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The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its
most fascinating aspects is the large variety of different topological orders that may be realized, in particular
non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are
generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that
the quasiparticles obey non-Abelian fusion rules of type su(q)k . For a subset of these states we are able to derive
the conformal field theory description that makes the topological properties—in particular braiding—of the state
manifest. The model states we study provide explicit wave functions for a large variety of interesting topological
orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.
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I. INTRODUCTION

Topological phases of matter are among the most fas-
cinating phases in condensed matter systems. A unifying
feature of such phases is that certain properties are robust
and independent of microscopic details. Arguably the most
fascinating example of a topological phase are the fractional
quantum Hall liquids [1]—both because of the vast variety
of quantum liquids that have been observed and their exotic
quasiparticles, which obey anyonic statistics interpolating
between bosonic and fermionic statistics [2].

Most of the progress within the fractional quantum Hall
(FQH) effect has been made by proposing simple trial
wave functions that capture the topological properties of the
topological phase. This strategy was pioneered by Laughlin
[3], who conjectured that the FQH liquids at filling fractions
ν = 1/m have quasiparticle excitations with fractional electric
charge e/m. Laughlin’s idea was generalized by Haldane [4]
and Halperin [5] who conjectured that all FQH liquids in
the lowest Landau level could be understood using a simple
hierarchical picture, where new FQH liquids may be formed
by successive condensation of quasiparticles (see Ref. [6] for
a comprehensive review on this topic). This picture gives a
systematic understanding of the physics in the lowest Landau
level (LLL)—it not only predicts that FQH liquids may occur
at any filling fraction ν = p/q with p,q relatively prime and q

odd, but also estimates their relative stability ∼1/q and deter-
mines the fractional charge of the quasiparticles to be ±e/q.

In the hierarchical picture trial wave functions at hierar-
chical level n + 1 can be obtained from those at level n by
a recursion formula [7]. However, this recursion formula can
only be evaluated explicitly for a subset of states, namely those
obtained by successive condensation of quasielectrons (as
opposed to quasiholes) [8]. In this case the wave functions turn
out to be identical to the composite fermion (CF) wave func-
tions [9]. The latter have been extensively tested numerically—
for small system sizes—against the exact ground state for
Coulomb interaction, verifying that these states indeed capture
the topological properties of the low-energy sector (see for
instance [10] and references therein).

Conformal field theory (CFT) has proven to be a useful
tool for proposing and analyzing model wave functions. It was

pointed out by Moore and Read [11] and Fubini [12] that the
Laughlin wave function can be written as a correlator of vertex
operators in the chiral boson CFT. Moore and Read conjectured
that other CFTs could also be used to propose valid FQH model
states. In this picture, electrons and quasiholes are represented
by local primary operators in the CFT. These encode the
topological properties of the particles such as fractional electric
charge as well as fusion and braiding properties. This approach
was generalized in various ways. First, one can identify a
quasilocal CFT operator that creates quasielectron excitations
for any model state that can be written as a correlator of a CFT
[8,13]. Second, using several copies of chiral boson fields
one can describe the (spinful) Halperin (mmn) states [7,11]
and the Haldane-Halperin hierarchy/composite fermion states
[8,14,15]. Finally, one can also combine the chiral boson with
slightly more complicated CFTs—e.g., parafermion theories
[16] for the Read-Rezayi series [17] or Gepner parafermions
[18] for the non-Abelian spin-singlet (NASS) state [19] and
its generalizations [20–22]. These latter model states may be
relevant for describing quantum Hall liquids occurring in the
first excited Landau level.

The physics of the lowest and first excited Landau level
is, in fact, quite different. This became evident with the
experimental discovery of an incompressible state at filling
fraction 5/2, which was the first quantum Hall liquid with
an even denominator. This state is believed (see, e.g., [23]
and references therein) to be in the same topological phase
as the “anti-Pfaffian” [24,25]—the particle-hole conjugate of
the Moore-Read (or Pfaffian) state [11]—and is expected to
host non-Abelian quasiparticle excitations that behave as Ising
anyons [26]. The 5/2 state is the first, but not the only state that
is believed to harbor non-Abelian anyons in the first excited
Landau level. In fact, numerical simulations [27] suggest that
pairing of electrons is favorable in the first excited Landau
level, which in turn can stabilize non-Abelian FQH liquids.
There are several experimentally observed filling fractions that
are believed to fall into this class, but the most prominent
example—apart from the Moore-Read state—is arguably the
FQH liquid at filling fraction 12/5 [28]. Currently, it is most
commonly believed to be in the same topological phase as
the particle-hole conjugated Z3 Read-Rezayi state, harboring
Fibonacci anyons [17]. But numerical simulations have proven
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to be hard [29,30] and there are several possible candidate
states with very different predictions on the non-Abelian nature
of the state, such as Ising anyons [31] and su(4)2-type anyons
[32].

One may wonder if there is a systematic way to understand
the observed filling fractions in the first excited Landau level,
similar to the Haldane-Halperin hierarchy in the lowest Landau
level. There have been several attempts to generalize this
hierarchy to non-Abelian liquids, most notably by Bonderson
and Slingerland [31], Levin and Halperin [33], and one of the
authors [32]. In this article we focus on the last, because it is the
only one of the three proposals that allows for a non-Abelian
CFT description that is richer than the Ising CFT. In particular,
it suggests a series of spin-polarized states with su(q)k-type
statistics; other realizations of such type of statistics rely on
spinful (i.e., spin-unpolarized) particles [19–22] or assume
some other type of “flavor” quantum number [34,35]. This
hierarchy can be constructed by successive condensation of
non-Abelian quasiparticles, in a very similar way to that
proposed by Halperin for Abelian states [7]. The resulting
wave functions can be brought into a particularly simple form,
which for bosons reduces to

�k
ν = S[�ν · · ·�ν︸ ︷︷ ︸

k copies

], (1)

where one symmetrizes over k copies of the Abelian, bosonic
wave functions �ν of Haldane-Halperin or composite fermion
type at filling fraction ν = p/q.

This paper is organized as follows. In Sec. II we introduce
generalized Halperin and clustered spin-singlet states, after
which we introduce the non-Abelian hierarchy wave functions.
For a certain subset of these states, we determine the explicit
CFT description, in which all the topological properties
should be manifest. In Sec. III we study the full set of
non-Abelian hierarchy wave functions in the thin torus limit.
In this simplifying limit, we determine the fusion rules of the
quasiparticle excitations. To illustrate our methods, we present
an explicit example in Sec. IV. We conclude our discussions
in Sec. V. In Appendix A we provide details on the choice
of roots and weights in writing the clustered spin-singlet and
non-Abelian hierarchy states. In Appendix B we provide a brief
introduction to parafermion CFTs and give some details on
the parafermion theory su(4)2/u(1)3 used in Sec. IV. Finally,
we determine the quasiparticle degeneracy for a subset of
non-Abelian hierarchy wave functions in Appendix C.

Notation: We denote the particle coordinates by z = x +
iy and quasiparticle coordinates by η. They may carry an
subscript σ which refers to (pseudo)spin, or a superscript a

which is a layer index. {zi} and {zi,σ } always refer to all particle
coordinates and similarly for {ηi} and {ηi,σ }, whereas {za

i,σ }
refers to all particles of layer a. We label the non-Abelian
hierarchy states by a superscript k that denotes the number of
copies or “layers” and a subscript ν that denotes the filling
fraction in each of the layers. Note that the filling fraction
of such a non-Abelian state is given by kν. When k = 1, we
often suppress the superscript and label the state only by its
filling fraction. The various spin-singlet states are labeled by
the algebra they are based on. We suppress Gaussian factors
throughout.

II. NON-ABELIAN HIERARCHY WAVE FUNCTIONS

In this section we introduce the non-Abelian hierarchy wave
functions. In order to set up notation and introduce important
concepts, we first review several other model states and discuss
their interconnections. In the remainder of the article we
only consider bosonic wave functions, as it simplifies the
discussion. Note that the fermionic wave functions can always
be obtained by multiplying by a full Jastrow factor. These
are expected to have the same non-Abelian properties—only
Abelian phases (connected to the charge of the particles)
change. By a slight abuse of notation, we still call the
bosonic particles “electrons” as they correspond to the electron
operators for the corresponding fermionic states, which we
are ultimately interested in. Furthermore, we will refer to
quasiholes and quasielectrons collectively as quasiparticles.

Haldane-Halperin hierarchy and composite fermion states:
The Haldane-Halperin hierarchy is a simple picture to explain
the zoo of filling fractions in the lowest Landau level and
their properties [4,5]. Starting from the Laughlin states and
successively condensing quasiparticle excitations one obtains
FQH liquids at any filling fraction p/q, where q is odd and
p and q are relatively prime. Their quasiparticle excitations
have fractional charge ±e/q, which determines the relative
stability of FQH liquids to be roughly given by 1/q. Halperin
also proposed a recursion formula for explicit wave functions
at hierarchy level n + 1 given a parent state at level n. It reads

�νn+1 ({zi}) =
Np∏
j=1

∫
d2 �ηj ��({ηj })�νn

({ηj }; {zj }), (2)

where �νn
({ηj }; {zj }) is a parent state with Np quasiparticles

at positions η1, . . . ,ηNp
and � is a pseudowave function

(a wave function of the quasiparticles), which for Abelian
states is a Laughlin wave function. The wave functions (2)
are generically hard to evaluate, even for small numbers of
particles. However, for the subset of states that arise from
condensing quasielectrons only, the integrals can be performed
analytically [8]. The resulting wave functions are identical to
those of composite fermions [9], whenever the latter exist.

Generalized Halperin states: The bosonic Halperin (221)
spin-singlet wave function [7] is given by

�su(3)1 ({zi,σ }) =
N↑∏
i<j

(zi,↑ − zj,↑)2
N↓∏
i<j

(zi,↓ − zj,↓)2

×
N↑∏
i=1

N↓∏
j=1

(zi,↑ − zj,↓)1, (3)

where σ = ↑,↓ is the (pseudo)spin index. The wave function
is denoted by �su(3)1

as it has an su(3)1 symmetry [19] and it
is an su(2) singlet when the number of particles per group is
equal, N↑ = N↓. By allowing the pseudospin index σ to have
values 1, . . . ,n we obtain the generalized Halperin state

�su(n+1)1 ({zi,σ }) =
n∏

σ=1

Nσ∏
i<j

(zi,σ − zj,σ )2

×
n∏

σ<σ ′

Nσ∏
i=1

Nσ ′∏
j=1

(zi,σ − zj,σ ′)1, (4)
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which is an su(2) singlet when all n groups have equal
size Nσ = M . The filling fraction is ν = n

n+1 , and the wave
function has an su(n + 1)1 symmetry [22]. Quasihole wave
functions for these states are obtained by inserting Laughlin
quasiholes in any of the pseudospin groups; if there are Qσ

quasiholes in pseudospin group σ , the wave function reads

�su(n+1)1 ({ηi,σ }; {zj,σ ′ })

=
n∏

σ=1

Qσ∏
i=1

Nσ∏
j=1

(ηi,σ − zj,σ )�su(n+1)1 ({zj,σ ′ }). (5)

The su(n + 1)1 symmetry of the generalized Halperin states
may be used to express them as conformal blocks; they can be
written

�su(n+1)1 ({zi,σ }) =
〈

M∏
i=1

Vα̃1 (zi,1) · · ·
M∏
i=1

Vα̃n
(zi,n)Obg

〉
, (6)

in terms of n types of electron operators V —one for each value
of pseudospin. The electron operators are vertex operators of
n independent chiral bosonic fields

Vα̃(z) = :eiα̃· �ϕ(z): (7)

with �ϕ = (ϕ1, . . . ,ϕn) and 〈ϕi(z)ϕj (w)〉 = −δij ln (z − w).
The operator Obg is a background charge operator, which
is inserted in the correlator to ensure charge neutrality [11].
Finally, the vertex operator is labeled by a vector α̃, which may
be identified as a root of su(n + 1). The correlator in Eq. (6)
reproduces the wave function Eq. (4) if we choose α̃i · α̃i = 2
for all i and α̃i · α̃j = 1 for i 	= j . We will make the choice

α̃i =
i∑

j=1

αj , (8)

where αj are the simple roots of su(n + 1). This still leaves
freedom for the explicit choice of the roots α̃1, . . . ,α̃n, which
can be exploited to ensure that Obg only depends on one field,
see Appendix A. The quasihole wave functions (5) may also
be written as a CFT correlator by inserting vertex operators
that represent the quasiholes. There are n types of quasiholes
and the relevant vertex operators are

Hω̃i
(η) = :eiω̃i · �ϕ(η):, (9)

with i = 1, . . . ,n. Here ω̃i = ωi − ωi+1 for i � n − 1 and
ω̃n = ωn, with ωi the fundamental weights of su(n + 1). The
ω̃i are dual to the roots in Eq. (8), i.e., α̃i · ω̃j = δij , which
ensures that the operators (9) amount to inserting a quasihole
in the ith pseudospin group.

The generalized Halperin states �su(n+1)1
are closely related

to the (bosonic) positive Jain series. Introducing derivatives for
each pseudospin group in Eq. (4),

∂σ ≡
M∏

j=1

∂

∂zj,σ

, (10)

and symmetrizing over the pseudospins afterwards, one repro-
duces the positive Jain series identically [8]

�n/n+1({zj }) = S
[(

n∏
σ=1

∂σ−1
σ

)
�su(n+1)1 ({zi,σ })

]
. (11)

This does not only hold for the ground states, but for all the
quasiparticle excitations as well. It should be noted that the
derivatives do not act on the (suppressed) Gaussian part of the
wave function in Eq. (11).

Clustered spin-singlet states: Originally, non-Abelian spin-
singlet (NASS) states [19,20] were proposed as generalizations
of the (spin-polarized) Read-Rezayi (RR) series [17]. The
RR states are based on su(2)k and can be written as CFT
correlators involving a product of neutral Zk parafermions
with a vertex operator. The NASS states are spin singlets and
their formulation is in terms of conformal blocks based on the
algebra su(3)k for k > 1,

�su(3)k ({zi,σ }) =
〈

M∏
i=1

Vα̃1 (zi,↑)
M∏
i=1

Vα̃2 (zi,↓)Obg

〉
. (12)

Here the electron operators

Vα̃(z) = ψα̃(z):eiα̃· �ϕ(z)/
√

k: (13)

factorize into a neutral Gepner parafermion ψα̃ of su(3)k/u(1)2

(see Appendix B for a short introduction to Gepner
parafermions) and a vertex operator in terms of roots α̃1,α̃2

of su(3). One obtains quasihole wave functions by inserting
operators which likewise split into a neutral and a charged part.
There are two quasihole operators, one for each pseudospin
component, given by

Hω̃i
(η) = σω̃i

(η)eiω̃i · �ϕ(η)/
√

k, (14)

where σω̃i
are primary fields in the parafermion theory.

By allowing the (pseudo)spin index to have n values, one
obtains a clustered spin-singlet state [21,22], which may be
expressed as

�su(n+1)k ({zi,σ }) =
〈

M∏
i=1

Vα̃1 (zi,1) · · ·
M∏
i=1

Vα̃n
(zi,n)Obg

〉
.

(15)

The electron operators again have the form as in Eq. (13),
with ψα̃ a Gepner parafermion of su(n + 1)k/u(1)n. The roots
α̃1, . . . ,α̃n can be chosen as in Eq. (8) [36]. Finally, the
quasihole operators generalize in a similar way: they are given
as in Eq. (14) where the fields σω̃i

are primary fields in the
parafermion theory su(n + 1)k/u(1)n and ω̃i is given as in the
Abelian case.

Alternatively, the wave function �su(n+1)k may be expressed
as a symmetrizer over k copies of the Abelian generalized
Halperin state, similar to the representation of the Read-Rezayi
states proposed by Cappelli, Georgiev, and Todorov [37]. They
showed that both the ground state and excited states of the RR
series can be rewritten as symmetrizers over bosonic ν = 1

2
Laughlin states [3]. The ground state is given by

�su(2)k ({zi}) = S

⎡
⎣ k∏

a=1

∏
i<j

(
za
i − za

j

)2

⎤
⎦, (16)

where the N particle coordinates are divided into k layers of
size N/k. The full wave function is obtained by symmetrizing
over all ways of dividing the coordinates between the different
layers. Similarly the NASS state in Eq. (12) can be expressed
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as a symmetrizer over k copies of the Halperin (221) wave
functions and for general n we have

�su(n+1)k ({zi,σ }) = Sl

[
k∏

a=1

�a
su(n+1)1

({
za
i,σ

})]
. (17)

Here each coordinate is labeled by a pseudospin index σ , a
layer index a, as well an index i. {za

i,σ } denotes the set of
all particles in layer a and the symmetrization Sl is a partial
symmetrization which symmetrizes over all layers, but not the
pseudospins. That is, it symmetrizes over all inequivalent ways
of dividing the coordinates with a given pseudospin over the
layers.

Non-Abelian hierarchy wave functions: Now we have all the
ingredients necessary to realize that the non-Abelian hierarchy
wave functions in Eq. (1) are rather natural generalizations of
the clustered spin-singlet states. Instead of symmetrizing over
k layers of Abelian generalized Halperin states as done in
Eq. (17), we symmetrize over k layers of composite fermion
states Eq. (11). By performing the partial symmetrization over
the layers first one obtains

�k
n/n+1 = S

[
∂0

1 ∂1
2 · · · ∂n−1

n �su(n+1)k ({zi,σ })], (18)

where the symmetrization S is over the pseudospin. Using the
explicit CFT description of the clustered spin-singlet states we
obtain a (nearly) explicit CFT description of the non-Abelian
hierarchy wave functions

�k
n/n+1 = S

〈
M∏
i=1

Ṽα̃1 (zi,1) · · ·
M∏
i=1

Ṽα̃n
(zi,n)Obg

〉
, (19)

where Ṽα̃j
(z) = (∂z)j−1Vα̃j

(z). Note that the symmetrization
here has a very different effect than that of Eq. (17). In
the latter, we symmetrized over indistinguishable particles,
thus reverting a multilayered Abelian state into a non-Abelian
one. Here we symmetrize over distinguishable particles which
differ by their orbital spin. This symmetrization is commonly
believed not to change the (non-Abelian) properties of the
state, thus the non-Abelian hierarchy state should have the
same fusion and braiding properties as the clustered spin-
singlet state. For the fusion rules we can prove this explicitly
using the thin torus analysis. The fusion rules are subsequently
used to determine the quasiparticle degeneracy in Appendix C.

III. FUSION RULES USING THE THIN TORUS LIMIT

A. Thin torus limit

Certain topological properties of fractional quantum Hall
states can be determined in a simple manner by placing
the states on a torus and considering the limit where one
circumference becomes very small. These properties include
the topological ground state degeneracy, the charge of the
fundamental quasiparticles, and their fusion rules [38–43].

In the Landau gauge on the torus the single particle orbitals
are Gaussians localized on rings around one of the handles of
the torus, which are separated by 2π�2

L
with L the circumference

of the torus and � the magnetic length. As the thickness L → 0
hopping between orbitals is exponentially suppressed and the
degenerate ground states on the torus become simple patterns
of occupation numbers. These patterns are determined by the

filling fraction and the electrostatic repulsion between the
constituent particles. As an explicit example we consider the
thin torus limit of the wave function �3/4 obtained by letting
n = 3 and k = 1 in Eq. (11). The filling fraction is ν = 3

4 ,
which leads to four degenerate ground state patterns [38]

· · · 01110111 · · · = [0111],

· · · 10111011 · · · = [1011],
(20)· · · 11011101 · · · = [1101],

· · · 11101110 · · · = [1110].

Here we have represented the patterns of occupation numbers
by their “unit cells.” These obey the rule that every four
consecutive orbitals contain precisely three particles [38].

Excitations correspond to local violations of this rule,
i.e., they are domain walls between degenerate ground state
sectors. Here we are mostly interested in the fundamental
quasiparticles, which correspond to domain walls that carry
a minimal deficit or excess charge. If ν = p

q
, these domain

walls are located at strings of q consecutive orbitals with p ± 1
charge. In the above example a domain wall structure of the
quasielectron is

· · · |0111|0111|1011|1011| · · · ,

which we denote by [0111] → [1011]. Note that the under-
lined region is the only string of four consecutive orbitals
containing four charges, while all other such strings have three
charges. Inserting these domain walls at four well-separated
positions and comparing to the ground state one can show
that this region carries an excess charge e

4 [44]. The vertical
bars are a guide to the eye and show that upon inserting
the quasielectron the sector [0111] is connected to the sector
[1011]. Repeating this procedure we obtain the domain wall
structures

[0111] → [1011],

[1011] → [1101],
(21)

[1101] → [1110],

[1110] → [0111].

There is a simple “hopping rule” that determines which
ground state patterns can be connected by the insertion
of a fundamental quasihole/quasielectron. When inserting a
quasielectron the unit cell of the final ground state sector is
found by hopping an electron one site to the left in the unit cell
of the original sector, imposing periodic boundary conditions
on the unit cell, and disallowing multiple occupation of the
orbitals. For a quasihole, the electron has to hop one site to the
right instead. More details on the thin torus limit can be found
in Ref. [38].

B. Fusion rules

We now use these domain wall structures to determine the
fusion rules of the non-Abelian hierarchy states, following
the method introduced in Refs. [42,43]. In order to familiarize
ourselves with the method, let us start with two simple
examples for which the fusion rules are well known.
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FIG. 1. Bratteli diagram for ω̂1 in su(2)2.

We first consider the fusion rules for the Abelian hierarchy
wave functions. From the example of ν = 3/4 mentioned
earlier, it is evident that by successively inserting fundamental
quasiparticles, one moves cyclically through the q = 4 distinct
unit cells, as shown in Eq. (21). Using the results of Ref. [38],
it is straightforward to show that this generalizes to generic
Abelian hierarchy states and that the fusion rules depend only
on the denominator of the filling fraction. In particular an
Abelian hierarchy state at filling p/q harbors quasiparticles
with fusion rules su(q)1 = Zq .

Another well-known example is the bosonic Moore-Read
state, obtained by taking k = 2 in Eq. (16),

�su(2)2 ({zi}) = S

⎡
⎣∏

i<j

(
z1
i − z1

j

)2 ∏
i<j

(
z2
i − z2

j

)2

⎤
⎦. (22)

The wave function for each of the layers is a bosonic Laughlin
state at ν = 1

2 . Hence their ground state unit cells are given
by [01] and [10]. The ground state patterns for the full wave
function, obtained by adding the occupation numbers for the
two independent layers, are [02], [20], and [11]. Inserting
the fundamental quasielectron, the domain wall structures are
given by [40,41]

[02] → [11],

[20] → [11], (23)

[11] → [02] + [20].

Note that in the last case we can hop either electron in the
[11] pattern, thus giving two fusion outcomes, which is the
hallmark of non-Abelian statistics. Furthermore, we can again
find the possible domain wall structure by the simple hopping
rule described earlier, except that we now also allow doubly
occupied orbitals.

The domain wall structures (23) can be identified with
the fusion rules of the fundamental representation of the
algebra su(2)2. The algebra su(2)2 has three irreducible
representations, which are written (2; 0), (0; 2), and (1; 1). We
denote these in terms of Young tableaux as follows:

•
(2;0) (1;1) (0;2)

.

Here the Young tableau of (r0; r1) is the Young tableau
associated with the su(2) representation λ = r1ω1, where ω1

is the fundamental representation of su(2). The fundamental
representation of su(2)2 is denoted ω̂1 and it has the same
Young tableau—a single box—as ω1 of su(2). We determine
the fusion rules of ω̂1 by virtue of the Littlewood-Richardson
rule [45]. These fusion rules are shown in Fig. 1 as a Bratteli

diagram, where each arrow indicates a fusion with ω̂1. It is
clear that this has exactly the same structure as the Bratteli
diagram based on the domain wall structures Eq. (23), where
each arrow corresponds to inserting a quasiparticle domain
wall. For this, one identifies [02] ↔ (2; 0),[20] ↔ (0; 2), and
[11] ↔ (1; 1).

Closely related to the algebra su(2)2 is the Ising CFT
su(2)2/u(1). In fact it has the same fusion rules as su(2)2,
although the conformal dimensions of the fields are different.
The primary fields are commonly denoted 1, ψ , and σ , and the
fusion rules of σ read

1 × σ = σ,

ψ × σ = σ, (24)

σ × σ = 1 + ψ.

One can also identify [02] ↔ 1, [20] ↔ ψ , [11] ↔ σ . We
note, however, that for general n and k, the domain wall struc-
tures will be identified with the fusion rules of generalizations
of su(2)2, rather than generalizations of the Ising CFT.

C. Non-Abelian hierarchy states

Let us now discuss non-Abelian hierarchy states of the
form Eq. (18). For general n and k the wave function for a
single layer has filling fraction ν = n

n+1 , so the ground state
patterns in the thin torus limit are [011 · · · 1] = [01n] and its
translations [38]. These are identical to the thin torus patters
of the generalized Halperin states, except that the latter have
an additional quantum number, namely the spin. In particular,
the derivatives do not alter the thin torus patterns [46]. As the
different layers in Eq. (18) are independent of each other, we
obtain the ground state patterns of the fully symmetrized state
by summing the occupation numbers of the patterns in each
layer and discarding duplicates. Doing so one finds that the
ground state degeneracy is

(
n+k

k

)
. As before the quasiparticle

domain wall structures are determined by a “hopping rule,”
i.e., the domain wall connects two sectors when the unit cell
of the final sector can be obtained from the first by hopping
an electron one site to the left. In the general case electrons
can only be hopped into sites when the resulting occupancy is
not greater than k. We will now show that the corresponding
thin torus patterns are in one-to-one correspondence with the
irreducible representations of su(n + 1)k . Furthermore, we
show that the quasiparticle domain wall structures correspond
to the fusion rules of the fundamental representations ω̂1 and
ω̂n of su(n + 1)k .

The irreducible representations of su(n + 1)k read � =
(r0; r1, . . . ,rn), where the rμ are non-negative integers, λ =∑

i�1 riωi is an su(n + 1) representation in terms of the
fundamental weights [47] ωi , and r0 = k −∑

i�1 ri . There

are
(
n+k

k

)
irreducible representations. The map from the thin

torus patterns onto these irreps is

[r0r1 · · · rn] �→ (r̄0; r̄1, . . . ,r̄n), (25)

where r̄μ = k − rμ is particle-hole conjugation.
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The fundamental quasielectron corresponds to the pattern
[1(k − 1)k · · · k], which maps onto ω̂1 = [(k − 1); 1,0, . . . ,0]
in su(n + 1)k [48]. The corresponding Young tableau is a single
box. Applying the Littlewood-Richardson rule, the fusion
rules of ω̂1 are described as follows. Fusing ω̂1 with an irrep
(r0; r1, . . . ,rn) yields a sum over irreps where one changes
(imposing periodic boundary conditions) rμ → rμ − 1 and
rμ+1 → rμ+1 − 1, as long as 0 � rμ � k. Translating this
back into the thin torus patterns precisely corresponds to the
hopping rule discussed earlier. Similarly, the fusion rules of ω̂n

correspond to the hopping rule of the fundamental quasihole.
This concludes the proof of the fusion rules for fractional
quantum Hall states of type Eq. (18), but we can derive the
fusion rules even for the more general states of type Eq. (1).
The proof for the latter hinges on the fact that the domain wall
structure of an Abelian state at filling fraction p/q depends
only on q. Thus, there is a one-to-one mapping of the domain
wall patterns of �k

p/q of Eq. (1) to the domain wall patterns of
�k

(q−1)/q in Eq. (18) and the quasiparticle excitations of both
states obey the same fusion rules.

We note that we have thus far only considered domain
wall structures involving the fundamental quasiparticles. As
a result we find only a subset of the full set of fusion rules,
namely those that involve the fusion of ω̂1 and ω̂n. However,
the entire fusion algebra can be fixed by studying the domain
wall structures of domain walls with a higher charge, which
have the following hopping rule: starting from an initial unit
cell, the final unit cells are obtained by hopping i electrons
one site to the left, with the constraint that we can only hop
1 electron from each site. These rules map onto the fusion
rules of the fundamental representations ω̂i , which generate
the entire fusion algebra [49]. Hence, the full fusion algebra is
equal to su(n + 1)k .

IV. EXAMPLE n = 3,k = 2

To make the above discussion less abstract we consider
an explicit example, taking n = 3 and k = 2 in Eq. (18). The
simpler case n = k = 2, related to the NASS wave function,
was already studied in Ref. [32]. The relevant non-Abelian
hierarchy wave function is given by

�2
3/4({zi}) = S

⎡
⎣∂2∂

2
3

2∏
a=1

⎛
⎝ 3∏

σ=1

∏
i<j

(
za
i,σ − za

j,σ

)2
3∏

σ<σ ′

∏
i,j

(
za
i,σ − za

j,σ ′
)⎞⎠
⎤
⎦ = S[�3/4�3/4]. (26)

As seen in the previous section, the thin torus ground state
patterns for the state with n = 3 and k = 1 are given by
[0111], [1011], [1101], and [1110]. Therefore, the ground
state sectors for the full wave function, symmetrizing over two
layers, are

[0222],[2022],[2202],[2220],

[1122],[2112],[2211],[1221],

[1212],[2121].

The domain wall structures involving the fundamental
quasiparticle can be found by hopping electrons one site to
the left, yielding

[0222] → [1122],

[1122] → [1212] + [2022],

[1212] → [2112] + [1221].

The remaining domain wall structures may be found
by translating all “unit cells” simultaneously. Using the
map Eq. (25), this precisely corresponds to the fusion
rules of ω̂1 in su(4)2, shown in Fig. 2 as a Bratteli
diagram.

The clustered spin-singlet state corresponding to the given
case has n = 3 values for the pseudospin and is given by the
conformal block

�su(4)2 ({zi,σ })

=
〈

M∏
i=1

Vα̃1 (zi,1)
M∏
i=1

Vα̃2 (zi,2)
M∏
i=1

Vα̃3 (zi,3)Obg

〉
, (27)

where the electron operators are given by

Vα̃(z) = ψα̃(z):eiα̃· �ϕ(z)/
√

2:, (28)

i.e., a product of parafermions ψα̃ of su(4)2/u(1)3 and vertex
operators in terms of bosonic fields �ϕ = (ϕ1,ϕ2,ϕ3). The roots
α̃i of su(4) can be chosen as

α̃1 =
(

2√
3
,0, − 2√

6

)
,

α̃2 =
(

2√
3
,

1√
2
,

1√
6

)
, (29)

α̃3 =
(

2√
3
, − 1√

2
,

1√
6

)
.

Here we have used the “charge representation” of the roots
such that it is charge neutral in all but the first sector, i.e., the
second components and the third components of the roots α̃i

FIG. 2. Bratteli diagram for ω̂1 in su(4)2.
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sum to zero. The field ϕ1 then carries the physical charge—see
Appendix A.

Alternatively, the correlator Eq. (27) can be expressed as

�su(4)2 ({zi}) = Sl

[
2∏

a=1

�a
su(4)1

({
za
i,σ

})]
, (30)

where Sl symmetrizes over the coordinates in the different
pseudospin groups, i.e., it symmetrizes over the coordinates in
pseudospin groups 1, 2, and 3 separately.

Returning to the non-Abelian hierarchy wave function, it is
related to the above wave function via Eq. (18), which yields

�2
3/4({zi}) = S

{
∂2∂

2
3Sl

[
2∏

a=1

�a
su(4)1

({
za
i

})]}

= S
〈

M∏
i=1

Ṽα̃1 (zi)
M∏
i=1

Ṽα̃2 (zi)
M∏
i=1

Ṽα̃3 (zi)

〉
, (31)

where the tilde on the operators V denotes that we have
included the derivatives in the operator definition. The non-
Abelian hierarchy wave function is hence expressed as a
symmetrizer over a correlator of electron operators related
to su(4)2.

The quasiholes are described by the operators

Hω̃i
(η) = σω̃i

(η)eiω̃i · �ϕ/
√

2, (32)

where the fields σω̃i
= �

ω3
ω̃i

are primary fields of the appropriate
parafermion theory (see Appendix B for more details). These
fields carry a label ω3 as well as a label ω̃i which is given

ω̃1 = ω1 − ω2 =
(

1

2
√

3
,0, − 2√

6

)
,

ω̃2 = ω2 − ω3 =
(

1

2
√

3
,

1√
2
,

1√
6

)
, (33)

ω̃3 = ω3 =
(

1

2
√

3
, − 1√

2
,

1√
6

)
,

in the charge representation. The ω̃i satisfy α̃i · ω̃j = δij .
These quasihole operators generate all quasihole states, both
for the clustered spin-singlet states and for the non-Abelian
hierarchy states. In the former case, the operators are linearly
independent, but in the latter case, where pseudospin is not any
longer a good quantum number, they generically are not. The
derivatives ensure that they are still distinguishable and, thus,
have still the same statistics as their spin-singlet counterparts
[6].

V. CONCLUSION AND SUMMARY

In this article we have analyzed generalizations of the
non-Abelian hierarchy wave functions that were originally
introduced in [32]. We showed that the wave functions Eq. (1),
given by

�k
p/q = S[�p/q · · · �p/q︸ ︷︷ ︸

k times

], (34)

have a filling fraction kp/q, a topological ground state
degeneracy of

(
q+k

k

)
, and harbor quasiparticle excitations with

fractional charge ±e/q and su(q)k-type fusion rules. For a
subset of these states, namely those with p = q − 1, we have
determined the CFT description that should make all the
topological properties, in particular the braiding properties of
quasiparticles, manifest [50].

The relevant CFT is a product of Gepner parafermions and
vertex operators of chiral bosons. Both are unitary and rational
CFTs, which is a necessary condition for describing gapped,
incompressible quantum liquids. However, this condition is
not sufficient. In fact, there are several examples of rational,
unitary CFTs that give gapless wave functions, see, e.g.,
Refs. [51,52]. In order to resolve this, one needs to study
the wave functions numerically.

The simplest examples of type Eq. (1) have been already
been studied numerically [53,54], where it was found that they
have a large overlap with the exact diagonalization ground state
of certain three- and four-body clustering Hamiltonians. In
order to determine the screening properties of the non-Abelian
wave functions (and thus whether or not they can describe
gapped systems), one however needs to employ different
numerical tools.

A promising method could be the one introduced by Zaletel
and Mong [55], who showed that certain quantum Hall model
wave functions can be written as exact matrix product states,
utilizing the underlying CFT description. This method has
been generalized to the Read-Rezayi series [56], where it was
used to verify the braiding properties of the quasiholes of
the Z3 parafermion state numerically [57,58] and to confirm
the screening properties of a variety of different model states
[59]. It can also be generalized to describe quasielectron
excitations [60]. At least for the simpler examples of type
Eq. (1), the MPS description should be able to determine if
the wave functions are in the screening phase and determine
the braiding properties that should be manifest in our CFT
description.
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APPENDIX A: ROOTS FOR THE CLUSTERED
SPIN-SINGLET STATES

As mentioned in the text, the generalized Halperin states
have an su(n + 1)1 symmetry. The low energy effective field
theory for these states is given by

Ln = 1

4π
εμνρai

μ(Kn)ij ∂νa
j
ρ + 1

2π
tiε

μνρAμ∂νa
i
ρ, (A1)

where the ai
μ are Chern-Simons fields, Aμ is the external

electromagnetic field, and (Kn)ij = 1 + δij is the K matrix
[61]. The K matrix is related to the Cartan matrix An of
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su(n + 1) by a similarity transformation. Explicitly,

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · −1 2 −1
0 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

and Kn = WAnW
T for Wij = δij + δi+1 j . Letting α1, . . . ,αn

be simple roots of su(n + 1) with inner products as encoded
in the Cartan matrix Eq. (A2), the set of roots

α̃i =
i∑

j=1

αj (A3)

have inner products as encoded in the K matrix; α̃i · α̃j = Kij .
Using these roots for the vertex operators Eq. (7) one obtains
the wave function �su(n+1)1

, Eq. (4).
A simple explicit representation is obtained by choosing

the vectors such that the ith vector has only the first i com-
ponents nonzero and to fix the components by requiring the
correct inner products. Hence α̃1 = (

√
2,0, . . . ,0) and α̃2 =

(
√

1
2 ,

√
3
2 ,0, . . . ,0), and so on. A more natural representation

for the roots is the charge representation, which follows from
the above by means of a simple rotation. Letting w = ∑

i α̃i ,
one performs a rotation O on w such that it lies along the first
axis, i.e., Ow = [

√
n(n + 1),0, . . . ,0]. Then, the roots Oα̃i

obey charge neutrality in all but the first sector, so that the
background charge operator Obg need only depend on a single
field. This field may then be associated with physical charge.

Since (Oα̃i)1 =
√

n+1
kn

for all i, each electron type carries the

same charge equal to 1√
ν

with ν being the filling fraction of

�su(n+1)k . Note that the factor
√

1
k

comes from the definition
of the vertex operators for k > 1.

The fundamental weights of su(n + 1) are determined by
the condition ωi · αj = δij , where αj are the simple roots. It
follows that ω1

i = n+1−i
n+1 qe in the charge representation, where

qe =
√

n+1
kn

is the electron charge. The relevant weights for the
quasihole operators Eqs. (9) and (14) are the weights dual to
the vectors α̃. It is easy to show that α̃i · ω̃j = δij is solved by
taking ω̃i = ωi − ωi+1 for 1 � i � n − 1 and ω̃n = ωn. These
all carry the same charge ω̃1

i = 1
n+1qe.

APPENDIX B: PARAFERMIONS

We provide a brief introduction to parafermion CFTs,
referring the reader to [18] for more details. We will focus
on the parafermion theory based on su(n + 1) for n � 1. The
most relevant primary fields of these conformal field theories
are the parafermions, which appear in vertex representations
of the WZW algebra su(n + 1)k for k > 1 [62,63]. It is these
representations that we use construct the clustered spin-singlet
states. The WZW current algebra reads

J a(z)J b(w) ∼ kδab

(z − w)2
+ f abcJ c(w)

(z − w)
. (B1)

At level k = 1 we can represent this algebra by using [64]
the vertex operators Vα̃(z) = eiα̃· �ϕ(z) and the Cartan currents
Hi = iαi∂ �ϕ(z), where α̃ and αi are the roots and simple roots
of su(n + 1).

For levels k > 1 the vertex operators and Cartan currents
need to be modified in order to yield the OPEs Eq. (B1).
An initial guess would be to take Hi(z) = i

√
kαi∂z �ϕ(z) and

Vα̃(z) = √
k exp [iα̃ �ϕ(z)/

√
k]. However, although the Cartan

currents yield the correct OPEs, the vertex operators have the
wrong conformal dimension �V = 1/k instead of 1. This issue
is solved by introducing a parafermion ψα̃(z), so that

Vα̃(z) =
√

kψα̃(z) exp[iα̃ �ϕ(z)/
√

k]. (B2)

Like the vertex operator, the field ψα̃ is labeled by a root α̃,
and the OPEs of the parafermions read

ψα̃(z)ψ−α̃(w) = (z − w)−2+2/k,
(B3)

ψα̃(z)ψβ̃(w) = Kα̃,β̃(z − w)1−α̃·β̃/kψα̃+β̃(w),

with Kα̃,β̃ some constants. This reproduces Eq. (B1) for k > 1,
and the vertex operator can be used to construct the clustered
spin-singlet states—we drop the proportionality factor

√
k in

that case.
The full parafermion theory, written su(n + 1)k/u(1)n,

contains other fields besides the parafermions. The primary
fields in this theory are written ��

λ . Here � = (�1, . . . ,�n)
consist of the last n components of the affine weight �̂ =
(�0; �1, . . . ,�n). The label λ is an element of the weight
lattice, i.e.,

λ = (λ1,λ2, . . . ,λn) =
∑

i

λiωi, (B4)

where the λi are integers. These labels are defined only modulo
k times the (long) root lattice ML of su(n + 1)k . That is ��

λ =
��

λ′ if λ = λ′ + kα, where α = ∑
i riαi is an element of the

(long) root lattice spanned by the simple roots αi .
The primary fields are subject to the following conditions:
(1) λ must be obtainable from � by adding or subtracting

the simple roots.
(2) In order for the theory to behave properly under

modular transformations, we must identify �
(�1,...,�n)
(λ1,...,λn) =

�
(�0,...,�n−1)
(λ1+k,λ2,...,λn).
The fusion rules between the primary fields are given by

��
λ × ��′

λ′ =
∑
�′′

��′′
λ+λ′ mod kML

, (B5)

where the sum extends over the �′′ labels associated to the
irreps of su(n + 1)k that appear in the fusion rule �̂ × �̂′.
Moreover, one may have to impose field identifications on the
primary fields that appear.

A simple example is the Ising CFT su(2)2/u(1). The irreps
of su(2)2 are (2; 0), (1; 1), (0; 2), so the � labels are � = 0,1,2.
Since su(2) has only one simple root α = 2, condition 1 implies
that only those λ with the same parity as � are allowed. Since
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the λ labels are only defined modulo k = 2 times the root
lattice, i.e., modulo 4, one obtains a set of six fields: �0

0, �0
2,

�1
1, �1

3, �2
0, and �2

2. Condition 2 leaves only the fields �0
0 = 1,

ψ = �0
2, and σ = �1

1. The fusion rules yields the Ising fusion
rules, some of which are given in Eq. (24).

The parafermion theory su(4)2/u(1)3: We discuss briefly
the parafermion theory su(4)2/u(1)3, relevant for the example
in Sec. IV. In this case, the � labels are

(0,0,0),(2,0,0),(0,2,0),(0,0,2),

(1,0,0),(1,1,0),(0,1,1),(0,0,1), (B6)

(0,1,0),(1,0,1).

The allowed labels λ can be determined by adding to the �

labels the simple roots α1 = (2, − 1,0), α2 = (−1,2, − 1), and
α3 = (0, − 1,2) and their sums. Invoking the field identifica-
tions, one is left with 20 primary fields. Of these, the most
relevant are the parafermions

ψα1 = �(0,0,0)
α1

,

ψα1+α2 = �
(0,0,0)
α1+α2

, (B7)

ψα1+α2+α3 = �
(0,0,0)
α1+α2+α3

,

used to construct the electron operators. The spin fields that
are used to construct the quasihole operators Eq. (14) are

σω̃1 = �
ω3
ω1−ω2

,

σω̃2 = �
ω3
ω2−ω3

, (B8)

σω̃3 = �ω3
ω3

.

Here ω3 = (0,0,1) corresponds to the irrep ω̂3 = (1; 0,0,1) of
su(4)2.

APPENDIX C: QUASIPARTICLE DEGENERACY

The fusion rules for the non-Abelian hierarchy states
�k

n/n+1 are those of su(n + 1)k , which are non-Abelian for
k > 1. A necessary property of non-Abelian excitations is a
nontrivial degeneracy when N such particles are inserted at
well-separated positions. For the Moore-Read state Eq. (22)
this degeneracy is given by 2N/2−1 for N > 0, which is encoded
in the Bratteli diagram for su(2)2, Fig. 1. Namely, the N

quasiparticles must fuse to the identity in order to yield a
nonzero wave function: the degeneracy is given by the number
of distinct paths of length N > 0 in the Bratteli diagram from
the identity to the identity. This is easily seen to be 2N/2−1,
when N is a multiple of two.

The quasiparticle degeneracy for the Read-Rezayi states,
i.e., for the algebras su(2)k , was computed in [42]. For
su(2)k, the representations (r0; r1) appearing in the vertices
in the Bratteli diagram may be labeled by r1 = 0, . . . ,k. The
number of paths going from r1 to r ′

1 when fusing with ω̂1 N

times, which we will denote by d2,k(r1,r
′
1,N ), is given by

d2,k(r1,r
′
1,N ) = (N1)N

r1,r
′
1
. That is, the degeneracy is the r1,r

′
1

matrix element of the N th power of the fusion matrix N1 of
ω̂1 in su(2)k . By virtue of the Verlinde formula, this may be
written in terms of the matrix elements of the modular S matrix

of su(2)k . The result is

d2,k(r1,r
′
1,N ) = 2

k + 2

k∑
m=0

sin

(
(r1 + 1)(m + 1)π

k + 2

)

× sin

(
(r ′

1 + 1)(m + 1)π

k + 2

)

×
[

2 cos

(
(m + 1)π

k + 2

)]N

. (C1)

Here we have used that

(N1)Nr1,r
′
1
=

k∑
m=0

Sr1 mSr ′
1 m

(
S1m

S0m

)N

, (C2)

Sr1,r
′
1
=
√

2

k + 2
sin

(
(r1 + 1)(r ′

1 + 1)π

k + 2

)
. (C3)

We now turn to the non-Abelian hierarchy states. By virtue
of the rank-level duality [45], the quasiparticle degeneracy of
the non-Abelian hierarchy state based on su(n + 1)2, i.e., at
level k = 2, is closely related to the quasiparticle degeneracy
of su(2)n+1. In particular, the Bratteli diagrams of ω̂1 and ω̂n

in su(n + 1)2 have exactly the same structure as the Bratteli
diagrams of ω̂1 in su(2)n+1, although the labeling of the vertices
is different. As a result, we may deduce the number of paths
from identity to identity in the Bratteli diagram for su(n + 1)2
by counting the paths between representations in the same
positions in the Bratteli diagram for su(2)n+1. In the Bratteli
diagram for su(n + 1)2, the identity appears at the positions
[s(n + 1),n + 1] for s an odd integer and [s(n + 1),0] for s

even. On those positions in the Bratteli diagram for su(2)n+1,
we find the representation (0; n + 1) for s odd and the identity
for s even. As a result, dn+1,2[0,0,N = (n + 1)s] is equal to
d2,n+1[0,(n + 1)(s mod 2),N = (n + 1)s], so that

dn+1,2[0,0,N = (n + 1)s]

= 2

n + 3

n+1∑
m=0

(−1)m(s mod 2)

× sin2

(
(m + 1)π

n + 3

)[
2 cos

(
(m + 1)π

n + 3

)]N

, (C4)

and dn+1,2(0,0,N ) is zero if N 	= (n + 1)s. For the general
case su(n + 1)k, the quasiparticle degeneracy can be found by
using the Verlinde formula with the general expression for the
modular S matrix for su(n + 1)k [45], although the expressions
become too complicated to provide simple counting formulas
in most cases. Two simple examples are su(3)3 and su(4)4
where the degeneracy is given by

d3,3(0,0,N = 3s) = 1

12

[
3δs,0 + 8s + 8 cos

(πs

3

)]
,

d4,4(0,0,N = 4s) = 1

32
{6δs,0 + 22s+1[1 + (−1)s]

+ 8s[(3 + 2
√

2)s−1 + (3 − 2
√

2)s−1]

+ 8 cos
(πs

4

)
[(2 +

√
2)2s−1 + (−1)s

× (2 −
√

2)2s−1]}. (C5)
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