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We consider a helical system of fermions with a generic spin- (or pseudo-spin-) orbit coupling. Using the
equation of motion approach for the single-particle distribution functions and a mean-field decoupling of the
higher-order distribution functions, we find a closed form for the charge- and spin-density fluctuations in terms
of the charge- and spin-density linear-response functions. Approximating the nonlocal exchange term with
a Hubbard-like local-field factor, we obtain coupled spin- and charge-density response matrices beyond the
random phase approximation, whose poles give the dispersion of four collective spin-charge modes. We apply
our generic technique to the well-explored two-dimensional system with Rashba spin-orbit coupling and illustrate
how it gives results for the collective modes, Drude weight, and spin-Hall conductivity, which are in very good
agreement with the results obtained from other more sophisticated approaches.
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I. INTRODUCTION

Materials with strong spin-orbit couplings (SOCs) have
attracted an enormous interest recently not only because of
their envisioned applications in spintronics [1–3], but also
due to the eminent role they play in several fundamentally
interesting phenomena, such as topological phases of matter
[4], Majorana fermions [5], etc. Coupling between a pseu-
dospin or a valley degree of freedom with the orbital motion of
electrons in two-dimensional materials, such as graphene and
monolayers of transition-metal dichalcogenides, have attracted
a lot of interest too. The generation of synthetic gauge fields for
ultracold gases [6,7], photonic [8], or mechanical [9] systems is
being explored actively both theoretically and experimentally.

Although several interesting single-particle phenomena are
associated with the helicity in all these systems, the intro-
duction of interparticle interactions could lead to unexpected
properties [10–26]. In particular, it is well known that the
breakdown of the Galilean invariance makes several quantities,
such as the Drude weight, optical response, and spin-Hall
conductivity, susceptible to many-body effects [27–31]. For
the collective modes, going beyond the standard random
phase approximation (RPA) is necessary in order to obtain
the correct dispersion even in the long-wavelength limit for
broken Galilean invariant systems [31].

In a conventional electron liquid, the dispersion of col-
lective charge, i.e., plasmon mode could be obtained from
the interacting linear density-density response function, which
within the celebrated RPA reads [32]

χRPA(q,ω) = [1 − χ0(q,ω)v(q)]−1χ0(q,ω), (1)

where χ0(q,ω) is the noninteracting density-density response
function and v(q) is the Fourier transform of the particle-
particle interaction potential. Improvements upon the RPA
could be generally thought of in two directions: (i) Replacing
the noninteracting density response function with the proper
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one and including the lowest-order irreducible diagrams in
it [32] as is performed, e.g., in time-dependent Hartree-Fock
approach, or (ii) replacing the bare interparticle interaction
v(q) with an effective one w(q,ω) through the introduction of
the many-body local field factors (LFFs), which in its simplest
form could be written as w(q,ω) = v(q)[1 − G(q,ω)]. The
first approach is usually very complicated and hard to go
beyond the lowest-order corrections. On the other hand,
historically the concept of many-body LFFs have received a
lot of interest, and several mainly self-consistent formulations
for its evaluation are available [32] for conventional electron
liquids, i.e., in the absence of SOC.

Although there are several attempts to go beyond the RPA
for helical liquids, in particular for electronic systems with
SOC [29,30] and graphene [31], the concept of LFFs is ex-
tended to these systems here. Our aim in this paper is to follow
the steps which lead to a derivation of the LFF for electron
liquids by Hubbard [33] for a Fermi liquid with a generic
spin- or pseudo-spin-orbit coupling. In this way, we find a
closed expression for the interacting spin-density response
functions in terms of the noninteracting response functions and
the Hubbard LFF. The singularities of these responses provide
the dispersions of the coupled spin-charge collective modes.
Then, we apply this formalism to a two-dimensional (2D)
system with Rashba SOC, whose many-body properties have
been explored extensively in the past few years with different
techniques. We find that our results for the long-wavelength
behavior of the collective modes, the many-body modification
of the Drude weight, and the spin-Hall conductivity all agree
well with the findings of others.

The rest of this paper is organized as follows. In Sec. II
we introduce our generic Hamiltonian and the basic notations.
In Sec. III we find the linear spin-density response functions
beyond the RPA using the equation of motion method and
the mean-field approximation. The results of this section have
been used to find the collective modes, Drude weight, and
spin-Hall conductivity of a 2D Rashba system in Sec. IV.
In Sec. V we summarize our main findings and discuss the
future directions for further development of the LFFs for
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helical systems. Finally, we have dedicated two appendices
to present the details of our equation of motion and mean-field
decoupling technique (Appendix A) as well as the spin-density
response functions of a 2D Rashba system (Appendix B).

II. MODEL AND BASIC NOTATIONS

The Hamiltonian of an interacting D-dimensional two-band
Fermi system with a generic SOC and a spin-dependent
external potential can be written as

Ĥ = T̂ + V̂ext + V̂int

=
∑

k,σ,σ ′
εσ,σ ′(k)â†

k,σ âk,σ ′ + 1

V
∑
i,q

φi
ext(−q)Si

q

+ 1

2V
∑

q

v(q):S0
qS

0
−q:. (2)

Here, the single-particle energy matrix ε(k) is naturally non-
diagonal in the presence of SOC, â

†
k,σ and âk,σ , respectively,

create and annihilate an electron with wave-vector k and spin
σ, V is the D-dimensional volume of system, i runs over the
particle density (i = 0), and three Cartesian components of
spin (i = 1–3), φi

ext(−q) is the external potential coupled to the
ith component of the spin density, v(q) is the D-dimensional
Fourier transform of the interparticle interaction potential,
:ÂB̂ · · · : enforces the normal ordering of the enclosed cre-
ation and annihilation operators, and finally the spin-density
operators are defined as

Ŝi
q =

∑
k,σ,σ ′

â
†
k−q,σ τ i

σ,σ ′ âk,σ ′ , (3)

where τ 0 = I and τ i �=0 refer to the standard 2 × 2 Pauli
matrices. Note that the q = 0 term in the last term of
Eq. (2) represents the Hartree contribution to the interacting
energy and should be discarded for the jellium model of
electron liquids [32]. With the help of a suitable unitary
transformation U (k), the single-particle energy matrix ε(k)
could be diagonalized to give two energy bands εk,±, and the
Hamiltonian (2) in the band basis reads

Ĥ =
∑
k,μ

εk,μĉ
†
k,μĉk,μ + 1

V
∑
i,q

φi
ext(−q)Si

q

+ 1

2V
∑

q

v(q):S0
qS

0
−q:. (4)

Here, ĉ
†
k,μ and ĉk,μ are the creation and annihilation operators

of the electrons in the band basis, and the spin-density
operators in the new basis read

Ŝi
q =

∑
k,μ,ν

F i
μ,ν(k − q; k)ĉ†k−q,μĉk,ν , (5)

with the form factor matrices being defined as

F i(k − q; k) = U †(k − q)τ iU (k), (6)

where the matrix product is understood on the right-hand
side (RHS) of Eq. (6) and clearly we have F i

μ,ν(k − q; k) =
F i∗

ν,μ(k; k − q). The explicit expressions for these form factors
depend on the specific form of the spin-orbit coupling of
interest, and for the special case of Rashba SOC, they are
provided in Sec. IV.

III. EQUATION OF MOTION

In order to obtain the spin-density linear-response func-
tions, we write the Heisenberg equation of motion for
the single-particle distribution function 〈ĉ†k−q,μĉk,ν〉 [34–37]
(h̄ = 1),

i
d

dt
〈ĉ†k−q,μĉk,ν〉 = 〈[ĉ†k−q,μĉk,ν ,Ĥ ]〉. (7)

Note that, in the presence of an external perturbation φext, we
have 〈ĉ†k′,μĉk,ν〉 = δk,k′δμ,νnk,μ + O(φext), where nk,μ is the
equilibrium part of the occupation number of fermions. With
some straightforward algebra (see Appendix A for the details)
for the first two terms of the Hamiltonian (4) we find [38]

〈[ĉ†k−q,μĉk,ν ,T̂ ]〉 = (εk,ν − εk−q,μ)〈ĉ†k−q,μĉk,ν〉, (8)

and

〈[ĉ†k−q,μĉk,ν ,V̂ext]〉 ≈ 1

V (nk−q,μ − nk,ν)

×
∑

j

φ
j
ext(q)F j

ν,μ(k; k − q). (9)

On the RHS of Eq. (9), only terms to linear order in the
external potential are retained, therefore the expectation values
are evaluated safely with respect to the equilibrium (i.e.,
unperturbed) state.

For the interaction term of the Hamiltonian (4), after some
lengthy but straightforward algebra, we find

〈[ĉ†k−q,μĉk,ν ,V̂int]〉

= 1

V
∑

q′
v(q′)

∑
k′,μ′,ν ′

F 0
μ′,ν ′ (k′ − q′; k′)

×
∑

γ

[
F 0

ν,γ (k; k − q′)〈ĉ†k−q,μĉ
†
k′−q′,μ′ ĉk′,ν ′ ĉk−q′,γ 〉

−F 0
γ,μ(k − q + q′; k − q)

×〈ĉ†k−q+q′,γ ĉ
†
k′−q′,μ′ ĉk′,ν ′ ĉk,ν〉

]
. (10)

Now, using the mean-field decoupling of the quartic terms in
the creation and annihilation operators into quadratic terms
〈ĉ†1ĉ†2ĉ3ĉ4〉 ≈ 〈ĉ†1ĉ4〉〈ĉ†2ĉ3〉 − 〈ĉ†1ĉ3〉〈ĉ†2ĉ4〉, then keeping up to
linear terms in the external potentials, and discarding the
self-energy contribution to the single-particle energies (see
Appendix A for the details), we obtain

〈[ĉ†k−q,μĉk,ν ,V̂int]〉 = 1

V (nk−q,μ − nk,ν)

⎡
⎣v(q)F 0

ν,μ(k; k − q)
〈
Ŝ0

q

〉− ∑
k′,μ′,ν ′

v(k − k′)F 0
ν,ν ′(k; k′)F 0

μ′,μ(k′ − q; k − q)〈ĉ†k′−q,μ′ ĉk′,ν ′ 〉
⎤
⎦.

(11)
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Note that the first term on the RHS of the above expression
represents the standard random phase approximation, whereas
the second term is the effects of exchange beyond the RPA.

Now, using the completeness relation for the Pauli matrices∑3
i=0 τ i

α,βτ i
γ δ = 2δα,δδγβ , we find the following very useful

general identity for the form factors:

F 0
ν,ν ′(k; k′)F 0

μ′,μ(k′ − q; k − q) = 1

2

∑
i

F i
ν,μ(k; k − q)F i

μ′,ν ′ (k′ − q; k′), (12)

which is independent of the specific form of the form factors. Now, using Eq. (12) in the second term on the RHS of Eq. (11),
summing all the contributions to the RHS of Eq. (7), and then taking the Fourier transformation with respect to time, we find

〈ĉ†k−q,μĉk,ν〉 = 1

V
nk−q,μ − nk,ν

ω + εk−q,μ − εk,ν

∑
j

F j
ν,μ(k; k − q)φj

ext(q) + v(q)
1

V
nk−q,μ − nk,ν

ω + εk−q,μ − εk,ν

F 0
ν,μ(k; k − q)

〈
S0

q

〉

− 1

2V
∑

j

F j
ν,μ(k; k − q)

nk−q,μ − nk,ν

ω + εk−q,μ − εk,ν

∑
k′,μ′,ν ′

v(k − k′)F j

μ′,ν ′ (k′ − q; k′)〈ĉ†k′−q,μ′ ĉk′,ν ′ 〉. (13)

The nonlocal form of the last term on the RHS of Eq. (13)
makes it impossible to find a closed form for the density
fluctuations. Following Hubbard [32,33,36], we approximate
v(k − k′) ≈ vH(q) in the nonlocal term of Eq. (13). This
is equivalent to the summation of ladder diagrams with
screened interaction, and vH(q) = v(

√
k2

F + q2) usually is
adopted for electron liquids [32,35], where kF is the Fermi
wave vector. Furthermore, multiplying both sides of Eq. (13)
by F i

μ,ν(k − q; k) and summing over k, μ, and ν, we obtain〈
Si

q

〉 =
∑

j

χ0
i,j (q,ω)φj

ext(q) + v(q)χ0
i,0(q,ω)

〈
S0

q

〉

− 1

2
vH(q)

∑
j

χ0
i,j (q,ω)

〈
Sj

q

〉
. (14)

Here, the noninteracting spin-density response functions are
defined as

χ0
i,j (q,ω) = 〈〈

Si
q; Sj

−q

〉〉
ω

= 1

V
∑
k,μ,ν

nk−q,μ − nk,ν

ω + εk−q,μ − εk,ν

×F i
μ,ν(k − q; k)F j

ν,μ(k; k − q). (15)

With some straightforward rearrangements, we can rewrite
Eq. (14) as

	Sq = χ (q,ω) 	φext(q)

= [I − χ0(q,ω)W (q)]−1χ0(q,ω) 	φext(q), (16)

where χ (q,ω) is the 4 × 4 interacting spin-density re-
sponse matrix, a four-dimensional vector 	A is defined as
(A0,A1,A2,A3)T , and the elements of the effective interaction
matrix read

Wi,j (q) = v(q)δi,0δj,0 − 1
2vH(q)δi,j

= v(q)[δi,0δj,0 − GH(q)δi,j ], (17)

where the Hubbard local-field factor in the second line is
defined as GH(q) = vH(q)/[2v(q)]. Equations (16) and (17),
which are independent of the specific form of the SOC,
compromise the main general results of the present paper.

Dispersions of the collective spin-charge modes could be
obtained from the solutions of

det[I − χ0(q,ω)W (q)] = 0. (18)

We recall that, within the RPA, one simply ignores the nonlocal
exchange term in Eq. (13), which is equivalent to putting
vH(q) = 0 in Eq. (14) and finds 1 − v(q)χ0

0,0(q,ω) = 0 for
the dispersion of collective modes. Therefore, within the RPA,
one simply finds one charge mode and no spin modes. Before
moving to apply our formalism to the well-explored two-
dimensional system with Rashba spin-orbit coupling, let us
briefly comment on the case of ultra-short-range interactions.

Ultra-short-range interactions

If the interaction between particles is ultrashort v(r) =
Uδ(r), e.g., in the case of neutral ultracold atomic gases with
repulsive s-wave interactions as the Fourier transform of the
interaction becomes constant v(q) = U , the exchange term in
Eq. (13) becomes local, and without any further approximation
we arrive at Eq. (14) with v(q) = vH(q) = U . The effective
interaction matrix becomes W = (U/2)diag{1,−1,−1,−1},
and one immediately realizes that the effective interaction
between identical spins as the Pauli exclusion principle also
implies correctly vanishes [39].

IV. RASHBA SPIN-ORBIT COUPLING

In this section we apply the formalism developed in
previous section to a 2D system with Rashba SOC. The
single-particle energy matrix of this system is (again, h̄ = 1)

ε(k) = k2

2m
I + α(k × σ ) · ẑ, (19)

where m is the particle mass, α is the strength of Rashba SOC,
and ẑ is the unit vector in the direction perpendicular to the
2D plane. This matrix could be diagonalized easily to give the
energy dispersions,

εk,± = k2

2m
± α|k|, (20)

and the unitary transformation matrix which diagonalizes the
Rashba single-particle energy matrix could be written as

U (k) = 1√
2

(
1 1

ieiϕk −ieiϕk

)
, (21)

where ϕk is the angle between k and the x axis. The different
elements of the form factors could be obtained from Eq. (6)
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and read

F 0
μ,ν(k − q; k) = 1

2 (1 + μνei(ϕk−ϕk−q )),

F 1
μ,ν(k − q; k) = i

2 (νeiϕk − μe−iϕk−q ),
(22)

F 2
μ,ν(k − q; k) = 1

2 (νeiϕk + μe−iϕk−q ),

F 3
μ,ν(k − q; k) = 1

2 (1 − μνei(ϕk−ϕk−q )).

Now, if we choose q = qêx , it could be shown easily [30]
that only six independent elements of χ0(q,ω) are nonzero:
χ0

0,0, χ0
1,1, χ0

2,2, χ0
3,3, χ0

0,2 = χ0
2,0, and χ0

1,3 = −χ0
3,1 (see Ap-

pendix B for more details). Then, the secular equation (18)
results in two decoupled sets of equations as

[
1 − [

v(q) − 1
2vH(q)

]
χ0

0,0(q,ω)
][

1 + 1
2vH(q)χ0

2,2(q,ω)
]

+ 1
2vH(q)

[
v(q) − 1

2vH(q)
][

χ0
0,2(q,ω)

]2 = 0, (23)

and

[
1 + 1

2vH(q)χ0
1,1(q,ω)

][
1 + 1

2vH(q)χ0
3,3(q,ω)

]

+ v2
H(q)

4

[
χ0

1,3(q,ω)
]2 = 0. (24)

From these equations it is clear that the longitudinal (i.e.,
x) and perpendicular (i.e., z) components of the spin modes
are coupled together and the charge mode is coupled to the
transverse (i.e., y) component of the spin mode. We recall that
we have chosen q = qêx and the longitudinal and transverse
directions are defined accordingly. As we will discuss in the
following, this coupling between charge and transverse spin
modes in particular is responsible for the interaction induced
modifications of the Drude weight and spin-Hall conductivity
in the Rashba system.

Below, we investigate the coupled spin-density modes of:
(i) a two-dimensional system of ultracold gases with Rashba
SOC and ultrashort interparticle interaction and (ii) a Rashba
two-dimensional electron gas (2DEG) where the interparticle
interaction is Coulombic. Then, we discuss the effects of
interaction on the spin-Hall conductivity of these systems.

A. Collective modes of a 2D system of ultracold
atoms with Rashba SOC

In this subsection, we discuss the collective modes of a
two-dimensional system of ultracold atomic gases with ultra-
short particle-particle interactions and a spin-orbit coupling
of Rashba form. The sign and strength of the short-range
interaction U in ultracold gases could be tuned through the
Feshbach resonance [40], and a synthetic spin-orbit coupling
could also be induced, e.g., with laser beams [6,7]. The
dispersions of four collective spin-density modes could be
obtained after replacing v(q) and vH(q) in Eqs. (23) and (24)

with U , which result in[
1 − U

2
χ0

0,0(q,ω)

][
1 + U

2
χ0

2,2(q,ω)

]

+ U 2

4

[
χ0

0,2(q,ω)
]2 = 0, (25)

and [
1 + U

2
χ0

1,1(q,ω)

][
1 + U

2
χ0

3,3(q,ω)

]

+ U 2

4

[
χ0

1,3(q,ω)
]2 = 0. (26)

We should note that in this case our results are identical to the
ones of Zhang et al. [39] obtained from generalized RPA. The
solutions of Eqs. (25) and (26) result in three massive modes
and one acoustic mode. At q = 0, only χ0

11, χ0
22, and χ0

33 are
nonzero [see Eq. (B3) in Appendix B]. Therefore the above
equations become decoupled, and the masses of three gapped
modes are obtained from

2

u
= η + ω

8mα2
L(ω) for 11 and 22 modes,

1

u
= η + ω

8mα2
L(ω) for 33 modes. (27)

Here, u = mU/(2π ), η = min[1,1/(2λ)], where λ = m2α2/

(2nπ ) is the dimensionless SOC strength with n being the
particle density of the system and

L(ω) = ln

[
(ω − ω− + i0+)(ω + ω+ + i0+)

(ω − ω+ + i0+)(ω + ω− + i0+)

]
, (28)

with ω± = 2mα2|√1 + ε̄F/λ ∓ 1|, where ε̄F = mεF/(nπ ) is
the dimensionless Fermi energy. Note that the Fermi energy
εF should be higher than the bottom of the lower-band −mα2/2
and it is shown easily that in the two-band regime (i.e., εF >

0) ε̄F = 1 − 2λ and in the single-band regime (i.e., εF < 0)
ε̄F = 1/(4λ) − λ. It is clear from Eq. (27) that longitudinal
and transverse modes are degenerate in the long-wavelength
limit whereas excitation of the perpendicular mode requires
considerably lower energy. In the two-band regime, η = 1 and
Eq. (27) reduces to Eq. (33) of Maiti et al. in Ref. [30], which
are obtained for a 2DEG with Rashba SOC with diagrammatic
techniques, whereas in the single-band regime, we have 0 <

η < 1 and the above results are obtained here. In the limiting
cases of very weak or strong interaction strengths, it is possible
to obtain analytic solutions for Eq. (27). As these results are
discussed in detail in Refs. [30,39], we do not repeat them
here.

For an arbitrary interaction strength u, Eq. (27) could be
solved numerically. Following Ref. [30], we have plotted
both sides of Eq. (27) in Fig. 1. The real part of L(ω)
has logarithmic singularities at ω±, and its imaginary part
is nonzero only for ω+ < ω < ω−. This guarantees that for
u < 1/η all three massive modes are undamped in the q → 0
limit. For 1/η < u < 2/η, the perpendicular mode becomes
damped, and for larger interaction strengths all three modes
will enter the interband particle-hole excitation continuum. As
η could be tuned through the Fermi energy in the single-band
regime, therefore even for strongly interacting systems it is
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FIG. 1. Graphical solution of Eq. (27) in the one-band regime for
λ = 1.75 and u = 1.25. Note that the real part of L(ω) has logarithmic
singularities at ω+ and ω− and its imaginary part is nonzero only
for ω+ < ω < ω−, which corresponds to the interband particle-hole
excitation continuum at q = 0.

possible to find undamped massive modes at low enough
particle densities.

The remaining (i.e., the density) mode has an acoustic
characteristic, i.e., ω(q → 0) ∝ q, and its long-wavelength
behavior could be obtained from Eq. (25) after replacing
χ0

0,0, χ0
0,2, and χ0

2,2 with their vanishing frequency and wave-
vector expansions [see Eq. (B5) in Appendix B for details]
which simplifies to

[1 − uI (y)]

[
1 − u

2
(1 + η) + uy2I (y)

]

+
[

uy√
1 + ε̄F/λ

I (y)

]2

= 0, (29)

where y = ω/(αq
√

1 + ε̄F/λ) and

I (y) = |y|√
y2 − 1

�(|y| − 1) − 1. (30)

The numerical solution of this zero-sound mode in the two-
band regime is provided in Ref. [39].

B. Collective modes of a 2DEG with Rashba SOC

In an electron-gas system, the Fourier transform of the
Coulomb interaction between electrons in 2D is v(q) =
2πe2/q, and the Hubbard potential vH(q) approaches a
constant value at long wavelengths. Similar to the ultracold
systems with ultrashort interaction, the solutions of Eqs. (23)
and (24) for Rashba 2DEG will give three massive and one
massless modes. The gaps of the massive modes would be
identical to the ones of an ultracold system after replacing
U → vH(q = 0) in Eq. (27), however their full dispersions
would be different due to the q dependance of v(q) and
vH(q). The massless mode, on the other hand, is a plasmon
mode with ω(q → 0) ∝ √

q. The strength of this plasmon
mode at long wavelengths could be obtained from Eq. (23)

0 0.25 0.5 0.75 1.0 1.25

λ

0

0.25

0.5

0.75

1.0

1.25

D
/D

0

RPA
u=0.1
u=0.5
u=1.1

FIG. 2. The Drude weight (in units of its noninteracting value
D0) is plotted versus the dimensionless SOC strength λ for different
values of the interaction strength u. The vertical dashed line at λ = 0.5
indicates the border between the two-band regime at small SOC and
the single-band regime at large SOC.

after replacing the noninteracting response functions with
their dynamical long-wavelength (i.e., q → 0, then the ω → 0
limit) expansions [see Eq. (B4) in Appendix B], which up to
leading-order terms in q, reads

[
1 − v(q)χ0

0,0(q → 0,ω)
][

1 + vH (0)

2
χ0

2,2(q → 0,ω)

]

+ v(q)
vH (0)

2

[
χ0

0,2(q → 0,ω)
]2 = 0. (31)

Note that, as v(q) diverges at q → 0, its proper inclusion in
Eq. (31) is crucial and together with the coupling term χ0

0,2
would be responsible for giving the correct plasmon dispersion
and the interaction induced modification of the Drude weight
and plasmon mass. After replacing the q → 0 expansions of
the noninteracting response functions in Eq. (31), we find

ω2
pl(q → 0) = 2Dq + O(q2), (32)

where D is the Drude weight which is given by

D

D0
= 1 − uλ

(2 − uη)(ε̄F + λ)
. (33)

Here, u = mvH(q = 0)/(2π ), and D0 = (nπe2/m)(ε̄F + λ) is
the noninteracting Drude weight of a 2D Rashba system. In
the single-band regime Eq. (33) simplifies to

D

D0
= 1 − 4uλ2

2 − u/(2λ)
for εF < 0, (34)

whereas in the two-band regime we find

D

D0
= 1 − uλ

(2 − u)(1 − λ)
for εF > 0. (35)

In Fig. 2 we have illustrated the suppression of the Drude
weight due to spin-orbit coupling and interparticle interaction
for different values of the interaction strength. Similar results
in the two-band regime for the plasmon mass from the
time-dependent Hartree-Fock method have been obtained by
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Agarwal et al. [29] and for the optical conductivity from
diagrammatic calculations by Maiti et al. [30]. However, this
enhancement of the plasmon mass has been dismissed entirely
in the diagrammatic approach of Ref. [30]. We would like to
point out that Eq. (33) also predicts the enhancement of the
Drude weight for u > 2/η, but our results in this regime of
very strong interaction should be interpreted with caution.

C. Spin-Hall conductivity

For a 2D system placed on the x-y plane, the spin-Hall
conductivity measures the z component of the spin current
flowing in the direction transverse to the applied electric field.
It is well established that the spin-Hall conductivity of the
Rashba system vanishes in the dc (i.e., static) limit in the
presence of impurity scattering as the intrinsic and extrinsic
contributions to the spin-Hall conductivity identically cancel
each other [41–44].

Assuming that our system is subjected to a homogeneous
(i.e., q = 0) electric field in the x direction, using the equation
of motion approach it could be shown that the spin-Hall
conductivity is given in terms of the in-plane spin susceptibility
[29,41],

σSH (ω) = e

4m
χ2,2(q = 0,ω), (36)

where χ2,2 represents the y component of the interacting spin-
density response function, introduced through Eq. (16). As the
effects of impurity scattering are not included in our discussion
of the response functions, below we will concentrate only on
the clean or high-frequency limit ωτ → ∞ of the spin-Hall
conductivity of the Rashba system, where τ is the electron-
impurity scattering lifetime. For a noninteracting system, if
the dc limit is taken after the clean limit [29,41], we find
χ0

2,2 → −ν0η. Now, the spin-Hall conductivity reads

σ 0
SH = e

4m

(
−η

m

2π

)
= − e

8π
η, (37)

which in the two-band regime (i.e., η = 1) reduces to the
famous universal value of −e/(8π ) for the spin-Hall conduc-
tivity of a clean Rashba system [41–45]. For an interacting
system, it could be shown easily from Eq. (16) that

χ2,2(0,ω) = χ0
2,2(0,ω)

1 + vH(0)χ0
2,2(0,ω)/2

. (38)

This gives the interaction-induced correction to the spin-Hall
conductivity of a clean system as

σSH = σ 0
SH

1 − ηu/2
, (39)

which in the two-band regime is identical to the results
obtained by Agarwal et al. [29] in the ultra-short-range
interaction limit.

It is interesting to note that the correction to the universal
value of spin-Hall conductivity in the two-band regime
depends only on the interaction strength but in the single-band
regime this correction is a function of interaction strength,
SOC strength, and the particle density (see Fig. 3). Finally, we
should also mention that the result in Eq. (39) is applicable to
both ultracold and electronic systems with Rashba SOC.

0 0.5 1.0 1.5 2.0

u

0

0.5

1.0

1.5

2.0

σ
S
H

[−
e/

8π
]

λ < 0.5

λ = 0.75

λ = 1.25

FIG. 3. The intrinsic contribution to the optical spin-Hall con-
ductivity of the 2D Rashba system [in units of −e/(8π )] versus
the dimensionless interaction strength u. The red solid curve shows
the results in the two-band regime, i.e., λ < 0.5 where the spin-Hall
conductivity is independent of the SOC strength. The blue dash-dotted
and black dotted curves are the results for two different values of the
SOC in the single-band regime.

V. SUMMARY AND DISCUSSION

To summarize, we have used the equation of motion for
the single-particle distribution function of a Fermi liquid with
spin-orbit coupling. The generated higher-order distribution
functions have been reduced to single-particle ones with
a Hartree-Fock mean-field approximation, and the nonlocal
exchange term has been approximated with a local one. This
leads to the introduction of a Hubbard-like many-body local-
field factor for helical systems and would in principle give
the dispersions of four coupled spin-charge collective modes.
The application of this simple formalism to a two-dimensional
Rashba system proves its power in providing reasonable results
for several physical quantities.

We should note that the present formulation should be
considered as the first step towards introducing the concept
of local-field factors for helical systems and many more
improvements are yet to be made to find the general forms of
the local-field factors and their asymptotic and/or dynamical
behaviors. In particular, we expect that, in their most general
form, the many-body local-field factors would depend on the
spin indices and would induce off-diagonal components in the
effective interaction matrix of Eq. (17).
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APPENDIX A: DETAILS OF THE EQUATION OF MOTION METHOD

In order to obtain the spin-density linear-response functions, we write the Heisenberg equation of motion for the single-particle
distribution function ĉ

†
k−q,μĉk,ν [34,35],

i
d

dt
ĉ
†
k−q,μĉk,ν = [ĉ†k−q,μĉk,ν ,Ĥ ]. (A1)

The Hamiltonian Ĥ of an interacting Fermi system with a generic SOC and a spin-dependent external potential is given in Eq. (2),
so we have

i
d

dt
ĉ
†
k−q,μĉk,ν = [ĉ†k−q,μĉk,ν ,T̂ ] + [ĉ†k−q,μĉk,ν ,V̂ext] + [ĉ†k−q,μĉk,ν ,V̂int]. (A2)

The evaluation of first term on the RHS of Eq. (A2) is very straightforward and gives Eq. (8). The second term on the RHS of
Eq. (A2) results in

[ĉ†k−q,μĉk,ν ,V̂ext] = 1

V
∑
j,q′,γ

φ
j
ext(−q′)[F j

ν,γ (k; k + q′)ĉ†k−q,μĉk+q′,γ − F i
γ,μ(k − q − q′; k − q)ĉ†k−q−q′,γ ĉk,ν], (A3)

which, after taking the expectation values of its both sides and discarding the nonlinear terms in the external potential, gives
Eq. (9). The evaluation of the third term on the RHS of Eq. (A2) is more involved, and below we provide its main steps in detail,

[ĉ†k−q,μĉk,ν ,V̂int] = 1

2V
∑

k′,μ′,ν ′

∑
k′′,μ′′,ν ′′

∑
q′

v(q′)F 0
μ′,ν ′ (k′ − q′,k′)F 0

μ′′,ν ′′ (k′′ + q′,k′′)

× [ĉ†k−q,μĉk,ν ,ĉ
†
k′−q′,μ′ ĉk′,ν ′ ĉ

†
k′′+q′,μ′′ ĉk′′,ν ′′ ]. (A4)

The commutator of the creation and annihilation operators on the RHS of Eq. (A4) gives

[ĉ†k−q,μĉk,ν ,ĉ
†
k′−q′,μ′ ĉ

†
k′′+q′,μ′′ ĉk′′,ν ′′ ĉk′,ν ′ ] = δk,k′−q′δν,μ′ ĉ

†
k−q,μĉ

†
k′′+q′,μ′′ ĉk′′,ν ′′ ĉk′,ν ′ − δk,k′′+q′δν,μ′′ ĉ

†
k−q,μĉ

†
k′−q′,μ′ ĉk′′,ν ′′ ĉk′,ν ′

+ δk′′,k−qδν ′′,μĉ
†
k′−q′,μ′ ĉ

†
k′′+q′,μ′′ ĉk′,ν ′ ĉk,ν − δk′,k−qδν ′,μĉ

†
k′−q′,μ′ ĉ

†
k′′+q′,μ′′ ĉk′′,ν ′′ ĉk,ν .

(A5)

After replacing Eq. (A5) in Eq. (A4), we find

[ĉ†k−q,μĉk,ν ,V̂int] = 1

2V
∑
q′,ν ′

∑
k′′,μ′′,ν ′′

v(q′)F 0
ν,ν ′(k,k + q′)F 0

μ′′,ν ′′ (k′′ + q′,k′′)ĉ†k−q,μĉ
†
k′′+q′,μ′′ ĉk′′,ν ′′ ĉk+q′,ν ′

− 1

2V
∑
q′,ν ′′

∑
k′,μ′,ν ′

v(q′)F 0
μ′,ν ′ (k′ − q′,k′)F 0

ν,ν ′′(k,k − q′)ĉ†k−q,μĉ
†
k′−q′,μ′ ĉk−q′,ν ′′ ĉk′,ν ′

+ 1

2V
∑
q′,μ′′

∑
k′,μ′,ν ′

v(q′)F 0
μ′,ν ′ (k′ − q′,k′)F 0

μ′′,μ(k − q + q′,k − q)ĉ†k′−q′,μ′ ĉ
†
k−q+q′,μ′′ ĉk′,ν ′ ĉk,ν − 1

2V

×
∑
q′,μ′

∑
k′′,μ′′,ν ′′

v(q′)F 0
μ′,μ(k − q − q′,k − q)F 0

μ′′,ν ′′ (k′′ + q′,k′′)ĉ†k−q−q′,μ′ ĉ
†
k′′+q′,μ′′ ĉk′′,ν ′′ ĉk,ν . (A6)

If we replace k′′ → k′, q′ → −q′, μ′′ → μ′, and ν ′′ ↔ ν ′ in the first line on the RHS of Eq. (A6), and k′′ → k′, q′ → −q′, μ′′ ↔
μ′, and ν ′′ → ν ′ in its last line, after some rearrangements we obtain

[ĉ†k−q,μĉk,ν ,V̂int] = 1

V
∑

q′
v(q′)

∑
k′,μ′,ν ′

F 0
μ′,ν ′ (k′ − q′; k′)

×
∑

γ

[
F 0

ν,γ (k; k − q′)ĉ†k−q,μĉ
†
k′−q′,μ′ ĉk′,ν ′ ĉk−q′,γ − F 0

γ,μ(k − q + q′; k − q)ĉ†k−q+q′,γ ĉ
†
k′−q′,μ′ ĉk′,ν ′ ĉk,ν

]
.

(A7)

Now, using the mean-field decoupling of the quartic terms into quadratic terms in the creation and annihilation operators,

ĉ
†
1ĉ

†
2ĉ3ĉ4 ≈ 〈ĉ†1ĉ4〉ĉ†2ĉ3 + 〈ĉ†2ĉ3〉ĉ†1ĉ4 − 〈ĉ†1ĉ3〉ĉ†2ĉ4 − 〈ĉ†2ĉ4〉ĉ†1ĉ3, (A8)
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in the first line on the RHS of Eq. (A7) we find

ĉ
†
k−q,μĉ

†
k′−q′,μ′ ĉk′,ν ′ ĉk−q′,γ ≈ 〈ĉ†k−q,μĉk−q′,γ 〉ĉ†k′−q′,μ′ ĉk′,ν ′ + 〈ĉ†k′−q′,μ′ ĉk′,ν ′ 〉ĉ†k−q,μĉk−q′,γ

−〈ĉ†k−q,μĉk′,ν ′ 〉ĉ†k′−q′,μ′ ĉk−q′,γ − 〈ĉ†k′−q′,μ′ ĉk−q′,γ 〉ĉ†k−q,μĉk′,ν ′ . (A9)

To linear order in the external perturbations, the expectation values in Eq. (A9) could be evaluated with respect to the equilibrium
state. It immediately becomes clear that the second and fourth terms on the RHS of Eq. (A9) correspond to the self-energy
corrections to the single-particle energies within the Hartree-Fock approximation and in principle their diagonal (intraband) parts
could be absorbed easily into Eq. (8) with a redefinition of the single-particle energies. We will ignore these self-energy terms
throughout this paper as our discussion is not based on the specific form of the band structure. With a similar approximation for
the second term on the RHS of Eq. (A7) and after some straightforward changes in variables, we find

[ĉ†k−q,μĉk,ν ,V̂int] ≈ 1

V
∑

k′,μ′,ν ′
v(q)F 0

μ′,ν ′ (k′ − q; k′)F 0
ν,μ(k; k − q)ĉ†k′−q,μ′ ĉk′,ν ′nk−q,μ

− 1

V
∑

k′,μ′,ν ′
v(k − k′)F 0

μ′,μ(k′ − q; k − q)F 0
ν,ν ′(k; k′)ĉ†k′−q,μ′ ĉk′,ν ′nk−q,μ

− 1

V
∑

k′,μ′,ν ′
v(q)F 0

μ′,ν ′ (k′ − q; k′)F 0
ν,μ(k; k − q)ĉ†k′−q,μ′ ĉk′,ν ′nk,ν

+ 1

V
∑

k′,μ′,ν ′
v(k′ − k)F 0

ν,ν ′(k; k′)F 0
μ′,μ(k′ − q; k − q)ĉ†k′−q,μ′ ĉk′,ν ′nk,ν , (A10)

which after some rearrangements results in

[ĉ†k−q,μĉk,ν ,V̂int] ≈ 1

V (nk−q,μ − nk,ν)v(q)F 0
ν,μ(k; k − q)

×
∑

k′,μ′,ν ′
F 0

μ′,ν ′ (k′ − q; k′)ĉ†k′−q,μ′ ĉk′,ν ′ − 1

V (nk−q,μ − nk,ν)

×
∑

k′,μ′,ν ′
v(k − k′)F 0

ν,ν ′(k; k′)F 0
μ′,μ(k′ − q; k − q)ĉ†k′−q,μ′ ĉk′,ν ′ . (A11)

Now, if we take the expectation values of both sides of Eq. (A11) we arrive at Eq. (11).

APPENDIX B: NONINTERACTING SPIN-DENSITY RESPONSE FUNCTIONS OF RASHBA 2DEG

The elements of the linear spin-density response matrix for noninteracting 2D electron gas with Rashba spin-orbit coupling
as defined in Eq. (15) is

χ0
i,j (q,ω) = 〈〈

Si
q; Sj

−q

〉〉
ω

= 1

S
∑
k,μ,ν

nk−q,μ − nk,ν

ω + εk−q,μ − εk,ν

F i
μ,ν(k − q; k)F j

ν,μ(k; k − q), (B1)

where S is the sample area and the form factors are given in Eq. (22). In order to calculate different elements of the linear
spin-density response matrix we need different combinations of the form factors F i

μ,ν(k − q; k)F j
ν,μ(k; k − q), which simply are

obtained as

F 0F 0 = 1
2 [1 + μν cos(ϕk−q − ϕk)], F 0F 1 = − 1

2 [μ sin(ϕk−q) + ν sin(ϕk)], F 0F 2 = 1
2 [μ cos(ϕk−q) + ν cos(ϕk)],

F 0F 3 = − i
2μν sin(ϕk−q − ϕk), F 1F 0 = F 0F 1, F 1F 1 = 1

2 [1 − μν cos(ϕk−q + ϕk)], F 1F 2 = − 1
2μν sin(ϕk−q + ϕk),

F 1F 3 = − i
2 [μ cos(ϕk−q) − ν cos(ϕk)], F 2F 0 = F 0F 2, F 2F 1 = F 1F 2, F 2F 2 = 1

2 [1 + μν cos(ϕk−q + ϕk)],

F 2F 3 = − i
2 [μ sin(ϕk−q) − ν sin(ϕk)], F 3F 0 = −F 0F 3, F 3F 1 = −F 1F 3, F 3F 2 = −F 2F 3,

F 3F 3 = 1
2 [1 − μν cos(ϕk−q − ϕk)], (B2)

where the arguments and indices are omitted on the left-hand sides for brevity.
The only nonzero elements of the linear spin-density response function matrix are χ0

0,0, χ0
1,1, χ0

2,2, χ0
3,3, χ0

0,2 = χ0
2,0, and

χ0
1,3 = −χ0

3,1 [30]. Below we will discuss the long-wavelength behaviors of these responses. For detailed results please refer to
Ref. [30].
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At finite ω and q = 0, all elements of the density response matrix for the Rashba system vanish except for χ0
1,1, χ0

2,2, and χ0
3,3,

which read

χ0
1,1(q = 0,ω) = χ0

2,2(q = 0,ω) = χ0
3,3(q = 0,ω)/2 = −ν0

[
η + ω

8mα2
L(ω)

]
, (B3)

Here, ν0 = m/(2π ), η, and L(ω) are defined in the main text after Eq. (27).
Taking q → 0 and then the ω → 0 limit, which is relevant for the dispersion of the plasmon mode in the long-wavelength

limit, the leading-order terms of the relevant noninteracting spin-density response functions read

χ0
0,0(q → 0,ω → 0) = n

m
(λ + ε̄F )

( q

ω

)2
, χ0

2,2(q → 0,ω → 0) = −ν0η, χ0
0,2(q → 0,ω → 0) = −ν0α

( q

ω

)
. (B4)

On the other hand, if the q → 0 and ω → 0 limits are taken simultaneously such that the dimensionless ratio y =
ω/(αq

√
1 + ε̄F /λ) is kept fixed, we obtain

χ0
0,0(q → 0,y) = 2ν0I (y), χ0

2,2(q → 0,y) = −ν0(1 + η) + y2χ0
0,0(q → 0,y),

χ0
0,2(q → 0,y) = − y√

1 + ε̄F /λ
χ0

0,0(q → 0,y), (B5)

where I (y) is defined in Eq. (30).
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Phys. 83, 1523 (2011).
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