∏
P

((1 − VP ) + eiφVPPP ), (A1)

where eiφ is a phase, which we will determine shortly.
Since U (2T ) is a Clifford circuit, andFP ,VP are products of

Pauli spin operators, U (2T ) can only change FP ,VP by phase
either ±1, which requires either φ = 0,π , to which we denote
the corresponding unitary operators respectively as G+ or G−.
One can readily verify that periodic G± actually coincide up to
an irrelevant factor of G+G

†
− = ∏

P FP . For open boundary
conditions, G± disagree only by a string of Pauli operators at
the boundary, which can be implemented by a 1D boundary
Hamiltonian, and cannot change the chiral index of the edge.
Hence we are free to consider either G±, and for concreteness
we will examine G+.

2. Chiral unitary index of U(2T )

Since U (2T ) = G+ factorizes into a product of locally
commuting terms, its edge is characterized by a rational chiral

Edge(a)

(b)

(c)

Bulk

Yedge

Yedge

FIG. 3. Chiral unitary index ν of U (2T ). (a) The index is
computed for the indicated edge, where the boxed region (of depth
being one lattice constant) corresponds to where the edge unitary
Yedge acts nontrivially. Note that we have rotated the lattice by 90◦

relative to Fig. 1 of the main text. (b) As the chosen edge retains
lattice translation invariance along the parallel direction, Yedge (also a
Clifford circuit) is fully specified by computing the evolution of the
six Pauli operators associated with the two inequivalent sites in a unit
cell. The Pauli operators are represented in the same way as Fig. 2, and
we do not keep track of the global phase as it does not enter the index
computation. The vertical dashed line indicates a fixed spatial cut. (c)
Using the evolution in (b), one sees that exactly four Pauli operators
are “transported” from the left to the right of the cut, and only one
(the identity) from right to left. This gives ν[U (2T )] = ln

√
4 = ln 2.

unitary invariant. From the discussion in Ref. [11], with open
boundary conditions one can write U (2T ) = YedgeUbulk with
exponential accuracy, where Yedge is a quasi-1D unitary acting
nontrivially only near the edges. Note that this procedure is
unaffected by the fact that U (2T ) features intrinsic topological
order in the bulk, and so the chiral unitary index of Yedge

is well-defined and remains as a diagnostic of the chiral
nature of the model. In addition, the computed index is stable
against small perturbation that maintains the MBL nature of the
bulk—and in the present case such robustness can be achieved
by appending to the driving protocol a fourth disordering step,
as discussed in Sec. V of the main text.
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To evaluate ν(Y ), we first recast the original index formula
in Refs. [11,14] into a form optimized for a Clifford circuit.
Recall the overlap η of two local operator algebras A and B is
defined as

η(A,B) ≡
√

papb

p�

√√√√√ p2
a∑

μ=1

p2
b∑

ν=1

∣∣Tr�
(
e
a†
μ e

b
ν

)∣∣2
, (A2)

where μ (ν) indexes a complete set of basis for A (B). To
take advantage of the Clifford structure, we choose a standard
basis for an interval with l sites labeled by the multi-index μ ≡
(μ1, . . . ,μl), defined through �L

μ ≡ �μ1 ⊗ �μ2 ⊗ · · · ⊗ �μl
,

where μi ∈ {0,1,2,3} labels the Pauli matrices in the standard
convention.

The chiral unitary index is then defined as

ν(Y ) ≡ ln
η(Y (AL),AR)

η(AL,Y (AR))
, (A3)

where AL and AR , respectively, denote the operator algebras
(with a sufficiently large size) on the left and right of a specified
spatial cut, and Y (A) ≡ {YeY † : e ∈ A} is the transformed
algebra.

As σμi
is traceless for μi = 1,2,3, only terms with σa = σb

can contribute in the trace in Eq. (A2). In addition, as Y is a

Clifford circuit, generally one finds

Y

(⊗
i∈L

�μi

)
Y † = ±

(⊗
i∈L

�μ′
i

)
⊗

⎛
⎝⊗

j∈R

�νj

⎞
⎠, (A4)

and we say
⊗

i∈L �μi
is transported across the cut if μ′

i =
0∀i, i.e., (Y�L

μY †)|L = 1 (this includes, in particular, the
identity). These are the only operators that can contribute
in η(YALY †,AR), and each such term contributes with the
same weight as the identity. Therefore the index formula for a
Clifford circuit is simply a counting formula:

ν(Y )
Clifford= ln

√√√√∣∣{�L
μ :

(
Y�L

μY †
)∣∣

L
= 1

}∣∣∣∣{�R
ν :

(
Y�R

μY †
)∣∣

R
= 1

}| . (A5)

The computation is detailed in Fig. 3, which shows that
ν[U (2T )] = ln 2—the minimal rational value. As discussed
in the main text, this implies ν[U (T )] = 1

2ν[U (2T )] = ln
√

2,
which falls outside of the original GNVW classification. Such
a radical index is allowed because, unlike U (2T ), U (T ) cannot
be factorized into commuting bulk and edge pieces due to the
bulk FET order.

[1] T. Oka and H. Aoki, Photovoltaic hall effect in graphene, Phys.
Rev. B 79, 081406 (2009).

[2] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[3] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Ob-
servation of floquet-bloch states on the surface of a topological
insulator, Science 342, 453 (2013).

[4] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[5] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,
Majorana Fermions in Equilibrium and in Driven Cold-Atom
Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011).

[6] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous
Edge States and the Bulk-Edge Correspondence for Periodically
Driven Two-Dimensional Systems, Phys. Rev. X 3, 031005
(2013).

[7] C. W. von Keyserlingk and S. L. Sondhi, Phase structure of one-
dimensional interacting floquet systems. i. Abelian symmetry-
protected topological phases, Phys. Rev. B 93, 245145
(2016).

[8] D. V. Else and C. Nayak, Classification of topological phases in
periodically driven interacting systems, Phys. Rev. B 93, 201103
(2016).

[9] A. C. Potter, T. Morimoto, and A. Vishwanath, Classification
of Interacting Topological Floquet Phases in One Dimension,
Phys. Rev. X 6, 041001 (2016).

[10] R. Roy and F. Harper, Abelian floquet symmetry-protected
topological phases in one dimension, Phys. Rev. B 94, 125105
(2016).

[11] H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and A.
Vishwanath, Chiral Floquet Phases of Many-Body Localized
Bosons, Phys. Rev. X 6, 041070 (2016).

[12] R. Roy and F. Harper, Periodic table for floquet topological
insulators, Phys. Rev. B 96, 155118 (2017).

[13] F. Harper and R. Roy, Stability of Anomalous Floquet Edge
Unitaries, Phys. Rev. Lett. 118, 115301 (2017).

[14] D. Gross, V. Nesme, H. Vogts, and R. F. Werner, Index theory
of one dimensional quantum walks and cellular automata,
Commun. Math. Phys. 310, 419 (2012).

[15] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Twist defects and
projective non-Abelian braiding statistics, Phys. Rev. B 87,
045130 (2013).

[16] D. A. Abanin, W. De Roeck, and F. Huveneers, Exponentially
Slow Heating in Periodically Driven Many-Body Systems, Phys.
Rev. Lett. 115, 256803 (2015).

[17] D. A. Abanin, W. De Roeck, and W. W. Ho, Effective
hamiltonians, prethermalization and slow energy absorption
in periodically driven many-body systems, Phys. Rev. B 95,
014112 (2017).

[18] D. V. Else, B. Bauer, and C. Nayak, Prethermal Phases of
Matter Protected by Time-Translation Symmetry, Phys. Rev.
X 7, 011026 (2017).

[19] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[20] D. A. Abanin, W. De Roeck, and F. Huveneers, Theory of many-
body localization in periodically driven systems, Ann. Phys. 372,
1 (2016).

[21] A. Lazarides, A. Das, and R. Moessner, Fate of Many-Body
Localization Under Periodic Driving, Phys. Rev. Lett. 115,
030402 (2015).

245116-9

https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1126/science.1239834
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.94.125105
https://doi.org/10.1103/PhysRevB.94.125105
https://doi.org/10.1103/PhysRevB.94.125105
https://doi.org/10.1103/PhysRevB.94.125105
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1103/PhysRevB.87.045130
https://doi.org/10.1103/PhysRevB.87.045130
https://doi.org/10.1103/PhysRevB.87.045130
https://doi.org/10.1103/PhysRevB.87.045130
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1103/PhysRevLett.115.030402
https://doi.org/10.1103/PhysRevLett.115.030402
https://doi.org/10.1103/PhysRevLett.115.030402
https://doi.org/10.1103/PhysRevLett.115.030402


PO, FIDKOWSKI, VISHWANATH, AND POTTER PHYSICAL REVIEW B 96, 245116 (2017)

[22] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006), january Special Issue.

[23] A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-
spin models with polar molecules, Nat. Phys. 2, 341 (2006).

[24] A. V. Gorshkov, K. RA Hazzard, and A. M. Rey, Kitaev
honeycomb and other exotic spin models with polar molecules,
Mol. Phys. 111, 1908 (2013).

[25] A. C. Potter and T. Morimoto, Dynamically enriched topological
orders in driven two-dimensional systems, Phys. Rev. B 95,
155126 (2017)

[26] D. V. Else, B. Bauer, and C. Nayak, Floquet Time Crystals,
Phys. Rev. Lett. 117, 090402 (2016).

[27] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, Phase
Structure of Driven Quantum Systems, Phys. Rev. Lett. 116,
250401 (2016).

[28] C. W. von Keyserlingk and S. L. Sondhi, Phase structure of one-
dimensional interacting floquet systems. ii. symmetry-broken
phases, Phys. Rev. B 93, 245146 (2016).

[29] C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi, Absolute
stability and spatiotemporal long-range order in floquet systems,
Phys. Rev. B 94, 085112 (2016).

[30] A. Yu. Kitaev, Unpaired majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[31] L. Fidkowski, H. C. Po, A. C. Potter, and A. Vishwanath,
Interacting invariants for Floquet phases of fermions in two
dimensions, arXiv:1703.07360.

[32] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H.
Lindner, Anomalous floquet-anderson insulator as a nona-
diabatic quantized charge pump, Phys. Rev. X 6, 021013
(2016).

[33] A. C. Potter and R. Vasseur, Symmetry constraints on many-
body localization, Phys. Rev. B 94, 224206 (2016).

[34] R. Vasseur, A. J. Friedman, S. A. Parameswaran, and
A. C. Potter, Particle-hole symmetry, many-body localiza-
tion, and topological edge modes, Phys. Rev. B 93, 134207
(2016).

[35] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Symmetry,
defects, and gauging of topological phases, arXiv:1410.4540.

[36] M. Barkeshli, H.-C. Jiang, R. Thomale, and X.-L. Qi, General-
ized Kitaev Models and Extrinsic Non-Abelian Twist Defects,
Phys. Rev. Lett. 114, 026401 (2015).

[37] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Observation of many-body localization of interacting
fermions in a quasirandom optical lattice, Science 349, 842
(2015).

[38] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath,
Discrete Time Crystals: Rigidity, Criticality, and Realizations,
Phys. Rev. Lett. 118, 030401 (2017).

[39] W. De Roeck and F. Huveneers, Stability and instability
towards delocalization in mbl systems, Phys. Rev. B 95, 155129
(2017).

245116-10

https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1038/nphys287
https://doi.org/10.1038/nphys287
https://doi.org/10.1038/nphys287
https://doi.org/10.1038/nphys287
https://doi.org/10.1080/00268976.2013.800604
https://doi.org/10.1080/00268976.2013.800604
https://doi.org/10.1080/00268976.2013.800604
https://doi.org/10.1080/00268976.2013.800604
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.94.085112
https://doi.org/10.1103/PhysRevB.94.085112
https://doi.org/10.1103/PhysRevB.94.085112
https://doi.org/10.1103/PhysRevB.94.085112
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
http://arxiv.org/abs/arXiv:1703.07360
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.93.134207
https://doi.org/10.1103/PhysRevB.93.134207
https://doi.org/10.1103/PhysRevB.93.134207
https://doi.org/10.1103/PhysRevB.93.134207
http://arxiv.org/abs/arXiv:1410.4540
https://doi.org/10.1103/PhysRevLett.114.026401
https://doi.org/10.1103/PhysRevLett.114.026401
https://doi.org/10.1103/PhysRevLett.114.026401
https://doi.org/10.1103/PhysRevLett.114.026401
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevLett.118.030401
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129



