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Two-photon absorption spectrum of liquid water and the effect of nondiagonal self-energy elements
in the self-consistent GW approach on the band gap
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In the first part of the present paper, the two-photon absorption spectrum of liquid water is calculated using
an ab initio real-time many-body approach. Correlation effects, such as single-particle and excitonic effects, are
included, with the latter showing large impact on the shape and peak positions of the two-photon spectrum. A
broad peak at 10.0 eV is calculated, in excellent agreement with the experimental reference. In the second part,
we show the impact of the on- and off-diagonal elements of the self-energy operator upon GW self-consistency
(depending on the number of quasiparticle-corrected unoccupied bands) on the electronic band gap of liquid
water at the � point. The off-diagonal self-energy elements increase the electronic gap, correcting previous results
reported by W. Chen et al. [Phys. Rev. Lett. 117, 186401 (2016)] by 0.52 eV, and putting at the same time the
non-self-consistent bootstrap approximation for the vertex function into question. Furthermore, depending on
the calculated band gap using different GW flavors, the absolute position of the absorption band of the nonlinear
spectrum is affected.
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I. INTRODUCTION

The ab initio Green’s function theory [1,2] proved to
be a powerful and reliable method for calculation of linear
response optical properties beyond the independent-particle
approximation (IPA), as it accounts for important many-
body effects, such as single-particle and excitonic effects
through the self-energy and its derivative with respect to the
Green’s function. However, in contrast to the linear response
Green’s function theory, the inclusion of many-body effects for
nonlinear optical susceptibilities in the frequency domain turns
out to be an extremely difficult and challenging task, as the
complexity of the corresponding nonlinear expressions grows
with increasing perturbation order. Now in order to lower
computational difficulties stemming from higher-order nonlin-
ear expressions, a time-domain-based approach is used [3–9],
instead of operating in the usual frequency domain like in the
standard GW/BSE (Bethe-Salpeter equation) approach.

Within this time-domain approach the nonlinear suscepti-
bility is obtained from the dynamical polarization P of the
system which is expanded in powers of the external field ε:

P = χ (1)ε1 + χ (2)ε2 + χ (3)ε3 + · · · . (1)

This domain transformation enormously simplifies the com-
plexity allowing for an efficient calculation of nonlinear
optical spectra because of the following major advantages: (i)
Many-body effects can be easily taken into account by adding
the corresponding operator to the effective Hamiltonian. (ii)
The time-domain approach is not perturbative, meaning that
the nonlinear susceptibilities can be calculated at any external
field order without increasing the computational cost.

However, one major problem still remains for both
frequency-based and real-time-based approaches. That is the
correct definition of the position operator (length gauge) within
the Born–von Kármán periodic boundary conditions (PBC) for
calculation of dipole matrix elements between the periodic part
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of the Bloch functions. A correct definition of the position
operator within the PBC was introduced by means of the
geometric Berry phase in the modern theory of polarization [9].
We exactly use this definition to proceed further.

To better understand this ab initio real-time approach, we
briefly present in the following the fundamental equations, and
further show the nonlinear two-photon absorption spectrum
of liquid water, demonstrating the reliability of the real-time
approach in predicting the experimental two-photon spectrum,
and hence in general the nonlinear phenomena. In the second
part of this paper, we accurately quantify the impact of single-
particle effects on the electronic band gap of liquid water. This
is of particular importance, since the gap extremely affects
the peak positions of any optical calculations. Here, we show
the impact of on- and off-diagonal elements of the self-energy
operator upon GW self-consistency with the latter leading to
considerable increase of the gap.

II. THEORETICAL BACKGROUND

In the real-time many-body approach a set of coupled
one-particle effective time-dependent Schrödinger equations
is solved:

ih̄
d

dt
vmk = (

H
sys

k + iε∂k

)
vmk, (2)

where vmk is the periodic part of the Bloch functions,
determining the system polarization, H

sys

k stands for the
system Hamiltonian, and ε∂k describes the coupling with the
external field ε in the dipole approximation. This coupling is
gauge invariant and takes the form of a k derivative ∂k , since
we impose Born–von Kármán periodic boundary conditions.

By integrating Eq. (2), and from vmk , the time-dependent
polarization of the system P|| along the lattice vector a is
calculated as

P|| = − ef |a|
2π�c

Im log
Nk−1∏

i=k

det S(k,k + q), (3)
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where S(k,k + q) is the overlap matrix between the valence
states vnk and vmk+q , �c is the unit cell volume, f is the spin
degeneracy, Nk is the number of k points along the polarization
direction, and q = 2π/(Nka). In Eq. (2) the system Hamilto-
nian incorporates different levels of approximation such as the
following:

(1) The independent-particle approximation:

H IP
k ≡ H KS

k , (4)

where H KS
k is the unperturbed Kohn-Sham Hamiltonian.

(2) The quasiparticle (QP) approximation:

H
QP
k ≡ H KS

k + �Hk, (5)

where a scissor operator shift �Hk is added to the KS
Hamiltonian, estimated from many-body perturbation theory
in order to account for QP effects.

(3) The full GW+BSE approximation:

HGW+BSE
k ≡ H KS

k + �Hk + Vh(r)[�ρ] + 
SEX[�γ ], (6)

where Vh(r) is the time-dependent Hartree term as a functional
of density variation:

�ρ ≡ ρ(r; t) − ρ(r; t = 0). (7)

The Hartree term describes local-field effects arising from in-
homogeneities in crystal densities, while 
SEX is the screened
exchange self-energy term and accounts for the electron-hole
effects (as known from BSE). 
SEX is a functional of the
variation of the nonlocal density matrix induced by the external
field ε. �γ is written as

�γ ≡ γ (r,r′; t) − γ (r,r′; t = 0). (8)

The terms beyond the KS Hamiltonian describe correlation
effects, impacting the nonlinear spectra. It should be noted
that in the limit of small perturbation Eq. (6) reproduces the
standard GW+BSE optical absorption spectra.

III. TECHNICAL DETAILS

In the following, we calculate the two-photon absorp-
tion spectrum of liquid water (snapshots obtained from
Ref. [10]) at different approximation levels, and verify
the effect of correlation approximations on the nonlinear
spectrum. We perform a ground-state calculation with a
density cutoff of 400 Ry using QUANTUM ESPRESSO [11]
with the PBE [12] exchange-correlation functional and norm-
conserving Troullier-Martins [13] pseudopotential to mimic
core effects. We further calculate the QP energies within
the frequency-dependent Green’s function formalism using
YAMBO [14]. In order to integrate Eq. (2), we run a polarization
simulation for a time interval of 60 fs using the numerical
approach described in Refs. [15,16], with a time step of �t =
0.01 fs which guarantees numerically stable and sufficiently
accurate simulations. A dephasing of 0.4 eV is used to
simulate the experimental finite broadening. Simulation of
time-dependent polarization is performed using LUMEN [9]
which is a subprogram of YAMBO. In both GW and nonlinear
optical calculations nonlocal parts of the pseudopotential are
explicitly taken into account.

Further, for the computation of the self-consistent self-
energy effects the Wiener ab initio simulation package

(VASP) [17,18] is used with the PBE functional and the
projector augmented wave method [19,20]. The self-energy
effects are computed for a 32-water snapshot obtained from
Ref. [21]. We use a kinetic energy cutoff of 100 Ry for
the wave function, up to 4032 bands for the Green’s and
polarization functions, and 10 Ry and 20 frequencies for
the dielectric function cutoff and its frequency sampling for
accurate capturing of dynamic correlation.

IV. TWO-PHOTON ABSORPTION SPECTRUM
OF LIQUID H2O

The two-photon absorption (TPA) was first predicted by
Göppert-Mayer in 1931 in her doctoral dissertation [22]. TPA
is a nonlinear phenomenon which is related to the imaginary
part of the third-order nonlinear susceptibility. Further, TPA in
contrast to one-photon absorption follows different selection
rules. This stems from the fact that photons have spin of
±1; therefore, one-photon absorption involves an electron
changing its molecular orbital by an angular momentum of
±1, while two-photon absorption requires a change of +2,
0, or −2, because of the involvement of two simultaneous
incoming photons each of which with spin ±1.

Since TPA is a third-order optical process and hence
quite weak, a very high laser field intensity is required in
order to realize a much faster increase of the strength of
the interaction with the electric field of the light than in the
linear process. Here for liquid water, we set the field intensity
to 106 and 107 kWL/m2, and chose a monochromatic light
with an energy of 6.2 eV to calculate the nonlinear response.
This initial photon energy is chosen in accordance with the
two-photon experimental setup. The QP energies are obtained
from the single-shot (G0W0) and eigenvalue GW approach
(i.e., GnWn with n being the number of iterations in the
self-consistent loop) in the diagonal approximation using a
real-axis integration method and are accordingly included
in the two-photon absorption spectra. The single-particle
self-energy corrections to the KS energy bands induce a rigid
shift towards higher energy regimes as a consequence of the
band gap opening upon decrease of screening effects through
the energy update in G and W .

Correlation effects on the nonlinear spectrum

In the following, we show the effect of the correlation
approximations on the TPA spectrum of liquid water, namely,
(i) the independent-particle approximation with QP energies
obtained from both single-shot and eigenvalue self-consistent
GW approaches, denoted as IPA+QP; (ii) IPA and QP energies
with excitonic effects described with the Bethe-Salpeter
equation (BSE), denoted as IPA+QP+BSE.

The TPA spectra of the 27-water system averaged over five
configurations are shown in Fig. 1 within the independent-
particle approximation with QP energies and excitonic effects
(BSE). As can be seen, the IP+G0W0 and IP+GnWn methods
overestimate the experimental broad band at 10.0 eV by
0.5 and 1.5 eV, respectively. Inclusion of excitonic effects
gives rise to a redshift of the maximum of the absorption
band by about 1.5 eV relative to the non-self-consistent GW

approach. Only if the excitonic effects in combination with
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FIG. 1. The calculated two-photon absorption spectra of liq-
uid water (27-water box) based on the IP+G0W0, IP+GnWn,
G0W0+BSE, and GnWn+BSE methods are shown. A broad main
peak at about 10 eV fully consistent with the experimental reference
(black tile), followed by a shoulder at about 12 eV, is observed
based on the GnWn+BSE method. 64 (un)occupied bands are used
as transition bands to achieve convergence for spectral weights.

update of QP energies both in G and W are explicitly taken
into account, a quantitative agreement is obtained with the
experimental reference measured by Elles et al. [23] at 10.0 eV
(the experimental spectrum was measured only between 8
and 10 eV). This is an interesting aspect since in the linear
spectrum, depending on the dispersion correction schemes
used for water structures, a G0W0 or a partially eigenvalue self-
consistent GnW0 for electronic structure calculations is enough
to be able to reproduce the experimental first absorption band at
8.1 eV [10] (assuming one uses here classical water structures),
whereas for the nonlinear case energy update in both G and
W (i.e., GnWn) is required.

Further, as for the linear spectrum of liquid water where
excitonic correlations (coupled motion of electron-hole pairs)
are of extreme importance for a quantitative description of
the spectrum, such a two-particle correlation is important for
TPA as well, altering weight distributions and peak positions
considerably.

It should be noted that the average band gap calculated for
this set of five water snapshots is 8.5 eV, and update of the
QP energies in G and W results in a gap of 9.69 eV. This gap
increase of almost 1.2 eV is reflected in the nonlinear spectrum
as a rigid blueshift of the spectrum, improving considerably
the agreement with the experimental reference in combination
with excitonic effects.

V. NONDIAGONAL SELF-CONSISTENT GW EFFECTS

In order to be able to reliably predict peak positions
of optical absorption spectra, it is generally of extreme
importance to calculate the electronic band gaps accurately,
as we have seen in Sec. IV. Such a calculation was carried
out for liquid water by Chen et al. [21] inspecting several
important aspects affecting the gap. They studied the impact
of self-consistency effects both in the Green’s function G

and the dynamically screened interaction W by updating both

TABLE I. The effect of band corrections, depending on the
number of corrected bands (indicated by the corresponding number
in the parentheses), in the diagonal approximation (GW) and in the
full self-energy matrix (scGW ) is shown for one classical water
snapshot (32-box). The result of Chen using QSGW is also given.
Furthermore, all calculations are performed at the � point. A finer k

mesh (2 × 2 × 2) increases the gap by about 0.1 eV. 14 iterations are
run and all gaps are given in eV.

Approach (bands) (corrected bands) � → � (direct gap)

GW (2016) (256) 9.687
GW (2016) (1216) 9.752
GW (2016) (2016) 9.743
scGW (2016) (256) 9.854
scGW (2016) (350) 10.032
scGW (2016) (1216) 10.426
scGW (2016) (2016) 10.426
scGW (3008) (3008) 10.528
scGW (4032) (4032) 10.556
QSGW (2016) (350) 10.327 [21]
NQE −0.7 [21]
Vertex (non-sc bootstrap) −0.9 [21]
Expt. 8.7 [26]

quasiparticle (QP) energies and wave functions. They also
included vertex corrections in W and nuclear quantum effects
(proton delocalization) with a 0.9 and 0.7 eV decrease in the
gap, respectively. In a previous study by us [24], we analyzed in
water the effect of electron-phonon coupling, and energy-only
GW self-consistency (evGW ) in the diagonal approximation
(diagonal self-energy) on the band gap. We pointed out that
the diagonal evGW simulates implicitly vertex corrections due
to fortunate error compensation between the off-diagonal ele-
ments of the self-energy of the self-consistent GW (keyword
in VASP “ALGO=scGW”) and the vertex corrections in W .
The impact of the higher-correlation diagrams (vertex effects)
was calculated by Chen based on the head element of the
non-self-consistent bootstrap kernel [25] and reported to be a
0.9 eV decrease in gap.

Now in this study we go a step further, and calculate
explicitly the impact of off-diagonal elements of the self-
energy operator on the band gap depending on the number
of QP-corrected unoccupied bands. As shown in Table I
in the diagonal eigenvalue GW scheme (keyword in VASP

“ALGO=GW”), the effect of QP band corrections of higher-
lying unoccupied bands (2016 bands) on the band gap is
negligible and of about 0.05 eV increase. By contrast, the
scGW band corrections of the higher-lying unoccupied bands
in the nondiagonal approximation is sizable and of 0.68 eV
increase (relative to 256 band corrections) for the direct gap.
It should be noted (as shown in Table I) that the convergence
of the nondiagonal self-energy elements is extremely slow and
therefore scGW QP band corrections are required for a large
number of bands, which in turn decrease the screening, giving
rise to an increased band gap.

We observe that the convergence is almost reached with
3008 bands and band corrections with an error of less than
0.03 eV relative to 4032 bands. This is an important aspect
when using the nondiagonal self-consistent GW approaches
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in combination with different approximations for the vertex
function, since the induced gap increase upon the off-diagonal
elements puts the reliability of the non-self-consistent boot-
strap kernel fxc in the description of the vertex corrections
into question, as applied by Chen et al. [21].

The diagonal self-consistent energy-only GW approxima-
tion in combination with the nuclear quantum effect (NQE)
(leading to a decrease of the band gap by 0.7 eV [21])
gives a much more accurate prediction of the experimental
gap. This is due to the fact that the diagonal eigenvalue
GW already contains to some extent vertex effects in an
implicit manner, or in other words the off-diagonal elements
of the self-energy operator and vertex corrections would have
canceled each other if they were both taken into account
explicitly. Furthermore, we point out that if a vertex correction
is added to an approach, such as energy-only GW , which
already implicitly accounts for the vertex effect, one ends up
with the vertex double counting problem [24,27], which should
be avoided, since otherwise the gap will be underestimated.

In Table I the result of the quasiparticle self-consistent GW

approach (QSGW) with inclusion of off-diagonal elements
from Ref. [21] is given. The implementation details of scGW

in VASP can be found in Ref. [28]. It should be noted that scGW

differs slightly from QSGW due to different renormalization
factors Z [Z(scGW ) < 1 and Z(QSGW) = 1]. However, the
scGW Z factors are near 1 for liquid water (0.88–0.93).
Furthermore, the effect of off-diagonal elements of the self-
energy operator on the band gap depending on the number
of corrected unoccupied bands is independent of the value of
the renormalization factors Z in scGW and QSGW, because
off-diagonal elements change the Green’s function in both
approaches.

A further interesting point is that the scGW approach with
350 corrected bands shows a deviation of −0.3 eV from the
QSGW reference result. This indicates that even the scGW

approach implicitly contains to some extent vertex effect but
much less than the diagonal energy-only GW approach.

In Table II it is explicitly shown that in the scGW approach
the increase of the number of corrected unoccupied bands
mainly affects the absolute energy position of the valence band
maximum (VBM), whereas the conduction band minimum
(CBM) is much less sensitive to the QP corrections from
higher-lying states. The VB energy position is decreased by
about 1 eV, while the CB energy shows a small decrease of
0.07 eV.

In the end, in the QSGW approach with QP corrections
for a large number of bands (off-diagonal self-energy effects)
and inclusion of nuclear quantum effects, one needs a more
accurate vertex approximation to be able to accurately predict

TABLE II. The effect of the number of corrected unoccupied
bands in the scGW approach on the absolute energy position (in
eV) of the valence band maximum (VBM) and conduction band
minimum (CBM) at the � point is shown for one classical water
snapshot (32-box).

(Bands) (Corrected bands) Absolute position

VBM (2016) (256) −6.81
CBM (2016) (256) 2.87
VBM (2016) (1216) −7.59
CBM (2016) (1216) 2.83
VBM (3008) (3008) −7.70
CBM (3008) (3008) 2.82
VBM (4032) (4032) −7.75
CBM (4032) (4032) 2.80

the experimental gap of liquid water in the full GW theory;
otherwise the gap will be overestimated, and the agreement
with experimental reference is deteriorated.

VI. CONCLUSIONS

We presented the nonlinear two-photon absorption spec-
trum of liquid water using an ab initio real-time many-body
approach which includes the single-particle and excitonic
effects through addition of the corresponding Hamiltonians.
We showed that correlation effects considerably impact the
spectrum. The IP approximation with the single-shot QP
corrections is not sufficient to describe the experimental
spectrum. Only a combination of eigenvalue GW and excitonic
effects results in an experimentally consistent two-photon
spectrum. Further, we highlighted the importance of the effect
of QP energy corrections of higher-lying unoccupied bands
increasing the strength of the off-diagonal elements of the
self-energy matrix. This led to an increase of the band gap by
0.52 eV in comparison to the reported result of Chen et al.,
clearly challenging the reliability of the non-self-consistent
vertex correction in the bootstrap approximation.
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