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Projective symmetry group classification of Z3 parafermion spin liquids on a honeycomb lattice
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To study exotic excitations described by parafermions in the possible spin liquid states of SU(n) spin systems,
we introduce a parafermion parton approach. The SU(n) spin operators can be represented by clock and shift
matrices, which are shown to be the polynomials of parafermion operators in the parafermion representation. We
find that SU(n) spins can be decomposed into n parafermion matrices of degree one. In this decomposition, the
spin has a {⊗ SU(n)}n−1 gauge symmetry. As an application, we study the one-dimensional three-state clock
model and generalized Kitaev model by a mean-field theory; both of them have been proved to be related to
parafermion excitations. We find that with the symmetries of translations, sixfold rotation, and combination of
parity and time reversal, there are 9 types and 102 solutions for two-dimensional Z3 parafermion spin liquids on
the honeycomb lattice. By contrast, there are 9 types and 36 solutions if both parity and time-reversal symmetries
are present. Our results provide a route for the systematic search of types of spin liquids with exotic anyon
excitations.
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I. INTRODUCTION

In the beginning of this century, Kitaev gave an elegant
way of understanding the phases and physical implications of
the one-dimensional (D) transverse-field Ising model in the
fermionized version [1]. In the fermionic representation, the
quantum phase transition in this model can be understood as
a transition from the weak pairing BCS regime to the strong
pairing BEC regime. The weak-pairing phase is topologically
nontrivial and a chain with open boundaries possesses a
Majorana zero-energy mode localized at each end. Not long
after that, Kitaev proposed the so-called Kitaev honeycomb
model (or simply the Kitaev model) [2], which is one of the
famous examples of exactly solvable spin models in theoretical
condensed matter physics. This model consists of s = 1/2
spins, and their interactions between the nearest neighbors
are of xx-, yy-, or zz-type Ising couplings, depending on
the directions of links. Its exact ground state has a gapless
or gapped spin liquid phase, depending on the interaction
parameters, respectively. The elementary excitations are de-
scribed by itinerant Majorana fermions coupled with a Z2

gauge field. Kitaev had shown that the gapless phase acquires
a gap in the presence of a magnetic field and the excitations
are non-Abelian anyons.

Kitaev’s insight inspires many similar spin models de-
scribed by Majorana fermions with non-Abelian anyon excita-
tions soon afterwards [3–5]. Furthermore, the generalizations
of the Kitaev model to a much larger class of partially
integrable spin models have also been introduced [6,7].
The resulting Hamiltonians have many interesting properties
similar to Kitaev’s original model and could be related to the
2D parafermion systems coupled to a discrete gauge symmetry.
Parafermions, the generalization of Majorana fermions [8–11],
attract considerable attention recently owing to their potential
utility for a universal and intrinsically topological quantum
computation [11,12] based on their non-Abelian statistics
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with a 2π/n phase. Parafermion commutation relations have
appeared in literatures long ago [13–15]. The concept of
parafermions have also been used in the conformal field theory
to describe critical points inZn-symmetrical statistical systems
[9,16]. Moreover, the potential realizations of parafermion
zero modes are also predicted in the Read-Rezayi state for
the fractional quantum Hall effect (FQHE) [17–19], including
edge modes in FQHE [20–22] and fractional topological
insulators [23–26]. Based on this progress in the studies of
spin liquids and parafermions, it is natural to ask whether we
might find spin-liquid states with nontrivial topological orders
and parafermion excitations.

As mentioned above, Majorana fermions are elementary
excitations of spin-liquid states in the Kitaev model with
s = 1/2 spins, so we can expect that parafermions might be
the fractionalized quasiparticles of a Kitaev-like model with
large spins (s > 1/2). However, a large spin will suppress the
quantum fluctuations which are essential to melt the magnetic
moment and realize the spin-liquid state. An alternative route
to preserve quantum fluctuations is to extend the SU(2) spin
to SU(n). As n increases from 2 to larger values, quantum
spin fluctuations are enhanced [27–29]. Such fluctuations may
melt any form of classical orders and lead to various exotic
spin-liquid states. Therefore, exotic excitations that could
be described by parafermions are expected to exist in the
spin-liquid states of SU(n) spin systems. Moreover, we note
that the studies of spin-liquid states of SU(n) spins are not only
purely theoretical exercises but also relevant to experimental
realizations, as the SU(n) spins can be realized in cold atom
systems [30–34], in quantum dot arrays [35], or in materials
with strong spin-orbital couplings [36].

A microscopic theory of spin-liquid states should involve
fractionalized excitations, so the mean-field theory is a natural
and simple approach for an initial study, which can provide
qualitative results and insights on the possible spin-liquid
states. Although the mean-field Hamiltonian usually partially
or completely breaks the symmetries of the spin Hamiltonian,
two apparently different mean-field solutions differing by a
gauge transformation may describe the same physical state
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after projected onto the physical space. Therefore, a classifica-
tion method for the mean-field spin-liquid states is needed. The
projective symmetry group (PSG) classification for spin-liquid
states with fermionic fractionalization on the square lattice was
introduced by Wen [37]. The PSG classification seeks to list
all the possible classes of lattice symmetry representations in
the enlarged Hilbert space of fractionalized spinons, which
is an enumeration and characterization of possible quantum
spin liquid phases. The extensions to other spin models with
different symmetries [38–42], and other representations based
on Majorana fermions [43,44] and bosonic spinons [45–47],
have also been made.

The main purpose of our paper is to present a systematic
PSG classification for the SU(n) spin liquid using the frac-
tionalization with parafermions. We first introduce a general
parafermion parton approach to the SU(n) spins. We find
that a SU(n) spin can be interpreted as a confinement of n

parafermions in the parafermion representation and the Hilbert
space is extended from n dimensions of a local SU(n) spin to
n2 dimensions of four parafermion operators. It is easy to
verify that there are n − 1 SU(n) gauge symmetries, i.e., there
are n − 1 gauge transformations, under which spin operators
are invariant. We then present the projective realizations of
possible symmetries of the SU(n) spin lattice models based on
the mean field theory with parafermion parton approach. As
an example, Z3 PSGs on the honeycomb lattice are calculated.
There are 9 types and 102 solutions with the symmetries of
translations, sixfold rotation, and combination of parity and
time reversal. Furthermore, there are 9 types and 36 solutions
if both parity and time-reversal symmetries are present.

The paper is organized in the following manner. In
Sec. II, we briefly review some notations and properties of
the parafermion operators, clock and shift (C&S) matrices,
which are mathematical basis of this paper. In Sec. III, the
general parafermion parton approach to SU(n) spin operators
is introduced. In Sec. IV, we provide a mean-field theory in
the parafermion representation for parafermion spin liquids
and discuss the constraint they impose on the mean-field
Hamiltonian. Then, two well-known models, the clock model
and generalized Kitaev model, are studied by the mean-field
theory. In Sec. V, we present the general theory of parafermion
projective symmetry representations and construct the possible
PSGs of the generalized Kitaev model as an example. Finally,
in Sec. VI, we present all possibilities of the Z3 PSGs on
the honeycomb lattice, and the detailed calculations are in the
appendix.

II. BASIC CONCEPTS

Before getting into the main subject of this paper, we are
going to simply review the basic properties and some common
conceptions of parafermions. Then, we will introduce the C&S
matrices and their application to SU(n) spins.

A. Parafermions

Parafermions were defined from string operators of Z(N )
spins in theZ(N ) theory long ago [48,49]. Because of potential
relevance to topological quantum information processing,
theoretical studies about parafermions still made progress

recently [50,51]. Parafermions can be regarded as the simplest
generalization of Majorana fermions. A well-known character-
istic of the Majorana fermion is that it is its own antiparticle, so
the creation and annihilation operators of Majorana fermions
are identical, i.e., γ † = γ . Moreover, the Majorana operators
satisfy the following Clifford algebra:

γ 2
i = 1, γiγj = −γjγi . (1)

We can generalize the above algebra of Majorana fermions to
the generalized Clifford algebra (GCA) [52,53] of order n,

γ n
i = 1, γiγj = ωsgn(j−i)γjγi, (2)

where sgn is the sign function and ω = e2πi/n. In this case,
γ † = γ −1 = γ n−1, which means that the creation operator γ †

and annihilation operator γ are different unless n = 2 in which
they are reduced to a self-adjoint representation of a Clifford
algebra as in the Majorana case. For n � 3, γi’s described
by Eqs. (2) are called the parafermion generators of order
n or simply the parafermion operators. For a finite system,
the number L of parafermion operators are even, and the
operators have a unique irreducible representation on a Hilbert
space H of dimension N = nL/2. For Majorana operators,
this is obvious through expressing them in terms of fermionic
annihilation and creation operators.

The ordered monomials of the parafermion operators are
expressed as

m
[i]
I

= γ
n1
1 γ

n2
2 · · · γ nL

L , (3)

where 0 � nj � n − 1, and they can be denoted by the sets of
integers I = {n1,n2, . . . ,nL}. The degree of the monomial is
defined as

i =
⎛
⎝∑

j

nj

⎞
⎠mod n. (4)

We also use [i] to indicate the degree of the polynomials or
matrices in the later sections. The aforementioned points are
the basic properties of parafermion operators that we will use
in the paper.

B. C&S matrices and their application to SU(n) spin

The clock and shift matrices are first introduced by
Sylvester [54]. Their famous utilization is in the n-state Potts
model [55], which is a generalization of the Ising model by
replacing a two-state Ising spin with a “spin” of n states. The
basic operators of the clock and shift matrices, denoted by σ

and τ , respectively, generalize the Pauli matrices σz and σx to
n×n matrices:

σ =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 . . . ωn−1

⎞
⎟⎟⎟⎠, τ =

⎛
⎜⎜⎝

0 . . . 0 1
1 · · · 0 0
...

. . .
...

...
0 . . . 1 0

⎞
⎟⎟⎠,

(5)

where ω = e2πi/n. Similar to parafermion operators, σ and τ

fulfill the following GCA:

σn = 1, τ n = 1, σ τ = ωτσ. (6)
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Besides, they also satisfy that σ † = σ−1 and τ † = τ−1.
However, they are defined on the local n states and commute
with each other on different sites, which is consistent with
“spin” operators.

In order to study the SU(n) spin system, we generalize usual
SU(2) spins to SU(n) spins by the following C&S matrices:

1, τ, · · · , τ n−1,

σ, στ, · · · , σ τn−1,
...,

...,
. . . ,

...,
σ n−1, σ n−1τ, · · · , σ n−1τn−1.

(7)

These n2 operators are obviously linearly independent. Thus,
considering the space of local operators as a linear space of
dimension n2, any local operator can be expanded in the basis
of these n2 operators.

In fact, any SU(n) transformation can also be formally
expressed as a linear combination of n2 linearly independent
unitary matrices σaτ b, i.e.,

U =
n∑

a,b=1

cabσ
aτ b, (8)

where cab = tr(τ−bσ−aU )/n. Thus σaτ b can operate rotations
of an SU(n) spin. We also note that any element of SU(n) can be
expressed as an exponential of n2 − 1 infinitesimal generators,
which are traceless Hermitian matrices. So, one can construct
n2 − 1 generators from Eq. (7),

σaτ b + τn−bσ n−a, i(σaτ b − τn−bσ n−a), (9)

whose commutation relations can be derived from σaτ bσ a′

τ b′ = ω−a′bσ a+a′
τ b+b′

.

III. PARAFERMION PARTON APPROACH
TO SU(n) SPIN OPERATORS

A. Construction of the parafermion parton approach

At the heart of a spin liquid construction is the frac-
tionalization of spin excitations in terms of partons, i.e.,
effective low-energy excitations carrying a fractional spin
quantum number. For example, the celebrated Kitaev model
is solved by writing the spin-1/2 operators in a Majorana
fermion representation [2], which leads to an exact mean-field
description for the spin liquid phase. Recently, the parafermion
representation for Z3 rotors in the Z3 generalization of the
Kitaev model on a triangular lattice [6] and the slave genons
representations related to GCA for generalized Kitaev models
[7] have been proposed. These parton representations succeed
in describing the non-Abelian topological phase.

Here, we develop the parafermion parton approach for
SU(n) spins. In Sec. II B, we have generalized the usual SU(2)
spins to SU(n) spins by the C&S matrices given in Eq. (7).
So, our construction is carried out by representing the C&S
matrices by parafermions. We find that this representation has
the following forms,

σ0 = 1

n

n−1∑
i=0

σ i+1
all σn−i

aid , τ0 = 1

n

n−1∑
i=0

τ i+1
all τn−i

aid . (10)

Here, two families of monomial operators are introduced
to facilitate the parafermion representation: σall = ω(n−1)/2

βγ n−1,τall = ω(n−1)/2αn−1β and σaid = ω(n−1)/2sn−1α,τaid =
ω(n−1)/2sn−1γ . α,β,γ,s are four parafermion operators of order
n with the local commutation relations,

αβ = ωβα, βγ = ωγβ,

αγ = ωγα, ζ s = ωsζ, (11)

where ζ = α,β,γ . According to Eq. (2), these parafermion
operators can be written in order as α,β,γ,s (or s,α,β,γ , if
the commutation relation between ζ and s is ζ s = ω−1sζ ).
With Eq. (11), one can easily find that the monomial operators
satisfy the GCA as expressed by Eq. (6), and the commutation
relations between the two families,

[σall,σaid] = [τall,τaid] = 0, σallτaid = σaidτall,

σallτaid = ωτaidσall, σaidτall = ωτallσaid. (12)

With the parafermion representation, the Hilbert space of
dimension n for a local SU(n) spin has been enlarged to that
of dimension n2 of the four flavor parafermions. Noticing that
the representations of σ0 and τ0 in Eq. (10) in the Hilbert
space of dimension n2 are reducible with a fundamental n-
D representation and n2 − n trivial representations, we can
impose the following local constraint to remove the trivial
representations:

αn−1βγ n−1s = 1. (13)

It is equal to σall = σaid (or τall = τaid).
Up to now, the formal construction of the parafermion

parton approach is completed. To proceed, we would discuss
the gauge symmetry in the redundant space of the representa-
tion and the relation between the SU(n) spin and four flavor
parafermions. For the SU(n) spin, one can define n − 1 SU(n)
transformations in the redundant (n2 − n)-D space under
which Eq. (10) is invariant. Thus, they are related to the gauge
symmetries, whose C&S matrices are given by

σk = 1

n

n−1∑
i=0

ωikσ i+1
all σn−i

aid , τk = 1

n

n−1∑
i=0

ωikτ i+1
all τn−i

aid , (14)

for k = 1,2, . . . ,n − 1, and satisfy the commutation relations,

σkτk = ωτkσk, σkσl = τkτl = σkτl = 0, for k �= l. (15)

When k = 0, they are C&S matrices of the SU(n) spin. The
constraint Eq. (13) implies σk = τk = 0 for k �= 0. With σk

and τk , the Hilbert space of dimension n2 can be divided into
n SU(n) spaces which are generated by Eq. (14). Moreover, the
summation σall = ∑

σk(τall = ∑
τk) generates a direct sum of

n SU(n) spaces. We also note that the C&S matrices in Eq. (14)
are polynomials of degree [0] (also degree [n]), which ensures
that the matrices on different sites are commutative, so they
can be viewed as the SU(n) spin operators.

On the other hand, from the view of four flavor
parafermions, there will be n SU(n) transformations generated
by σk,τk and a combined SU(n) transformation generated by
σall,τall. When restricted by the constraint Eq. (13), then an
SU(n) spin emerges.

Before concluding the construction, we would like to intro-
duce parafermion matrices of degree [1] to factorize Eq. (10),
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in order to show a clearer fractionalization representation of
SU(n) spins. It follows the similar procedure to represent a
spin operator of s = 1/2 by a bilinear, spinor, or even matrix
(tensor) of partons (bosons or fermions). In this way, an SU(n)
spin is a confinement of n parafermions. According to Eq. (8),
the generators of all n SU(n) transformations can be expanded
by p

[0]ab
k = σa

k τ b
k , and we define

p
[i]ab
k = p

[0]ab
k si . (16)

Consequently,

p
[i]ab
k+1 = s−1p

[i]ab
k s,

(
p

[i]ab
k

)† = ω−abp
[−i]−a−b
k+i . (17)

Now the parafermion matrices are written as

P
[i]
k =

∑
a,b

τ aσ bp
[i]ab
k , (18)

where σ and τ are the clock and shift matrices as those in
Eqs. (5). They satisfy P

[i]
k P

[j ]
l = δi+k,lP

[i+j ]
k and (P [i]

k )† =
P

[−i]
k+i . Considering Eqs. (16), (17), and (18), we can write the

SU(n) operators by the parafermion matrices,

p
[0]ab
k = σa

k τ b
k = 1

n2(n−1)
Tr

(
σ−bτ−a

n−1∏
i=0

P
[1]
k+i

)
. (19)

For any SU(n) transformation generated by p
[0]ab
k , there is

a matrix Uk ∈ SU(n): P
[i]
k → U

†
k P

[i]
k . From Eq. (19), p

[0]ab
0

rotates as a vector under U0 but is invariant under other
transformations. Thus U0 is the rotation of the SU(n) spin,
and the others are gauge transformations. It is the fact that the
full local redundancy of the parafermion representation of an
SU(n) spin is the direct product of n − 1 SU(n).

B. Parton approach for s = 1/2 spin: A simplest example

In order to better understand the parafermion parton
approach, we next show how to carry out the Majorana
representation for the s = 1/2 spin using the method described
above. The Schwinger-fermion representation of the s = 1/2
spin can be written in a compact form as [56]

S = − 1
4 Tr(σFF †), (20)

where σ are the Pauli matrices and

F =
(

f↑ f
†
↓

f↓ −f
†
↑

)
. (21)

Here, fα (f †
α ) is an ordinary spin-1/2 fermionic annihilation

(creation) operator with spin α =↑ , ↓. The convenience
of this notation is that the left SU(2) rotations of F are
spin rotations, while the right SU(2) rotations are gauge
transformations, under which Eq. (20) is totally invariant.
Moreover, the gauge transformations are generated by

G = 1
4 Tr(FσF †). (22)

In the representation of spin-1/2 fermions, the spin rotations
are the same as those in the single-particle states but trivial in
the vacuum and doubly-occupied states (which is the spin
singlet states), while the gauge transformations are SU(2)
transformations in the manifold of particles. It seems that

the relationship between them is almost the same as that
in the parafermion representation. Obviously, they can also
be combined to form a combination SU(2) transformation
T = S + G.

The Majorana operators can be defined as

α = f↓ + f
†
↓ ,

β = −i(f↓ − f
†
↓ ),

γ = f↑ + f
†
↑ ,

s = −i(f↑ − f
†
↑ ). (23)

Consequently,

F = 1
2 (is + ασx + βσy + γ σ z). (24)

Comparing with Eq. (18), we find that F is the parafermion
matrix. Thus, Eqs. (20) and (22) are nothing but a specific form
of Eq. (19) in the SU(2) case. Written in the form of Eq. (14),
Eqs. (20) and (22) read

Sσ = − i

4
(sσ + αβγσ ), (25)

Gσ = i

4
(sσ − αβγσ ), (26)

where the superscripts σ = x,y,z and the operators σ =
α,β,γ . Correspondingly, σall = 2T α = iβγ,σaid = 2(Sα −
Gα) = isα, τall = 2T γ = iαβ, and τaid = 2(Sγ − Gγ ) = isγ .
The constraint αβγ s = 1 for the Majorana representation of
the s = 1/2 spin also complies with the form of Eq. (13). In a
word, all of the properties are consistent with those generally
stated in the parafermion parton approach.

Before ending this section, we emphasize that we can
certainly write an SU(n) spin in the fermion representation,

Sαβ = c†αcβ,

where c†α (cβ) are fermionic creation (annihilation) operators,
and Sαβ are the SU(n) generators which satisfy [Sαβ,Sα′β ′

] =
δβα′Sαβ ′ − δβ ′αSα′β . In this representation, the dimension of
space is enlarged to 2n, the redundancy is exponential growth,
and the particle-hole symmetry will suffer in the cases of
s > 1/2 [57].

IV. MEAN-FIELD THEORY OF PARAFERMION
SPIN LIQUIDS

With a complete parafermion representation theory, we are
well prepared for a mean-field theory. Although the mean-field
theory can hardly give the quantitative information about
the low-energy properties of a system, it does qualitatively
tell us the basic properties of spin-liquid states [37]. In the
mean-field theory, if we rewrite the SU(n) spin operators in
the form of parafermion partons and construct the low-energy
effective model, the emergent parafermion excitations are
expected. The physical spin-liquid states can be obtained
by projecting the mean-field states to the physical subspace.
Moreover, with the help of PSG, such spin liquid states can be
classified [37].
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In this paper, we concentrate on the SU(n) spin models on
the 1D or 2D lattices,

H =
∑
rr ′

aba′b′

J rr ′
aba′b′p

[0]ab
0r p

[0]a′b′
0r ′ + · · · + H.c., (27)

where p
[0]ab
0 is the generators of an SU(n) group defined

before, r and r ′ are the lattice indices. Since we mainly focus
on the approach and generic properties of the SU(n) spin
liquids rather than a concrete model, we do not consider the
complex interactions involving more than two spin operators
[which are omitted in the ellipses in Eq. (27)]. Since the
spin operators are written as the polynomials of degree [0],
every term in Eq. (27) is degree [0]. In the mean-field
theory, we decompose p

[0]ab
0r p

[0]a′b′
0r ′ into two polynomials of

degree [0]: p
[0]ab
0r p

[0]a′b′
0r ′ = AB (A and B are commutative,

i.e., [A,B] = 0), and we introduce bosonic fields to decouple
such two-polynomial interactions. In the saddle-point approx-
imation, the bosonic fields are related to the correlations:
AB = χBA + χAB − χAχB , where χA = 〈A〉 and χB = 〈B〉.
Therefore, the mean-field Hamiltonian for Eq. (27) can be
written as

H0 =
∑
r,r ′,m

χrr ′m
ζξ ζm

r ξn−m
r ′ + H.c., (28)

where ζ,ξ = α,β,γ,s.
To perform the mean-field theory, we have to enlarge the

Hilbert space. In this way, the mean-field Hamiltonian can
hardly give the true ground state energy, even the mean-field
ground state is not a valid wave function for the spin system if
there is no constraint. In this case, in order to obtain the valid
state, we need to project the mean-field wave function to the
space with the constraint Eq. (13),


spin = P
mean, P =
∏

r

n−1∑
i=0

(
αn−1

r βrγ
n−1
r sr

)i
. (29)

The projector can be obtained by P = ∏
r (p[0]ab

0r )n. The
projector and gauge transformations are commutative, and the
gauge transformations have no effect on 
spin, so


spin = Ug
spin = P
mean = UgP
mean = PUg
mean.

(30)

It means that different mean-field wave functions related by
a gauge transformation give rise to the same physical spin
state after the projection. In addition, we can introduce a
Lagrange multiplier λr (αn−1

r βr − sn−1
r γr ) into the mean-field

Hamiltonian to enforce the constraint on average.
According to Eq. (30), there is a redundancy for choosing

the mean-field parameters. Furthermore, as mentioned above,
σ i+1

all σn−i
aid and τ i+1

all τn−i
aid have the same commutation relations

as the C&S matrices, and σ0 and τ0 in Eq. (10) can be achieved
by the projection: σ0 = σ i+1

all σn−i
aid P and τ0 = τ i+1

all τn−i
aid P .

Thus, at the mean-field level, we can alternatively represent
C&S matrices by any combinations of σ i+1

all σn−i
aid and τ i+1

all τn−i
aid .

Ultimately, the same physical results are obtained by the
projection to the physical subspace as well. In the following,
we take Baxter’s clock model [58] and the generalized Kitaev

model [7] as examples to illustrate the applications of the
parafermion mean-field theory.

Firstly, we focus on Baxter’s clock Hamiltonian [58],
because it includes almost all the physics of our interest. It
exhibits the similar ordered and disordered phases like the
Ising model and also admits a nonlocal representation wherein
the symmetry breaking state is mapped onto a topological
phase supporting localized zero modes, i.e., the parafermion
zero modes. The most general nearest-neighbor Hamiltonian
for the three-state clock model on a uniform open L-site chain
is

HZ3 = −J

L−1∑
a=1

σaσ
†
a+1 − f

L∑
a=1

τa + H.c., (31)

where σ and τ are the C&S matrices of order 3. We represent
the spin operators in terms of parafermions:

σa = βaγ
−1
a , σ †

a = α−1
a sa, τa = α−1

a βa. (32)

The parafermion operators are ordered along the chain: ζaζb =
ωsgn(a−b)ζbζa , and the local order is s,α,β,γ . The terms in the
Hamiltonian become

σaσ
†
a+1 = ω

(
γ −1

a sa+1
)(

βaα
−1
a+1

)
, (33)

τa = α−1
a βa. (34)

It is easy to verify that ua,a+1 = γ −1
a sa+1 commute

with each other and the Hamiltonian: [ua,a+1,ub,b+1] = 0,
[ua,a+1,HZ3 ] = 0. In this case, the Hamiltonian is written as

HZ3 = −J

L−1∑
a=1

ωua,a+1βaα
−1
a+1 − f

L∑
a=1

α−1
a βa + H.c., (35)

where ua,a+1 can be considered as a Z3 gauge field, since
u3

a,a+1 = 1. Thus, it can be replaced by its eigenvalues. Then,
after the projection, the effective Hamiltonian can be consid-
ered as a 1D parafermion hopping chain. This Hamiltonian is
equivalent to that rewritten by the Fradkin-Kadanoff mapping
[15].

In the parafermion representation, the local Hilbert space
has been extended from 3D to 9D. The redundancy could
be projected out by the projector P . If omitting ‘H.c.’
terms, the remaining non-Hermitian Hamiltonian can be
solved by the notion of free parafermions [10], and there
are edge parafermion zero modes in the nontrivial state when
J > f . The nontrivial state corresponds to the ordered phase
of the original spin model, where the ground state has
threefold degeneracy which is topologically protected by the
Z3 symmetry. The same results can also be obtained by a
mean-field theory. The mean-field Hamiltonian is

Hmean = −J

L−1∑
a=1

ω
(
ua,a+1βaα

−1
a+1 + u0

a,a+1γ
−1
a sa+1

−ua,a+1u
0
a,a+1

) − f

L∑
a=1

α−1
a βa + H.c., (36)

where ua,a+1 = 〈γ −1
a sa+1〉 and u0

a,a+1 = 〈βaα
−1
a+1〉. Obviously,

it describes the same physics as Eq. (35). Then, coupling
the chains together into a honeycomb lattice, we obtain the
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FIG. 1. Space transformations of the honeycomb lattice. The
three bond types are colored differently.

generalized Kitaev model [7]:

H2D = −
∑
〈ij〉

Jζ

(
T

ζ

i T
ζ†
j + H.c.

)
, (37)

where ζ = x,y,z depends on the direction of the link ij as
shown in Fig. 1, and

T x = σ, T y = τ, T z = τ−1σ−1, (38)

which satisfy

T xT y = ωT yT x, T yT z = ωT zT y, T zT x = ωT xT z,

(39)

and T
ζ

i on different sites commute with each other.
Just as before, we write the spin operators in the

parafermion representations,

T x = s−1α, T y = s−1γ, T z = β−1s. (40)

The order of the parafermions is along one chain after another.
The local order is different for different sublattices, s,α,β,γ

for a sublattices and α,β,γ,s for b sublattices. With this
representation, the Hamiltonian is written as

H2D = −
∑
〈ij〉

Jζ

[
ω

(
ζiζ

−1
j

)(
s−1
i sj

) + H.c.
]
. (41)

It is straightforward to verify that [(ζiζ
−1
j ),(s−1

i sj )] = 0, but
they do not commute when the bonds share exactly one site.
Thus, there is no exact solution like the Kitaev model with this
representation. At the mean-field level, the Hamiltonian is,

H2D = −
∑
〈ij〉

Jζ

[
ω

〈
χ

ζ

ij

〉
s−1
i sj + ω

〈
χ0

ij

〉
ζiζ

−1
j

− 〈
χ0

ij

〉〈
χ

ζ

ij

〉 + H.c.
]
, (42)

where the mean-field parameters 〈χζ

ij 〉 = ζiζ
−1
j and 〈χ0

ij 〉 =
s−1
i sj . It describes 2D parafermions coupled with a Z3

parafermion gauge field, which has an analogous form to the
exact description of the slave genons [7]. It is expected that
this is a stable mean-field theory which captures the physics
of the exact ground state.

The mean-field Hamiltonian suggests that the effec-
tive degrees of freedom at low energies are described by
parafermions. Thus there might be a low-energy effective
Z3 lattice gauge theory [59,60] describing the parafermion

spin-liquid state as well. To simplify the notations, we set the
Z3 vector potential σi,j and the electric field τi,j only on the
nearest-neighbor bonds 〈ij 〉. The conserved charges are related
to the local constraint Eq. (13),

αn−1
i βiγ

n−1
i si = ρi =

∏
j

τi,j , (43)

where j is the nearest neighbors of site i. Considering the Z3

gauge field, we have the effective Hamiltonian,

Heff = −
∑
〈ij〉

Jζσi,j

[
ω

〈
χ

ζ

ij

〉
s−1
i sj + ω

〈
χ0

ij

〉
ζiζ

−1
j + H.c.

]

−�
∑
〈ij〉

τi,j − λ
∑

p

∏
〈ij〉∈p

σi,j + H.c., (44)

where �,λ > 0. The sum is over plaquettes labeled by p in the
last term. There will be a variety of phases; here we focus on the
deconfined phases in the large λ limit or the confined phases
in the large � limit. The physics is simple when λ is large
enough so that fluctuations of theZ3 flux through the plaquette∏

〈ij〉∈p σi,j are suppressed. The deconfinement is a robust
property associated with a gap of the Z3 vortex excitations.
In this case, the emergent parafermions carry the Z3 electric
charge, which is evident from their minimal coupling to the Z3

gauge field. Like most states with a deconfinedZ3 lattice gauge
field, this state can also be characterized by a Z3 topological
order. In the other limit when � dominates, the local constraint
is restored and the Hilbert space is projected back to that of
the spin model. Consequently, the fractionalized parafermions
are confined. To the second-order perturbation, the effective
Hamiltonian is given by

H
(2)
eff =

∑
〈ij〉

(
Jζ,〈ij〉T

ζ

i T
ζ†
j + H.c.

)
, (45)

where Jζ,〈ij〉 = 2(ωJζ 〈χζ

ij 〉〈χ0
ij 〉 + H.c.)/(3�). When Jζ,〈ij〉 <

0, it looks like the original spin model in Eq. (37). Note that
the model and its results can be generalized to any n-order
C&S matrices and parafermions.

To solve the parafermion Hamiltonian, we have to seek
some unique methods, or require a Fock space [50] of the
parafermions to construct the occupation number represen-
tation, or adopt the eigenvectors [61] of the parafermion
Hamiltonian. In any case, it is not easy to solve the mean-field
parafermion Hamiltonian. Rather, the PSG classification of
possible parafermion spin-liquid states is much easier, and it
can provide some crucial information to simplify the solution
of the mean-field parafermion Hamiltonian. Therefore, in
the following, we will focus on the PSG classification of
parafermion spin liquids.

V. PROJECTIVE IMPLEMENTATION OF SYMMETRIES

The PSG classification is introduced by Wen [37] on the
square lattice for the so-called symmetrical liquids, i.e., the
spin-liquid states that preserve all of the lattice, spin rotation,
parity, and time reversal symmetries (or a subgroup of these
symmetries, if we use a looser definition of spin liquids).
The PSG approach has been a successful method for the
construction and classification of the quadratic mean-field
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Hamiltonians of a given lattice spin model. In fact, even
beyond the quadratic mean-field Hamiltonians, it also in
principle allows us to distinguish different phases as long as the
symmetry can be projectively realized. Moreover, based on the
Majorana-fermion representation, the simplest parafermion
representation, the Kitaev model has been shown to have the
same PSG classifications as those of the Schwinger-fermion
approach for the SU(2) spin liquids [43,44]. In this section, we
will perform a projective realization of the symmetry group
(SG) of an SU(n) spin model in the parafermion mean-field
theory.

A. Emergent gauge symmetry

As mentioned in Secs. III and IV, the enlarged parafermion
Hilbert space leads to additional local gauge symmetries
G = {⊗k �=0 Uk|Uk ∈ SU(n)}, and the different mean-field
states related by the gauge transformations give rise to the
same physical stats after projection. However, in the mean-field
Hamiltonian H0, the gauge symmetries are generally not
preserved; neither are the physical symmetries of the spin
Hamiltonian H . This implies an interpretation about the
symmetries of the mean-field Hamiltonian.

The additional gauge redundancy in the parafermion space
means that there is some freedom how physical symmetries
act in the Hilbert space of parafermions. A symmetry transfor-
mation w ∈ SG can be restored with a gauge transformation
g ∈ G:

w(H ) = H,

gw(H0) = H0. (46)

Therefore, we can define the symmetry group of H0 as PSG =
{gw|gw(H0) = H0,w ∈ SG,g ∈ G}. However, this choice is
not arbitrary, since the gauge transformations must respect the
algebraic relations among the symmetrical transformations.
Moreover, PSG contains a special subgroup called invariant
gauge group (IGG) in which the group elements are the gauge
transformations leaving H0 unchanged: IGG = {g|g(H0) =
H0,g ∈ G}. If we define a linear map from PSG to SG, SG
is the image and the IGG is the kernel manifestively. Thus, in
the mathematical relationship,

SG = PSG/IGG, (47)

we say that the SG is represented (projectively) in the
parafermion Hilbert space as PSG. This is the core of the PSG
classification and in the following we will introduce the
representations of symmetries that act on a single site.

B. Projective realization of the symmetries

Considering a space transformation S : r → S(r), to make
H0 invariant, the accompanying gauge transformations are
required. Then we have the projective transformation on the
parafermion matrices written as

S : P
[i]
kr → U

†
k P

[i]
kS(r)Uk+i , (48)

where U0 = 1 and Uk ∈ SU(n) (k �= 0), which do not affect
the transformations of the gauge-invariant spin operators.
Similarly, time reversal transformation is implemented with

an antiunitary operation,

T : P
[i]
kr → U

†
kKP

[i]
kr KUk+i , (49)

where K is the complex conjugate operator, Uk ∈ SU(n),
and U0 is the spin rotation operator. Specially, U0 is the
identity operator for the spinless particles and iσ y for the
s = 1/2 SU(2) spin particles.

Spin rotation transformations R are a bit of a difference. If
we follow the assumptions proposed by Chen et al. [44], the
projective spin rotation operators are

T ab = p
[0]ab
0 +

n−1∑
k=1

εkp
[0]ab
k , (50)

where εk = 0,1. There is no doubt that they have the same
commutation relations as p

[0]ab
0 , and PT abP = p

[0]ab
0 . For the

parafermion matrices, they are written as

R : P
[i]
kr → U

†
k P

[i]
kr Uk+i , (51)

where Uk = I if εk = 0, otherwise Uk = U0, which are the
physical spin rotation transformations. There is also a special
conserved operator associated with each plaquette, for example
that defined on the Kitaev model [2,7,62], which can also be
regarded as a product of a loop of spin rotation operators
around plaquettes. Thus, it should be projectively realized like
the spin rotation transformations.

The actions of the transformations of IGG on the
parafermion matrices are given by

g : P
[i]
kr → U

†
k P

[i]
kr Uk+i , (52)

where again Uk(k �= 0) must be chosen to leave H0 invariant.
If relating IGG to a symmetry transformation, the associated
transformation is the identity transformation.

PSGs are often classified by the type of IGG. For example,
if IGG = Z2, we say that the PSG is a Z2 PSG. It should
be remarked that the PSG classification in the parafermion
parton approach is very similar to that in the SU(2) case, and
the main difference is that the gauge structure for parafermion
partons is {⊗ SU(n)}n−1 rather than SU(2). Thus, the IGG is
the subgroup of {⊗ SU(n)}n−1, and the spin liquids are named
by the IGG. However, it is important to keep in mind that the
classification of PSGs is not the same as a classification of
spin-liquid states. There can be distinct spin liquids with the
same PSG, so our aim is to determine the number of PSG
classes and how many different choices in each PSG class. To
recognize the PSG of the generalized Kitaev model of order 3,
in Sec. VI, we will give the classification of the Z3 PSGs on
the honeycomb lattice as an example.

C. Symmetry of the generalized Kitaev model

Now we will consider the symmetry group of the general-
ized Kitaev model. Manifestly, the space group is generated
by two translations Tx and Ty , and a sixfold rotation C6

accompanied by a spin rotation SC6 . Unlike the Kitaev model,
the parity P (which is chosen to be the reflection along the z

bond in this paper) and time reversal T symmetries are absent
for the generalized Kitaev model. However, their combination
transformation PT is invariant with a spin rotation SPT . SC6
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and SPT read

SC6 = eiπ/18

√
3

(T x + T y + T z),

SPT = e−iπ/6

3i

∑
a,b

ωa �=bσ aτ b. (53)

Specially, following the Kitaev model, a similar loop con-
served operator on each hexagonal plaquette is defined as
Wp = T x

1 T
y†

2 T z
3 T

x†
4 T

y

5 T
z†

6 , where the site labels are shown in
Fig. 1. We can easily verify that W 3

p = 1, and [Wp,H2D] = 0,
so the Hilbert space can be separated according to the eigen-
states of Wp. When mapping to the parafermion Hamiltonian,
this loop operator can be defined as a Wilson loop Wp =
χ0

12χ
z
12χ

0
23χ

x
23χ

0†
34χ

y†
34 χ

0†
45χ

z†
45χ

0†
56χ

x†
56 χ0

61χ
y

61, whose phase can be
regarded as a flux through the plaquette.

Written in the parafermion representation, the C&S matri-
ces are

σ = βγ −1 + s−1α + sα−1β−1γ,

τ = α−1β + s−1γ + sαβ−1γ −1. (54)

The spin operators are decomposed into the three parafermion
matrices P

[1]
0 , P [1]

1 , and P
[1]
2 according to Eq. (19). Then there

are three SU(3) transformations D, Z, and Y , under which
P

[1]
0 , P

[1]
1 , and P

[1]
2 are transformed as D†P [1]

0 Z, Z†P [1]
1 Y ,

and Y †P [1]
2 D. The transformations Z and Y are the two

gauge transformations that leave the spin operators invariant,
and D = SPT S∗S†

PT is related to a spin rotation. Here, S is
the matrix representation of a spin rotation, and SPT is the
matrix representation of the accompanying spin rotation of
PT transformation.

Any operator acting on a spin, such as a symmetric
transformation, also acts on the gauge space. Thus, when we
fractionalize spins in the parafermion representation, we must
also specify how the symmetrical operations of the model
act on the gauge degree of freedom. This extra information,
known as the projective symmetry group [37], characterizes
the fractionalized quantum state. If the ground state is char-
acterized by Eq. (42), where the parafermion s is connected
while the others are isolated in different bonds just like that in
the SU(2) case [43], the PSG of parafermion spin liquid can
be determined starting from the fact that the parafermion s is a
special flavor which should not be mixed with others. Thus, any
symmetrical transformation must preserve the flavor s with an
accompanying gauge transformation, otherwise the symmetry
will break in the ground state. Under the transformation
D = Z = Y , s is invariant, while α (γ ) varies like σ (τ ) under
a SU(3) transformation. Therefore, the accompanying gauge
transformation for one of the symmetrical transformation D is
required to be Z = ωmD and Y = ωnD, where m and n are
determined by keeping 〈χζ

ij 〉 and 〈χ0
ij 〉 unchanged.

The local gauge symmetry of the generalized Kitaev model
is SU(3) ⊗ SU(3), which will degenerate into an IGG in the
mean-field Hamiltonian. Since the mean-field Hamiltonian
Eq. (42) is definitely invariant under the transformations
ζ → ωnζ and s → ωns, IGG is at least a Z3 group {1,ei2π/3 ⊗
e−i2π/3,e−i2π/3 ⊗ ei2π/3}. For the mean-field Hamiltonian, we
suppose that the IGG is Z3 and the flux through each hexagon

is �p. Because S6
C6

= 1 and SC6SPT S∗
C6

S∗
PT = 1, according to

the results in the following section, a preliminary analysis
suggests that the PSG belongs to the class �p(I), where
�p denotes the flux through each hexagon in the mean-field
Hamiltonian, and (I) denotes the constraint ηC6η

2
xy = 1.

VI. CLASSIFICATION OF Z3 PROJECTIVE SYMMETRY
GROUPS ON A HONEYCOMB LATTICE

Here, we present the classification of Z3 PSG of a SU(3)
spin model on a Honeycomb lattice with SG generated by
{Tx,Ty,C6,PT (P,T )}. Tx and Ty are two translations in the
two dimensions, C6 is a sixfold rotation, and P is a reflection,
as illustrated in Fig. 1. T is the time-reversal transformation.
Considering that the SU(3) parafermion representation has
two SU(3) gauge transformations, we suppose the Z3 IGG is
{1,ei2π/3 ⊗ e−i2π/3,e−i2π/3 ⊗ ei2π/3}.

The symmetry group of a general spin model on the
Honeycomb lattice generated by the three generators Tx,Ty,C6

has the following four relations,

C6
6 = 1,

TxTyT
−1
x T −1

y = 1, (55)

C6TxC
−1
6 T −1

x T −1
y = C6TyC

−1
6 Tx = 1.

When PT presents, there are four extra relations,

PT PT = 1,

PT TxPT T −1
y = PT TyPT T −1

x = 1, (56)

C6PT C6PT = 1.

Furthermore, if both P and T present, nine extra relations will
arise instead,

T 2 = P2 = 1,

PT PT = 1,

T TxT T −1
x = T TyT T −1

y = 1,

PTxP−1T −1
y = PTyP−1T −1

x = 1,

C6PC6P = 1,

T C6T C−1
6 = 1. (57)

The identity transformations are defined from these rela-
tions, and their accompanying gauge transformations are given
by {IGG|ηab ∈ IGG}, where a and b indicate the corresponding
symmetries (see Appendix for details). For each relation,
there are three different classes of solutions. Similar but more
complicated results are obtained for all relations between
the symmetries. Correspondingly, different combinations of
ηab finally define distinct characteristics of spin-liquid states,
yielding a classification scheme on a general ground. The
detailed derivation is given in Appendix, and the corresponding
results are presented in the following.

First, if only two translations are involved, fixing the
relative gauge between unit cells: gTy

(x,y) = gTx
(x,0) = 1,

the solution for the two translations are

gTx
(x,y) = ηy

xy, gTy
(x,y) = 1. (58)
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Since ηxy ∈ IGG, under PSG classification, there are only
three types of Z3 spin liquids which can be determined by
the flux �p = 2kπ/3 through each hexagon in the mean-field
Hamiltonian without other symmetries.

Then, including the C6 rotation, the accompanying gauge
transformation of C6 satisfies

gC6 (x,y) = ηx(x−1)/2−xy
xy gC6 (0,0), (59)

where (0,0) will be omitted in the following. There are
further three new types of classifications for each translation
symmetry, depending on the value of ηC6η

2
xy . Thus, there are

3×3 = 9 types of the classifications in total. In the following,
we discuss the solutions of gC6 (a) and gC6 (b) (a and b refer to
different sublattices) in three different situations according to
the values of ηC6η

2
xy .

(I): ηC6η
2
xy = 1. gC6 (a) and gC6 (b) have 4×4 = 16 different

choices. (The accompanying gauge transformations gα are
elements of SU(3) ⊗ SU(3) and 1 is short for 1 ⊗ 1, unless
otherwise specified.) Given a fixed global gauge, we have

gC6 (a) = 1, gC6 (b) = m+ ⊗ m−, (60)

where m+ and m− are elements of the group
{1,exp(i2π/3),exp(−i2π/3),exp(i2πλ3/3)}. Here, λ3 is the
third Gell-Mann matrix

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠.

(II) and (III): ηC6η
2
xy = exp(ξ i2π/3) ⊗ exp(−ξ i2π/3),

where ξ takes + and − for (II) and (III), respectively. Each
type has 3×3 = 9 different choices. gC6 (a) and gC6 (b) have
the same form as that in Eq. (60), but

m± ∈ {
exp

[
ξ i2

√
3πλ8

(
1
3k ± 1

9

)]|k = 0,1,2
}
,

where λ8 is the eighth Gell-Mann matrix

λ8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

Therefore, in all, there are nine types and 3×(16 + 9 + 9) =
102 different choices.

The relations in Eq. (56) involve PT result ηPT = ηxPT =
ηyPT = ηC6PT = 1, which means there is no extra gauge
freedom for PT . Therefore, with a fixed global gauge, we
have

gPT (x,y,a) = gPT (x,y,b) = ηxy
xy , (61)

and the classification is the same as that with the symmetries
Tx , Ty , and C6.

Finally, taking both P and T symmetries into account
instead of PT symmetry, there are 3×3 = 9 types of clas-
sifications based on the values of ηP and ηC6P . When P
or T presents, ηxy = 1. If ηxy �= 1, there is 2π/3 (4π/3)
flux through each hexagonal plaquette in the mean-field
Hamiltonian. Since the parity (which is also the reflection
here) and time-reversal transformations would reverse the
flux, the Hamiltonian is inevitable to vary according to these
transformations. Thus, it is impossible to realize P and T
projectively when ηxy �= 1. After a careful scrutiny, we can get

ηC6 = ηT = 1 and ηT C6ηP = ηT Pη2
Pη2

C6P = 1. Consequently,
the accompanying gauge transformations of P and T are
translational invariant, i.e., gP (x,y) = gP and gT (x,y) = gT .
Therefore, with a fixed global gauge, the accompanying gauge
transformations can be chosen as

gTx
= gTy

= 1,

gC6 (a) = 1,

gC6 (b) = η2
PηC6P ,

gP (b) = m+ ⊗ m−
gP (a) = ηPη2

C6PgP (b)

gT (a) = 1,

gT (b) = η2
C6PηP , (62)

where m± ∈ {exp[i2
√

3πλ8(k/2 ± l/6)]|k = 0,1} and l = 0,

1,2 for three different choices of ηC6P . With the values
of k, there are 2×2 = 4 different choices for each type.
Thus, there are 9×4 = 36 different choices in all. In the
appendix, we give an extra discussion on the time-reversal and
reflection symmetry. If the time-reversal symmetry is absent,
the classification is generally the same, but, if the reflection
symmetry is absent, there will be three PSGs related to three
different values of ηT C6 , and each type has only one solution.

VII. DISCUSSION AND CONCLUSION

In this paper, we develop a theoretical framework to
describe spin-liquid states based on the parafermion parton
approach and effective gauge theory. We show that SU(n)
spins can be fractionalized appropriately by the parafermion
operators with n − 1 SU(n) gauge symmetries, which are
distinct from the fermions and bosons in the conventional
condensed matters. By this parton approach, the symmetries
of an original SU(n) spin model can be projectively realized
in the effective mean-field Hamiltonian.

As a concrete example, we have discussed the PSG clas-
sifications of the parafermion spin liquids of the generalized
Kitaev model. The projective realization of this model leads
to spin liquids with parafermion excitations coupled to a
deconfined Z3 gauge field. Although the local operators of
this example are Z3 rotors rather than real SU(3) spins, the
parafermion parton approach and PSG classification work
also for SU(n) spin models. The local gauge symmetry of
the Z3 PSGs discussed here is SU(3) ⊗ SU(3), which is much
more complicated than that in the SU(2) models with spin
s = 1/2, whose IGGs are always Z2, U(1) and SU(2). Other
IGGs may lead to more kinds of the parafermion spin liquids,
which is an interesting open question in the future. Beyond
the classification, it is difficult to diagonalize the parafermion
Hamiltonians actually, since there is no general method as
what we have for the quadratic fermion Hamiltonians. At
the present stage, we can of course technically use the
numerical method based on the standard fermion parton to
study SU(n) spin models [63,64], especially when the ground
states are related to the fermionic fractionization. However,
the fermion representation is limited for parafermion spin
liquids. When N = 2, the fermion representation is equivalent
to the Majorana fermions representation, and when N = 3,
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it may be feasible since the projection may lead the fermion
mean-field wave function to the true ground state. But when
N increases to large values, fermions differ significantly from
parafermions; it is hard to expect the fermion mean-field wave
function could lead to a parafermion spin liquid state. Now the
numerical methods about parafermion states is developing,
such as the matrix product states for parafermions introduced
recently [65]. Thus, in order to understand the parafermion spin
liquids much clearer, not only deeper analysis but also more
numerical calculation methods are needed, and our parton
approach deserves further attention.

Apart from the pure theoretical significance that it provides
a method to study quantum spin liquids, it is also conducive to
the experiments on the SU(n) magnets [30–36] to explore the
exotic parafermion excitations. These experimental platforms
will give rise to the topological qubits, which are better
protected against environmental noise and allow for richer
fault-tolerant qubit rotations in contrast to the Majorana-based
architectures.
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APPENDIX: DERIVATION OF PSG
ON A HONEYCOMB LATTICE

On the Honeycomb lattice, each unit cell is labeled by its
integer coordinates x and y along the translation axes of Tx

and Ty . A spin site is further specified by its sublattice label
a or b within the unit cell as shown in Fig. 1. The symmetry
group operators act on the lattice by

Tx(x,y) = (x + 1,y),

Ty(x,y) = (x,y + 1),

C6(x,y,a) = (x − y,x,b),

C6(x,y,b) = (x − y − 1,x,a),

P(x,y,ζ ) = (y,x,ζ ).

The sublattice label is omitted if a formula applies to
both sublattices. The reflection transformation does not only
exchange the x and y but also the sublattice labels a and b.

According to the relations of symmetrical transformations
in Eqs. (55), (56), and (57), the constraints of the accompany-
ing gauge transformations of Tx , Ty , and C6 are

gC6

(
C3

6 (r)
)
gC6

(
C2

6 (r)
)
gC6 (C6(r))

gC6 (r)gC6

(
C−1

6 (r)
)
gC6

(
C−2

6 (r)
) = ηC6 , (A1)

gTx
(Ty ◦ Tx(r))gTy

(Tx(r))g−1
Tx

(r)g−1
Ty

(Ty(r)) = ηxy, (A2)

gC6

(
Tx ◦ C−1

6 (r)
)
gTx

(
C−1

6 (r)
)

g−1
C6

(r)g−1
Tx

(Tx(r))g−1
Ty

(Ty ◦ Tx(r)) = ηC6x, (A3)

gC6 (Ty(r))gTy
(r)g−1

C6
(C6(r))gTx

(
T −1

x ◦ C6(r)
) = ηC6y. (A4)

When involving PT , the additional constraints of the accom-
panying gauge transformations are

gPT (P(r))KgPT (r)K = ηPT , (A5)

gPT (Tx(r))KgTx
(r)gPT (P(r))KgT −1

y
(Ty ◦ P(r)) = ηxPT ,

(A6)

gPT (Ty(r))KgTy
(r)gPT (P(r))KgT −1

x
(Tx ◦ P(r)) = ηyPT ,

(A7)

gC6 (P ◦ C6(r))gPT (C6(r))gC6 (r)gPT (P(r)) = ηC6PT . (A8)

If involving both P and T instead of PT , they are

gT (Tx(r))gTx
(r)gT (r)g−1

Tx
(Tx(r)) = ηxT (A9)

gT (Ty(r))gTy
(r)gT (r)g−1

Ty
(Ty(r)) = ηyT , (A10)

gP (Tx(r))gTx
(r)g−1

P (P(r))gT −1
y

(Ty ◦ P(r)) = ηPx, (A11)

gP (Ty(r))gTy
(r)g−1

P (P(r))gT −1
x

(Tx ◦ P(r)) = ηPy, (A12)

gT (r)KgT (r)K = ηT , (A13)

gP (P(r))gP (r) = ηP , (A14)

gT (C6(r))KgC6 (r)gT (r)Kg−1
C6

(C6(r)) = ηT C6 , (A15)

gT (P(r))KgP (r)gT (r)Kg−1
P (P(r)) = ηT P , (A16)

gC6 (P ◦ C6(r))gP (C6(r))gC6 (r)gP (P(r)) = ηC6P . (A17)

Where ηab are the group elements of the IGG. It is noticed
that 1 and e±i2π/3 in the elements of IGG are the SU(3)
matrices in the form of exp(i2

√
3λ8k/3), rather than a scalar.

Thus, the calculations involving them must obey the SU(3)
algebra. Although there are so many conditions, not all of them
are independent. Therefore, it is not a simple classification
including 38 types of PSG in the case that there is only PT
symmetry or 313 types in the case that there are both P and T
symmetries.

It is known that the wave functions are gauge equivalence if
they can be related by the local gauge transformations. Making
use of such degrees of freedom, we can always choose relative
gauge between the unit cells so that

gTx
(x,0) = gTy

(x,y) = 1. (A18)

Now, according to Eq. (A2), we have gTx
(x,y + 1) =

ηxygTx
(x,y). The solutions are given by

gTx
(x,y) = ηy

xy, gTy
(x,y) = 1. (A19)

Substituting Eq. (A19) into Eqs. (A3) and (A4), we have

gC6 (x + 1,y) = ηx−y
xy ηC6xgC6 (x,y),

gC6 (x,y + 1) = η−y
xy ηC6ygC6 (x,y), (A20)

whose solution is

gC6 (x,y) = ηx(x−1)/2−xy
xy ηx

C6x
η

y

C6y
gC6 . (A21)
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Because gTx
or gTy

appears only once in Eqs. (A3) and (A4), if
we choose a gauge transformation of gTx

or gTy
by multiplying

it by an element of IGG, the solution of ηC6x or ηC6y will be
changed. However the mean field Hamiltonian is invariant,
since each term of it is degree [0]. Therefore, gTx

and gTy

(also ηC6x and ηC6y) are not independent. Making use of this
gauge freedom, we can set ηC6x = ηC6y = 1. Then, inserting
Eq. (A21) into Eq. (A1), we have

[gC6 (a)gC6 (b)]3 = [gC6 (b)gC6 (a)]3 = ηC6η
2
xy. (A22)

It is clear that the solutions are based on the value of ηC6η
2
xy ,

which is surely one element in IGG. Fixing the relative gauge
between sublattices a and b by supposing gC6 (a) = 1, we have
gC6 (b)3 = ηC6η

2
xy . According to its solutions, there are three

types of PSG as mentioned in Sec. VI. Next, we are going to
calculate PSGs, in the cases that there is PT and there are
both P and T .

1. PT
When PT presents, there are additional constraints

Eqs. (A5), (A6), (A7), and (A8). Substituting Eq. (A18) into
Eqs. (A6) and (A7), we obtain

gPT (y + 1,x)KgPT (x,y)K = ηy
xyηxPT ,

gPT (y,x + 1)KgPT (x,y)K = ηx
xyηyPT , (A23)

then, inserting Eq. (A5),

gPT (x + 1,y) = ηy
xyηxT η−1

T gPT (y,x),

gPT (x,y + 1) = ηx
xyηyT η−1

T gPT (y,x). (A24)

The solution is

gPT (x,y) = ηx
xPT η

y

yPT ηxy
xyη

−x−y

PT gPT . (A25)

Considering Eq. (A5) on the site (0,0), we have

gPT (b)KgPT (a)K = ηPT ,

gPT (a)KgPT (b)K = ηPT . (A26)

Since ηPT ∈ IGG, the equations hold only if ηPT = 1. Thus,
gPT (b)g∗

PT (a) = 1.
Substituting Eq. (A25) into Eq. (A5),

η
y−x

xPT η
x−y

yPT = 1. (A27)

Therefore, ηxPT = ηyPT . Then substituting Eq. (A25) into
Eq. (A8),

η
2y−x

xPT gC6 (a)gPT (b)g∗
C6

(a)g∗
PT (b) = ηC6PT ,

η
2y−x−1
xPT gC6 (b)gPT (a)g∗

C6
(b)g∗

PT (a) = ηC6PT . (A28)

The right-hand side of the equations are independent of (x,y),
so ηxPT = 1. Similarly, we have ηPT = 1 and ηC6PT = 1. If a
proper global gauge was chosen, one can show that gPT (a) =
gPT (b) = 1. In sum, there is no extra type of PSG when PT
presents.

2. T and P
If T presents, substituting Eq. (A18) into Eqs. (A9) and

(A10), we obtain

gT (x + 1,y)KgT (x,y)K = η−y
xy ηxT ,

gT (x,y + 1)KgT (x,y)K = ηyT , (A29)

then, inserting Eq. (A13),

gT (x + 1,y) = η−y
xy ηxT η−1

T gT (x,y),

gT (x,y + 1) = ηyT η−1
T gT (x,y). (A30)

The solution exists only if ηxy = 1, and it is

gT (x,y) = ηx
xT η

y

yT η
−x−y

T gT . (A31)

As we know that for a time-reversal transformation, its
square, such as Eq. (A13), is 1 or −1. Since −1 is not a SU(3)
element, only ηT = 1 holds. Choosing a proper global gauge,
we can always choose gT (a) = 1.

Substituting Eqs. (A21) and (A31) into Eq. (A15), we have

η
−y−1
xT η

x−y

yT KgT (b)K = ηT C6gC6 (b)2,

η
−y

xT η
x−y

yT gT (b) = ηT C6 . (A32)

The solution is

gT (b) = ηT C6 , gC6 (b) = η−1
T C6

, (A33)

with ηxT = ηyT = 1. Now there is only one independent ηab:
ηT C6 , so there are three types and each type has only one
solution.

Before going on, we try to figure out the solutions if there
is no time-reversal symmetry. Substituting Eq. (A18) into
Eqs. (A11) and (A12), then a similar process as for gT will be
given, which would lead to ηxy = 1 and

gP (x,y) = ηx
Pxη

y

PygP . (A34)

Inserting it into Eqs. (A14) and (A17), we get

η
x+y

Px η
x+y

Py gP (ζ )gP (ζ ) = ηP , (A35)

η
−y

Px [gC6 (b)gP (a)]2 = ηC6P , (A36)

η
−y−1
Px [gC6 (a)gP (b)]2 = ηC6P . (A37)

The right-hand side of these equations are independent of
(x,y), so must be the left-hand side. Thus ηPx = ηPy = 1.
After simplifying with Eq. (A22), we obtain the equations

gP (a)gC6 (b)gP (a) = η2
C6

ηC6PgC6 (b)2

gP (ζ )gP (ζ ) = ηP

[gC6 (b)gP (a)]2 = gP (b)2 = ηC6P . (A38)

The solutions are

ηC6 = 1, gC6 (b) = η2
PηC6P .

gP (b)2 = ηC6P , gP (a) = ηPη2
C6PgP (b). (A39)

Careful calculations will give nine types of PSG and their
corresponding 36 choices.

Taking both P and T into account, Eqs. (A15) and (A16)
give

ηT PηP = 1, ηT C6η
2
PηC6P = 1. (A40)
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Thus, only two of ηT P ,ηT C6 ,ηP , and ηC6P are independent, which also results in nine types of PSG and their corresponding
36 choices.
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