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Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula
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We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the
finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of
the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated
procedures which, using only the lattice Hamiltonian H = ∑

j hj as an input, systematically identify the low-
energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining
low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed
to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data
that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes
Hn of the Hamiltonian density hj . The Hn were introduced as lattice representations of the Virasoro generators
by Koo and Saleur [Nucl. Phys. B 426, 459 (1994)]. In this paper, we demonstrate that these operators can be
used to extract conformal data in a nonintegrable quantum spin chain.
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I. INTRODUCTION

Conformal field theory (CFT) [1–4] is ubiquitous in
modern theoretical physics. It describes fixed points of the
renormalization group flow [5], making it central to our
understanding of quantum field theory [6]. It is also a core
component both of string theory [7] and of the AdS/CFT
correspondence of quantum gravity [8]. In condensed matter,
as well as in statistical mechanics, continuous phase transitions
can often be understood in terms of an underlying CFT that
describes their universal, long-distance/low-energy physics
[1,3–5]. Based on a previous proposal by Koo and Saleur [9],
in this paper we develop tools to investigate the emergence
of conformal symmetry in generic quantum spin chains at
criticality.

In order to present our results, we first need to recall two
well-known facts about CFTs in two space-time dimensions
[1–4]. (i) On the plane, parametrized by a complex coordinate
z = x + iy, a CFT contains infinitely many scaling operators
ϕα(z). These are fields that transform covariantly under a
rescaling of the plane by a factor λ > 0 or a rotation by an
angle θ ∈ [0,2π ):

z → λz (rescaling) ⇔ ϕα(0) → λ−�α ϕα(0),

z → eiθ z (rotation) ⇔ ϕα(0) → e−iθSα ϕα(0), (1)

where �α and Sα are the scaling dimension and conformal
spin of ϕα(z). Scaling operators are organized into conformal
towers, each consisting of a Virasoro primary operator and
its descendants (see, e.g., Fig. 1). (ii) The operator-state
correspondence establishes that for each scaling operator ϕα

there is an eigenstate |ϕα〉 of the CFT Hamiltonian H CFT on
the circle, with energy and momentum given by

ECFT
α = 2π

L

(
�α − c

12

)
, P CFT

α = 2π

L
Sα, (2)

where L is the length of the circle and c is the central charge
of the CFT, which determines the Casimir energy. The scaling
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dimensions, conformal spins, and operator product expansion
(OPE) coefficients (three-point correlators) of the primary
operators, together with the central charge, fully characterize
the CFT [1] and are referred to as conformal data.

A. Extraction of conformal data

The extraction of conformal data from lattice models has
a long history. Following the landmark 1984 publication by
Belavin, Polyakov, and Zamolodchikov of [1], which revealed
the intricate structure of two-dimensional (2D) CFT, Cardy,
Blöte, Nightingale, and Affleck [10–14] discovered that, at low
energies and after suitably normalizing the lattice Hamiltonian
H , the energies and momenta of a critical quantum spin chain
made of N spins must read as

Eα = 2π

N

(
�α − c

12

)
+ O(N−x), Pα = 2π

N
Sα. (3)

This matches the CFT spectrum (2) up to subleading, nonuni-
versal corrections O(N−x), where x > 1 is also model specific
[15]. One can therefore estimate the scaling dimensions �α

and conformal spins Sα of the CFT from the energies Eα and
momenta Pα computed on the lattice (see, e.g., Fig. 5). This
result has proved extremely useful in understanding critical
lattice systems, e.g., [16–33].

One can think of (3) as demonstrating a low-energy
correspondence between the critical lattice Hamiltonian H

and the CFT Hamiltonian H CFT:

H =
N∑

j=1

hj ∼ H CFT =
∫ L

0
dx hCFT(x), (4)

where hj and hCFT(x) denote the lattice and continuum
Hamiltonian densities. It is then natural to ask whether this
global correspondence extends to the local densities

hj ∼ hCFT(x). (5)

An example of this local correspondence was already found
in 1971 by Kadanoff and Ceva [34], who showed that a
lattice analog of the energy-momentum tensor exists in the
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FIG. 1. Exact spectrum of the Ising CFT Hamiltonian in terms of
� and s, color coded by conformal tower, showing the location of the
primary states |I 〉, |σ 〉, and |ε〉, and the energy-momentum states |T 〉
and |T 〉. Note: We shift points horizontally from their allowed values
(S is quantized) to avoid overlaps and better show degeneracies in
this and subsequent figures.

Ising model. Later, Koo and Saleur [9] demonstrated the
principle more generally by showing that, in some integrable
models, the Fourier modes Hn of hj , defined so that hj =
(2π/N2)

∑
n e−ijn 2π

N Hn, behave as lattice representations of
certain linear combinations of the Virasoro generators of con-
formal symmetry: H CFT

n ≡ LCFT
n + LCFT

−n − δn,0c/12. Other
work had previously established the existence of lattice repre-
sentations (or deformations) of (parts of) the Virasoro algebra
in certain integrable systems [35–42], but the proposal of [9]
is of particular importance because it provides a prescription
for constructing lattice analogs of all the Virasoro generators.
This provides access to a wealth of information about the CFT,
including the central charge. Indeed, a number of authors have
used the so-called Koo-Saleur formula to extract conformal
data in various models, especially logarithmic CFTs, which
are nontrivial nonunitary CFTs with c = 0 (see, e.g., [43–48]).
However, as yet the Koo-Saleur formula has not enjoyed the
same widespread use as (3), having been applied only to
integrable systems.

B. Our results

In this paper, we propose and test methods which apply the
Hamiltonian-density Fourier modes Hn [9] to systematically
identify low-energy eigenstates of a critical spin chain Hamil-
tonian H (with local interactions) with CFT scaling operators.
In particular, we present automated procedures for finding
the eigenstates corresponding to primary and quasiprimary
operators, as well as for assigning all remaining low-energy
eigenstates to their respective (Virasoro or global) conformal
towers. A key feature of these methods is that they provide
a general means for determining which scaling dimensions
and conformal spins derived from (3) belong to primary fields
in the CFT, thus delivering a crucial piece of the conformal
data. They also deliver an improved way of identifying the
energy-momentum-tensor state, often used to determine the
correct normalization for H . Furthermore, our construction
sets the stage for a systematic determination of the OPE
coefficients for generic critical spin chains, which involves

additionally determining scaling operators on the lattice and
will be discussed in [49].

Finally, we establish that our methods, and hence the
Koo-Saleur formula, are applicable away from integrability
by demonstrating them in the self-dual ANNNI (axial next-
nearest-neighbor Ising) model: a nonintegrable perturbation
of the Ising model.

We stress that, although for this paper we used exact
diagonalization to obtain the low-energy eigenstates of H , our
core proposal is independent of the method used to obtain these
eigenstates. Indeed, we can also apply operators Hn to energy
eigenstates obtained with more sophisticated techniques, such
as periodic matrix product states [50], and in this way analyze
larger systems, which carry smaller finite-size errors.

Note. Throughout the paper we differentiate between lattice
objects, such as H , P , and Hn, and their CFT counterparts
H CFT, P CFT, and H CFT

n , by means of the superscript CFT. On
the other hand, states denoted as |ϕ〉, |ϕα〉, etc., belong either to
the lattice or the CFT, as can be determined from the context.

II. LOW-ENERGY CORRESPONDENCE
FOR HAMILTONIAN DENSITIES

A. Critical quantum spin chains and CFTs

We consider a periodic one-dimensional (1D) lattice made
of N sites with a translation-invariant quantum Hamiltonian

H =
N∑

j=1

hj , (6)

that decomposes as a sum of local Hamiltonian terms, where
the term hj is located about site j and will be referred to
as the Hamiltonian density on that site. A canonical example
is the transverse field Ising model

H Ising(λ) ≡ −
N∑

j=1

[
σX

j σX
j+1 + λσZ

j

]
, (7)

which is critical at λ = 1. We assume that, at criticality, there
is a corresponding quantum CFT Hamiltonian

H CFT =
∫ L

0
dx hCFT(x), (8)

where x ∈ (0,L] parametrizes a circle of radius L/2π and
the Hamiltonian-density field operator hCFT(x) can be written
[1–4] in terms of the chiral and antichiral components T CFT(x)
and T CFT(x) of the traceless energy-momentum tensor of the
CFT on the circle,

hCFT(x) ≡ 1

2π
[T CFT(x) + T CFT(x)]. (9)

Similarly, to the lattice momentum operator P (defined such
that eiP 2π

N is a translation by one lattice site) we associate the
CFT momentum operator

P CFT =
∫ L

0
dx pCFT(x), (10)

where pCFT(x) ≡ (T CFT(x) − T
CFT

(x))/(2π ) is the momen-
tum density.
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B. Fourier mode expansions

The Fourier modes LCFT
n and LCFT

n of the chiral and
antichiral energy-momentum tensor operators [1–4]

LCFT
n ≡ L

(2π )2

∫ L

0
dx e+inx 2π

L T CFT(x) + c

24
δn,0,

L
CFT
n ≡ L

(2π )2

∫ L

0
dx e−inx 2π

L T
CFT

(x) + c

24
δn,0, (11)

where n ∈ Z, furnish chiral and antichiral instances of the
Virasoro algebra [1,51][

LCFT
n ,LCFT

m

] = (n − m)LCFT
n+m + c

12
n(n2 − 1)δn+m,0,[

LCFT
n ,L

CFT
m

] = 0,[
L

CFT
n ,L

CFT
m

] = (n − m)L
CFT
n+m + c

12
n(n2 − 1)δn+m,0,

(12)

and are the canonical choice of generators of conformal
symmetry on the CFT Hilbert space.

Importantly for our purposes, the Fourier modes H CFT
n of

the Hamiltonian density operator hCFT(x) correspond to certain
linear combinations of the above Virasoro generators,

H CFT
n ≡ L

2π

∫ L

0
dx e+inx 2π

L hCFT(x) (13)

= LCFT
n + L

CFT
−n − c

12
δn,0, (14)

where we note that, for n = 0,

H CFT
0 = LCFT

0 + LCFT
0 − c

12
= L

2π
H CFT. (15)

In direct analogy, following the proposal of Koo and
Saluer [9], we introduce the Fourier modes Hn of the lattice
Hamiltonian density hj ,

Hn ≡ N

2π

N∑
j=1

e+ijn 2π
N hj , H0 = N

2π
H, (16)

in terms of which the lattice Hamiltonian density hj at site j

reads as

hj = 2π

N2

+N/2∑
n=−N/2

e−ijn 2π
N Hn. (17)

C. General strategy

Our goal is to use the Fourier modes Hn of the lattice
Hamiltonian density hj to systematically extract conformal
data from the low-energy subspace of the critical lattice
Hamiltonian H . This will be discussed in Sec. IV and then
numerically demonstrated in Sec. V.

The central assumption is that, at low energies and up to
finite-size corrections, each Hn should act on the simultaneous
eigenstates |ϕα〉 of H and P on the lattice as its CFT
counterpart H CFT

n does on the simultaneous eigenstates of
H CFT and P CFT in the continuum. Strong evidence for this was
provided in [9] and subsequent work (for integrable systems),
but we will need more details for our purposes. We therefore
begin in Sec. III by explaining how the Fourier modes H CFT

n

act in the continuum. This is best understood in terms of the
Fourier modes LCFT

n and LCFT
n , which act simply as ladder

operators on the eigenbasis |ϕα〉.
At this point, a natural question to ask is whether it would

be more convenient to construct, and directly work with, lattice
versions Ln and Ln of the Virasoro generators LCFT

n and LCFT
n ,

as was done in [9], instead of using the lattice Fourier modes
Hn. After all, most CFT practitioners are already familiar
with the Virasoro generators LCFT

n and LCFT
n , which explicitly

discriminate between chiral and antichiral CFT modes, and
not so much with the Fourier modes H CFT

n . As explained in
Appendix A, doing so is possible in principle but far from
optimal in practice. Next, we briefly summarize why.

Given the lattice Hamiltonian density hj as the only input, it
is indeed possible to use energy conservation to obtain a lattice
momentum density pj ≡ i[hj ,hj−1], and thus produce chiral
and antichiral energy-momentum operators Tj = 1

2 (hj + pj )
and T j = 1

2 (hj − pj ), whose Fourier mode expansion leads to
lattice Virasoro generators Ln and Ln that act as LCFT

n and LCFT
n

at low energies and up to finite-size corrections. However, by
construction there are additional finite-size corrections in Ln

and Ln, compared to Hn, which can be traced back to finite-size
corrections to the eigenstate energies of H (see Appendix A).
Therefore, from a numerical perspective, it is preferable to
work with the lattice Fourier modes Hn, as we do in this paper.

III. CONFORMAL TOWERS IN THE CONTINUUM

A. Virasoro generators as ladder operators

Recall that in a 2D CFT, the combinations LCFT
0 ± LCFT

0
generate the dilations and rotations in (1) [1–4]. Therefore, by
the operator-state correspondence [1,52], these operators act
on the state |ϕα〉 as(

LCFT
0 + LCFT

0

)|ϕα〉 = �α|ϕα〉, (18)(
LCFT

0 − LCFT
0

)|ϕα〉 = Sα|ϕα〉, (19)

which, given that H CFT and P CFT can be written in terms of
LCFT

0 ± LCFT
0 as

H CFT = 2π

L

(
LCFT

0 + L
CFT
0 − c

12

)
,

P CFT = 2π

L

(
LCFT

0 − L
CFT
0

)
, (20)

automatically implies (2) or, equivalently,

�α = L

2π
ECFT

α + c

12
, Sα = L

2π
P CFT

α . (21)

Let us temporarily denote |ϕα〉 as |�α,Sα〉. From (20) and
the Virasoro algebra (12) it can be seen that the Virasoro
generators are ladder operators of H CFT and P CFT. They
indeed act on an eigenstate |�α,Sα〉 as

LCFT
n |�α,Sα〉 ∝ |�α − n, Sα − n〉,

LCFT
n |�α,Sα〉 ∝ |�α − n, Sα + n〉, (22)

raising � for n < 0 and lowering it for n > 0. Note also
that LCFT

n and LCFT
n change S in opposite directions. This is

illustrated in Fig. 2.
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FIG. 2. Illustration of the action of the ladder operators (Virasoro
generators) on the energy eigenstates of the Ising CFT Hamiltonian
belonging to the I conformal tower. Two possible paths from (� = 4,

S = 0) to (� = 4, S = −4) are shown, as is the annihilation of the
quasiprimary state |� = 4, S = 0〉 by L+1 and L+1.

The Virasoro operators LCFT
n , LCFT

n generate multiple (gen-
erally an infinite number, but not always [53]) distinct towers
of eigenstates of H CFT and P CFT called conformal towers.
Each tower has, at its base, a primary state (corresponding to
a primary operator). Primary states are therefore those states
annihilated by all ladder operators that reduce the energy [1–4]:
LCFT

n |ϕ〉 = LCFT
n |ϕ〉 = 0 for all n > 0. By (12), LCFT

−1 ,LCFT
−2

generate the subalgebra LCFT
n for n < 0 (and similar for LCFT

n )
so that this condition is equivalent to

|ϕ〉 primary ⇔ LCFT
n |ϕ〉 = LCFT

n |ϕ〉 = 0, n = 1,2. (23)

By acting with products of powers of LCFT
n , LCFT

n with n < 0
on a primary |ϕ〉, all descendant states in its tower can be
reached. From (22), descendants |ϕ′〉 of a primary |ϕ〉 must
have scaling dimension �ϕ′ and conformal spin Sϕ′ given by

�ϕ′ = �ϕ + n, Sϕ′ = Sϕ ± m, for n � m, (24)

where n ∈ N and m ∈ Z. Furthermore, it follows from (23)
that all descendants can be reached from the primary using
only LCFT

−n , LCFT
−n with n = 1,2.

Let us pause here and briefly consider a simple example
to which we will return later: The Ising CFT only has three
primary operators [53]:

Primary operator � S State

Identity I 0 0 |I 〉
Spin σ (x) 1/8 0 |σ 〉
Energy density ε(x) 1 0 |ε〉

Therefore, it has just three conformal towers. From these
data we can infer information about the spectrum of H CFT,
P CFT using (2) and (24). For example, all eigenstates have
either �α ∈ N (descendants of |I 〉 and |ε〉) or �α ∈ N + 1

8
(descendants of |σ 〉). The low-energy spectrum of the Ising
CFT is shown in Fig. 1. In Fig. 2, we illustrate how the ladder
operators can be used to connect states within a particular
conformal tower.

B. Identity, energy momentum, and central charge

Returning to a generic 2D CFT, a particularly important
primary state that is always present is the “identity state” |I 〉. In
a unitary CFT, which is the main focus of this work, the state |I 〉
corresponds to the ground state of the Hamiltonian H CFT. This
state is unique in having a vanishing scaling dimension �I = 0
and in being annihilated by all LCFT

n ,LCFT
n with n = 0, ± 1,

which are the generators of global conformal transformations
(those that are well defined throughout the 2D plane) [1–4].

Another relevant notion is that of a quasiprimary state
[1–4], defined as a state that is annihilated by both LCFT

1 and
LCFT

1 :

|ϕ〉 quasiprimary ⇔ LCFT
1 |ϕ〉 = LCFT

1 |ϕ〉 = 0. (25)

This includes all primary states, but also certain descendant
states. Two important quasiprimary states that are present
in any CFT are those corresponding to the CFT energy-
momentum operators T CFT(x) and T CFT(x). They are de-
scended from the ground state |I 〉 as√

c

2
|T 〉 = LCFT

−2 |I 〉 and

√
c

2
|T 〉 = LCFT

−2 |I 〉, (26)

where c is the central charge, and thus have scaling dimensions
�T = �T = 2 and conformal spins ST = 2, ST = −2. For the
Ising CFT, states |I 〉, |T 〉, and |T 〉 can be seen in Figs. 1 and 2.

C. Characterization in terms of Hn

Finally, we have to translate the above statements for
the Virasoro generators LCFT

n , LCFT
n into statements for the

Fourier modes H CFT
n of the Hamiltonian density defined

in (13). Recalling that the Fourier modes Hn for n 
= 0
are linear combinations of the Virasoro generators, H CFT

n =
LCFT

n + LCFT
−n , we can infer their behavior from (22):

H CFT
n |�α,Sα〉 = a |�α− n, Sα− n〉 + b |�α+ n, Sα− n〉,

(27)

where a and b are determined by conformal symmetry and
may equal zero [1–4]. The following simple observation will
also prove very useful. Given an energy eigenstate |ϕ〉 with
energy Eϕ , let �ϕ be a projector onto all the eigenstates with
energy smaller than Eϕ :

�ϕ ≡
∑

ϕα :Eα<Eϕ

|ϕα〉〈ϕα|. (28)

Then, we have that the product �ϕ H CFT
n acts on |ϕ〉 as would

either just LCFT
n or LCFT

−n according to

�ϕ H CFT
n |ϕ〉 =

{
LCFT

n |ϕ〉 if n < 0,

LCFT
−n |ϕ〉 if n > 0.

(29)

It follows that we can recast the characterization (23) of a
primary state as

|ϕ〉 primary ⇔ �ϕ H CFT
n |ϕ〉 = 0, n = ±1,±2. (30)

Similarly, the characterization (25) of a quasiprimary state
reads as

|ϕ〉 quasiprimary ⇔ �ϕ H CFT
n |ϕ〉 = 0, n = ±1. (31)
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More generally, by using either Eq. (29) or a similar expression
with a complementary projector I − �ϕ , we can use the Fourier
modes Hn of the Hamiltonian density h(x) to reproduce the
action of the Virasoro generators LCFT

n and LCFT
n . Finally, an

expression such as (26) translates directly into√
c

2
|T 〉 = H CFT

−2 |I 〉 and

√
c

2
|T 〉 = H CFT

2 |I 〉, (32)

without the need of projectors, given that there are no states
with energy below that of |I 〉.

IV. EXTRACTING CONFORMAL DATA
FROM THE LATTICE

In this section, we discuss how to extract conformal data
by computing matrix elements of the operators Hn of (16)
between low-energy states |ϕα〉. Here, each state |ϕα〉 is a
simultaneous eigenstate of the (normalized) critical lattice
Hamiltonian H and of the lattice momentum operator P or,
more precisely, of the lattice translation operator ei 2π

N
P that

implements a translation by one lattice site,

H |ϕn〉 = Eα|ϕα〉, ei 2π
N

P |ϕα〉 = ei 2π
N

Sα |ϕα〉. (33)

We assume that, on these low-energy states, Hn acts anal-
ogously to H CFT

n of (13), up to finite-size corrections that
decrease with the size N of the lattice.

A. Normalization of H and central charge c

So far, we have assumed that the critical lattice Hamiltonian
H was already normalized so that its spectrum is given by
(3) (or, equivalently, so that the speed of light equals 1 in
the large-N limit). However, in general the input data may
be an unnormalized critical Hamiltonian H̃ or, equivalently,
an unnormalized Hamiltonian density h̃j , which relate to the
normalized H and hj through

H = aH̃ + Nb, hj = ah̃j + b, (34)

where a and b are two model-dependent constants. The
constant b can be computed by requiring that the extensive
part of the ground-state energy vanish in the limit of large
N (via a large-N extrapolation), but in the following we will
be able to simply ignore it, mostly because b does not affect
operators Hn for n 
= 0.

For a given system size N , the constant a can be determined
using states that are present in, and relations that are valid for,
any CFT (see Sec. III). First, we identify the states |I 〉 and |T 〉
as eigenstates of H̃

H̃ |I 〉 = ẼI |I 〉, H̃ |T 〉 = ẼT |T 〉, (35)

such that |I 〉 is the unique ground state of H̃ and |T 〉 is the
eigenstate with momentum PT = 2 × 2π

N
that has maximal

overlap with H̃−2|I 〉 [where H̃−2 is defined as H−2 in (16)
after replacing hj with h̃j ]. This last identification is motivated
by the CFT relation (32). Then, recalling that the scaling
dimension of T is �T = 2, and therefore ECFT

T − ECFT
I =

�T × 2π
N

= 2 × 2π
N

, we set a = 4π
N

/(ẼT − ẼI ) since this
guarantees that the (normalized) lattice energies also fulfill
ET − EI = 2 × 2π

N
.

With this normalization of H , the energies and momenta
on the lattice read as

�α ≈ N

2π
(Eα − EI ), Sα = N

2π
Pα, (36)

as we wanted. We can now estimate the scaling dimensions and
conformal spins. Note: In the remainder (particularly Sec. V),
we slightly abuse notation, writing H and Hn for both the
unnormalized and normalized operators. All results presented
are obtained using the properly normalized versions.

Once we have normalized hj , we can build the normalized
Fourier modes Hn using (16). Through the relation (32), the
central charge c of the emergent CFT can then be estimated
by the simple expectation value [9]

c ≈ 2〈I |H †
2 H2|I 〉. (37)

Alternatively, in order to eliminate finite-size corrections of
H2 that connect |I 〉 to states other than |T 〉, we can use

c ≈ 2|〈T |H2|I 〉|2, (38)

which often produces more accurate results. In either case, an
extrapolation to large N increases the accuracy of the lattice
estimate of the central charge c.

The above procedures to normalize H and estimate c differ
from previous proposals in that here we use H2. The usual
procedure to normalize H is to identify |T 〉 as the lowest-
energy state with Pα = 2 × 2π

N
[4]. However, this fails if finite-

size corrections shift the energy of another state with Pα =
2 × 2π

N
below that of |T 〉, as happens, e.g., in the ANNNI

model discussed in Sec. V C. Finally, an important advantage
of estimating c using H2, compared to an extrapolation using
the ground-state energy alone [4], is that the latter also requires
an extrapolation of the nonzero extensive contribution to the
ground-state energy, represented by b in (34), which must be
subtracted before attempting to extrapolate c.

B. Primary states and conformal towers

We now propose a criterion to identify candidates for
primary states. In the CFT, primary states obey (30). In words,
they are the states that cannot be descended to lower energies
by H CFT

n or H CFT
n . On the lattice at finite N we have corrections

to the energies (3) and to the Hn, both of which must be allowed
for in defining a criterion to identify candidates for a primary
state. That is, on the lattice we need an approximate version
of (30).

To this end, we define ε(n) to be the norm of the matrix
elements of 1

2 (H+n + H−n) that connect an energy eigenstate
|ϕ〉 with states of lower energy:

ε(n)
ϕ ≡

∣∣∣∣�ϕ

Hn + H−n

2
|ϕ〉

∣∣∣∣, for n = 1,2. (39)

We then define a primary candidate as a state with small ε(1)

and ε(2):

|ϕ〉 primary candidate ⇔ ε(1)
ϕ + ε(2)

ϕ � εmax, (40)

which is analogous to (30) for εmax = 0.
Having identified primary candidate states, we can build

their conformal towers by applying sequences of Hn to them.
By matching such sequences with sequences of LCFT

n , LCFT
n ,
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taking finite-size corrections into account, we can then identify
each nonprimary lattice eigenstate with a particular descendant
state of the CFT.

However, if we only want to know which conformal tower
each nonprimary state belongs to, it suffices to examine the
matrix elements of a single operator, one that connects each
primary state with all its descendants. We saw in Sec. III that
sequences of the ladder operators LCFT

−1 , LCFT
−2 , LCFT

−1 , and LCFT
−2

acting on the primary are enough to reach any descendant in the
CFT. On the lattice we can therefore use the matrix elements

τ
ϕ

ϕ′ ≡ |〈ϕ′|ei(H 
1 +H 

2 +H 
−1+H 

−2)|ϕ〉|, (41)

where H 
n is the projection of Hn onto the numerically

obtained low-energy subspace and the exponential generates
all sequences of H±1,±2 (note that H

†
n = H−n). We then assign

a nonprimary state |ϕ′〉 to the tower of the primary candidate
|ϕ〉 that maximizes τ

ϕ

ϕ′ . Note that this procedure is suboptimal
in the sense that finite-size corrections accumulate when we
take products of H 

n . More sophisticated schemes avoiding
this issue are possible [50], but this simpler scheme is already
sufficient for our purpose of illustrating the usefulness of Hn.

Armed with an identification of each eigenstate of H at fixed
N , we may examine data from a range of sizes to determine
if the assignment is robust. To check that the identification
of primary states is robust we note that, using (40), we can
verify statements such as the following: “With εmax = 10−6

there is a primary candidate at � ≈ 3 and S = 3 for all tested
system sizes N � 6.” Since finite-size corrections typically
obey power-law or logarithmic scaling in the system size
[12,13], we rely on them varying smoothly with N and assume
that primary candidate states |ϕ〉N at different N , but with
similar energy and the same momentum, represent the same
primary operator in the CFT. For such sequences of primary
candidate states we should find that both ε(1)

ϕ (N ) and ε(2)
ϕ (N )

go to zero in the limit of large N .

C. Quasiprimaries and global conformal towers

The identification of primary states on the lattice, as
discussed above, is a central application of the correspondence
between the CFT Fourier modes H CFT

n and their lattice analogs
Hn [9], because of its direct impact on our ability to compute
the conformal data of the underlying CFT, which requires such
an identification. However, a more refined characterization
within each conformal tower is also possible on the lattice, as
we discuss next.

A conformal tower (or Virasoro tower) decomposes into
infinitely many global conformal towers, each consisting of a
quasiprimary operator and its global descendants. To identify
quasiprimary states on the lattice, we resort to an approximate
version of (31) in terms of the error ε(1)

ϕ defined in (39), namely,

|ϕ〉 quasiprimary candidate ⇔ ε(1)
ϕ � εmax, (42)

which indeed is analogous to (31) for εmax = 0. Then, once a
quasiprimary state |ϕ〉 has been identified, its global conformal
tower (generated in the CFT by acting on |ϕ〉 with powers of
LCFT

−1 and LCFT
−1 or, equivalently, powers of H CFT

1 and H CFT
−1 )

can be produced by studying the matrix elements

κ
ϕ

ϕ′ ≡ |〈ϕ′|ei(H 
1 +H 

−1)|ϕ〉|, (43)

where H 
1 ,H 

−1 are defined above and similar considerations
to (41) apply.

V. RESULTS

A. Ising model

As a first test of the methods introduced in Sec. IV, we
examine the behavior of the Hamiltonian density modes Hn

for the integrable transverse field Ising model of (7), for which
some conformal data were extracted in [9]. The Hamiltonian
is invariant under a global spin flip

∏N
j=1 σZ

j , and is critical at
its self-dual point λ = 1 [4].

We construct Hn for the critical Ising model as

H Ising
n ≡ − N

2π

N∑
j=1

(
eijn 2π

N σZ
j + ei(j+ 1

2 )n 2π
N σX

j σX
j+1

)
, (44)

where we have chosen different phases for the onsite terms
σZ and the bond terms σXσX to reflect that the bonds are
centered between two sites. We propose in general that terms
with support on sites j and j + r , and optionally the sites
in-between, be given phases consistent with the midpoint x =
j + r/2. For the Ising model, this ensures that H

Ising
n remains

consistent with Kramers-Wannier duality, which exchanges
the σX

j σX
j+1 and σZ

j terms.
For a given finite system size N , we simultaneously

diagonalize the Hamiltonian and the translation operator, with
periodic boundary conditions, using the Arnoldi algorithm (a
Krylov-subspace method for finding eigenvalue/eigenvector
pairs of non-Hermitian matrices [55]) to find a set of low-
energy eigenstates |ϕα〉, with energies Eα and momenta Pα . In
this case, we compute the 41 lowest-energy eigenvalues and
corresponding eigenvectors. With these we compute the matrix
elements 〈ϕβ |H Ising

n |ϕα〉 in the low-energy eigenbasis of H ,
which we normalize according to the discussion in Sec. IV A.

For our first test of the behavior of H
Ising
n , we examine

a selection of matrix elements for n = ±1,2,3. We find that
the action of these H

Ising
n within the computed basis of 41

low-energy states is indeed consistent with that of their CFT
counterparts (13), described in Sec. III, as expected from
[9]. In particular, despite noticeable finite-size corrections
to the energies, states H

Ising
n |ϕα〉 have nonzero overlap only

with energy eigenstates of scaling dimension �α ± n + O(ε)
(where ε � 1 represents finite-size corrections to the energies)
and spin Sα − n, as expected from the CFT result of (27).
Overlaps with states of incompatible scaling dimension are
zero to numerical precision (within the 41 low-energy states
under consideration). We plot a few examples in Fig. 3.

Applying (40) to determine the primary candidate states, we
find that, even at N = 14, we can correctly identify all three
primary states using a tolerance close to machine precision,
εmax = 10−14. Although it is trivial that the primary states
in the Ising model cannot be lowered in energy (there are
no states at compatible momenta that they could be lowered
to), it is nontrivial, if unsurprising, that no descendant states
(again, within the 41 low-energy states under consideration)
are misidentified as primary. That said, later we will see that
the Potts model provides a much better proving ground for the
identification of primary states.
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FIG. 3. Spectrum of the Ising model at system size N = 14 with
energies and momenta in terms of � and S, showing the action of
H

Ising
+1 and H

Ising
−2 on selected energy eigenstates. The empty circles

identify the states |ϕα〉 to which the operator is applied and the filled
circles indicate the sizes of the matrix elements 〈ϕβ |H Ising

n |ϕα〉 with
the remaining eigenstates |ϕβ〉, on a logarithmic scale. Very small
matrix elements <10−12 are not plotted.

We further observe that τ
ϕ

ϕ′ of (41) delivers a completely
unambiguous tower assignment to the remaining states, con-
sistent with the observed perfect ladder behavior of H

Ising
n . In

other words, there are no significant finite-size corrections that
mix conformal towers. Indeed, in this case such corrections are
disallowed by the symmetries of H

Ising
n [this is not the case for

the Potts model (see below)].
Corrections are present, however, which affect the size of

the nonzero matrix elements of H
Ising
n , as evidenced by the

central charge estimates obtained from (37) shown in Fig. 4.
Nevertheless, we obtain excellent agreement with c = 1

2 after
extrapolation to large N , in concordance with the results of
[9].

Figure 5 shows the identification of eigenstates with pri-
mary operators and their descendants at system size N = 14.
Comparing with the Ising CFT spectrum of Fig. 1 we observe
that, even in cases of very significant finite-size corrections to
the energies, preventing an identification of the tower using
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1/N2
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0.56

c(
N

)

Ising c(N)
fit: c = 0.4995

0.000 0.005 0.010 0.015 0.020
1/N2

0.80

0.82

0.84

0.86

0.88

0.90
Potts c(N)
fit: c = 0.7985

FIG. 4. Central charge from (37), with linear extrapolation to
large N using all visible data. System sizes shown are N = 8 . . . 18
for the Ising model and N = 8 . . . 14 for the three-state Potts model.
We do not provide an error for the extrapolated c since there are
systematic finite-size corrections on each point. The scaling exponent
2 is consistent with known finite-size corrections present in both
models [12,18,54].
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FIG. 5. Ising model spectrum at system size N = 14, with
energies and momenta in terms of � and S. States are colored
according to their numerically identified conformal towers. Primary
candidate states, identified using (40) with εmax = 10−14, are marked
with diamonds.

the spectrum alone, we are able to use H
Ising
n to make an

unambiguous identification.
The identification of global conformal towers using κ

ϕ

ϕ′ of
(43) was equally successful, as demonstrated in Fig. 6.

B. Three-state Potts model

We now test our algorithms with the three-state Potts
model, which has a more complicated emergent CFT hosting
more primary operators than the Ising CFT, including ones
with significantly larger scaling dimensions. These are much
harder to characterize numerically, partly because finite-size
corrections to the Hn operators mix conformal towers, as
detailed below.

The three-state Potts model [56] may be thought of as a
generalization of the Ising model in which spins have not two
positions (up and down), but three. Unlike the Ising model, it
is not equivalent to a theory of free particles. It is, however,

− 4 − 3 − 2 − 1 0 1 2 3 4
S

0

1

2

3

4

Δ

TT

FIG. 6. Ising model spectrum at system size N = 14 showing
two quasiprimary states |T 〉 and |T 〉 (empty diamonds) determined
from (42). The colored dots are states connected to each quasiprimary
according to (43). Most of these correspond to global descendants of
the CFT operators T and T . However, there is a linear combination
of the two blue (red) states with S = 4 (S = −4) that fulfills (42) and
thus corresponds to a quasiprimary CFT operator. See Appendix B.
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integrable at criticality [57]. The Hamiltonian

H Potts(λ) ≡ −1

2

N∑
j=1

[UjU
†
j+1 + λVj ] + H.c. (45)

has a critical point at λ = 1, determined by self-duality, and
may be represented in terms of matrices

U =

⎛
⎜⎝

1 0 0

0 ω 0

0 0 ω∗

⎞
⎟⎠, V =

⎛
⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎠, ω = ei 2π

3 ,

(46)

which obey the exchange relations

UV = ωV U. (47)

The Hamiltonian is manifestly invariant under the global
shift

∏N
j=1 Vj , which implies that eigenstates fall into one of

three Z3 charge sectors. At criticality, its low-energy physics
is described by the three-state Potts CFT, which has c = 4

5
and 12 primary operators, including some with nonzero spin
and 4 with scaling dimension � > 2 [12,17], making their
identification nontrivial. The eight primary operators of the
Z3 zero-charge sector are as follows:

I ε �εX �Xε X W W Y

� 0 4/5 9/5 9/5 14/5 3 3 6
S 0 0 −1 +1 0 −3 +3 0

Here, we have largely followed the notation of [58].
We first define the Hamiltonian density modes

H Potts
n ≡ − N

2π

N∑
j=1

[
eijn 2π

N (Vj + H.c.)

+ ei(j+ 1
2 )n 2π

N (UjU
†
j+1 + H.c.)

]
, (48)

using them with the algorithms of Sec. IV to determine primary
candidates and tower assignments.

At system size N = 14 we are able to use (40) to identify
all eight primary states of the charge-zero sector, as shown in
Fig. 7, albeit at a relatively high tolerance εmax = 0.2. This
is needed because, although we find ε(1) to be negligible for
all primary candidate states (marking them unambiguously as
quasiprimary states), ε(2) is significant for the X and Y primary
candidates due to matrix elements of H Potts

2 connecting those
states to lower-energy states. To justify setting εmax = 0.2 to
suppress these matrix elements, we must examine their scaling
with N . In Fig. 8 we show that ε

(2)
X (N ) and ε

(2)
Y (N ) both appear

to go to zero in the large-N limit, confirming the assignment
of these lattice states to the X and Y primary operators. The
scaling exponent 4

5 used in Fig. 8 is that of the known leading
finite-size correction of the Potts model [54,59].

We note that identification of primaries is generally not
possible using only the spectral data since there may be lower-
energy states which, from their energies and momenta at finite
size alone, cannot be excluded from being in the same tower as
the primary state. That we can confidently identify all primaries
in the Potts model, including at large �, thus demonstrates a
key benefit of using Hn to extract conformal data.

− 3 − 2 − 1 0 1 2 3
S
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4

5
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Δ
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ΦXεΦεX

WW

CFT

− 3 − 2 − 1 0 1 2 3
S

lattice

FIG. 7. Three-state Potts CFT spectrum with labeling of the
primaries (left) and lattice spectrum at system size N = 14 (right).
We restrict to the zero Z3 charge sector. Lattice primaries and
descendants are identified as in Fig. 5 using a tolerance εmax = 0.2 for
primaries. For � > 3 we restrict to spins |S| � 3, allowing numerical
identification of primaries with |S| � 1. We see that even high-�
and chiral (S 
= 0) primaries are identified successfully in the lattice
data, and that towers are mostly consistent with the CFT, despite the
simplicity of the algorithm used for tower identification (see Sec. IV).
See main text for a discussion of errors.

Finite-size corrections to H Potts
n at N = 14 also affect

identification of conformal towers using (41). Comparing
with the CFT spectrum in Fig. 7 we find that, although
most assignments are plausible, some of the higher-energy
states are clearly misidentified. For example, the erroneous
matrix elements of H Potts

2 affecting the Y primary lead to
the misidentification of ε descendants as belonging to the Y

tower. Furthermore, we find that elements of the identity tower
are sometimes misidentified as X descendants. Although the
former could easily be eliminated if, when assigning towers to
descendants, we only considered primaries with lower energies
than the descendant, the latter could not. For more precision,
tower assignment should be based on a finite-size scaling
analysis similar to that of Fig. 8.

0.00 0.05 0.10 0.15 0.20 0.25
1/N4/5

0.00
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0.20

0.25

0.30

(1
)
+

(2
)

YY

X

FIG. 8. Scaling with system size N of matrix elements of H Potts
1

and H Potts
2 that lower the energy of the X and Y primary candidate

states, quantified using (39). The dashed line marks the threshold
εmax = 0.2 used to distinguish primaries from descendants in Fig. 7.
Using linear regression on the four leftmost points, we see these
matrix elements appear to vanish in the large-N limit, consistent with
these being primary states. For comparison, we show the scaling for
two descendant states in gray. The scaling exponent 4

5 is consistent
with the leading finite-size correction in the Potts model [54,59].
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The tower-mixing errors we observe here are consistent
with the known finite-size corrections to the eigenstate energies
(3) of the Potts model. These can be understood as coming from
perturbations of the uncorrected CFT Hamiltonian density
hCFT(x) by irrelevant operators (those with � > 2) [12]. Of
course, such perturbations must also affect the Hamiltonian
density Fourier modes Hn and we can understand the nature
of these corrections in terms of the operator algebra [1–4] of
the CFT. In this case, perturbation of hCFT(x) by the primary
field operator X(x) [54,59] explains the mixing of the X and
Y towers with the I and ε towers, respectively, in terms of the
fusion rules X × X = I + X and X × Y = ε of the Potts CFT
operator algebra [60]. As an aside for the interested reader,
we also remark that the observed mixing connects different
representations of the W3 algebra [61], a symmetry of the
three-state Potts CFT which includes the Virasoro algebra.

Finally, as for the Ising model, we obtain an accurate
estimate of the central charge as shown in Fig. 4.

C. Self-dual ANNNI model

We are now ready to test the Koo-Saleur formula, as
well as our conformal data extraction procedures using the
Hamiltonian density Fourier modes Hn, for a nonintegrable
system. We consider the axial next-nearest-neighbor Ising
(ANNNI) model [62–64], an extension of the Ising model (7)
by a next-nearest-neighbor interaction term and its counterpart
under duality, resulting in the Hamiltonian

H ANNNI = −
N∑

j=1

[
σX

j σX
j+1 + σZ

j + γ σX
j σX

j+2 + γ σZ
j σZ

j+1

]
,

(49)
which with this parametrization is self-dual for all γ . Under
a Jordan-Wigner transformation it becomes a translation-
invariant chain of interacting Majorana fermion modes and in
this context its phase diagram has recently been numerically
examined [63,64]. It was found to have two distinct gapless
regimes within the (approximate) parameter range −5 < γ <

250, with an emergent Ising CFT for −0.3 < γ < 250. We
choose γ = 0.5, which is far from the critical Ising integrable
point, but in a regime where the universality class is well
understood, making the results easier to analyze. We first
compute the 71 lowest-energy eigenvectors of H ANNNI(γ =
0.5), before evaluating the matrix elements in the low-energy
eigenbasis of the Hamiltonian density Fourier modes, which
we construct as

H ANNNI
n ≡ − N

2π

N∑
j=1

[
eijn 2π

N

(
σZ

j + γ σX
j−1σ

X
j+1

)

+ ei(j+ 1
2 )n 2π

N

(
σX

j σX
j+1 + γ σZ

j σZ
j+1

)]
, (50)

in the same way as we did for the Ising model in (44).
Although the model is not integrable, we obtain similar

results to those of Sec. V A. In particular, we find that (40)
and (41) deliver completely unambiguous identifications of
primary states and conformal towers, which we plot in Fig. 9.
This is despite strong finite-size corrections to the energy
eigenvalues compared to the Ising case of Fig. 5. We are also
able to identify quasiprimary states and global descendants
using (42) and (43), as we show in Fig. 10.
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FIG. 9. ANNNI model spectrum at γ = 0.5 (nonintegrable) and
system size N = 14, with numerical identification of primary states
and assignment of remaining states to conformal towers. Note that
finite-size corrections to the energy are severe compared to Fig. 5,
being sufficient to shift descendant states of σ below the energy-
momentum states |T 〉 and |T 〉.

However, corrections show up in the matrix elements of
H ANNNI

1 and H ANNNI
2 that were not present in H

Ising
1 and H

Ising
2 ,

for example, we observe that H ANNNI
1 |I 〉 has overlap with a

state corresponding to a descendant of the I operator with � =
5, despite the CFT result H CFT

1 |I 〉 = 0. Similarly, H ANNNI
1 |σ 〉

has overlap with a state corresponding to a descendant of σ

with � = 3 1
8 , despite only one state with � = 1 1

8 occurring as
an overlap of H CFT

1 |σ 〉 in the CFT, and H ANNNI
1 |ε〉 has overlap

with a state corresponding to an ε descendant with � = 4, in
addition to the expected � = 2. In order to justify calling these
overlaps finite-size corrections, we must of course demonstrate
that they disappear as N → ∞. Using the examples from the σ

and ε conformal towers mentioned above, we show in Fig. 11
that this is indeed the case. We note that, as with the Ising
model, there is no mixing of different conformal towers (again
due to the symmetries of H ANNNI

n ), explaining why we are still
able to make tower assignments unambiguously.

Unlike in the Potts model, the observed corrections to
H ANNNI

n can only come from perturbation of hCFT(x) by
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FIG. 10. ANNNI model spectrum at γ = 0.5 (nonintegrable) and
system size N = 14 showing two quasiprimary states |T 〉 and |T 〉
(colored empty diamonds) determined from (42). The colored dots
are states connected to each quasiprimary according to (43). Most of
these correspond to global descendants of the CFT operators T and
T . However, as for the Ising model, there is a linear combination of
the two blue (red) states with S = 4 (S = −4) that fulfills (42) and
thus corresponds to a quasiprimary CFT operator. See Appendix B.
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FIG. 11. Scaling with system size N of the overlaps of H ANNNI
1 |I 〉,

H ANNNI
1 |σ 〉, and H ANNNI

1 |ε〉 with correct (left) and erroneous (right)
descendant states (from the same conformal tower as the primary).
Data for N = 13 . . . 22 are plotted. Linear regression is performed
on the leftmost three points. No “correct” overlap is plotted for
H ANNNI

1 |I 〉 since H CFT
1 |I 〉 = 0. We conclude that the erroneous

overlaps are finite-size corrections that go to zero asymptotically
as 1/N 2.

irrelevant operators from the identity conformal tower since
operators from any other conformal tower would lead to tower
mixing. Furthermore, there must be a perturbation that is not
present in the Ising model, which did not exhibit the corrections
we see here. One allowed identity-tower perturbation of
hCFT(x) is the field operator T T (x), corresponding to the state
LCFT

−2 LCFT
−2 |I 〉, which is suppressed in the Ising model [54], but

is allowed in general. It seems a likely candidate to cause the
observed correction to H ANNNI

1 |I 〉 since adding it to hCFT(x)
in (13) for n = 1 would result in the usual H CFT

1 plus a Fourier
mode of T T (x) which, applied to |I 〉, would produce global
descendant states of the (quasiprimary) state LCFT

−2 LCFT
−2 |I 〉,

including one at level � = 5. Indeed, in [50] we confirm that
this perturbation is present in the ANNNI model.

Regarding finite-size corrections to the energies, we note
that they are severe enough so that, at N = 14, the states |T 〉
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FIG. 12. ANNNI model lattice normalization factors from the
spectrum only (assuming |T 〉 is the lowest-energy state with S = 2)
versus using H2 to identify |T 〉. These differ for N < 16 due to
finite-size corrections which shift the energy of another state with
S = 2 below that of |T 〉. See Fig. 9. We fit the spectral data for
N = 8 . . . 15 to illustrate the large error made when |T 〉 is incorrectly
identified.
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FIG. 13. The central charge for the ANNNI model, comparing
estimates using H2 according to (38) with estimates obtained from the
ground-state energy EI using (3) (after subtracting the extrapolated
extensive contribution) [4]. The sudden change in slope of the EI data
points is due to erroneous normalization for N < 16 (see Fig. 12).
Extrapolation is performed using linear regression. We fit the EI

data for N = 8 . . . 15 in fit 1 to illustrate the effects of incorrect
normalization. For comparison, in fits 2 and 3, we use N = 17 . . . 22.
The CFT value is c = 1

2 . The x axis is chosen to be N−(4−2) to match
the leading finite-size correction to the energy, which is due to an
operator with � = 4, as in the Ising model.

and |T 〉 are not the lowest-energy states with |S| = 2, as is
often assumed when normalizing the Hamiltonian density (see
Sec. IV A). Where this occurs, identifying |T 〉 using H ANNNI

2
is clearly advantageous. Indeed, we observe in Fig. 12 that the
difference in the normalization factors obtained is significant
for affected system sizes.

Finally, in Fig. 13 we demonstrate that the central charge
estimated using (38) remains accurate away from integrability.
Furthermore, we compare the estimate to that obtained from
the scaling of the ground-state energy EI [4], finding the
estimates to be comparable as long as the Hamiltonian is
properly normalized, which requires the use of H ANNNI

2 at
small system sizes.

VI. DISCUSSION

In this paper, we have proposed and demonstrated auto-
mated procedures for extracting conformal data from generic
local quantum spin chains using the Hamiltonian density
Fourier modes Hn, first introduced as lattice representations
of conformal generators by Koo and Saleur [9]. In particular,
we explained how to use the Hn to systematically identify the
lattice energy eigenstates corresponding to Virasoro primary
and quasiprimary operators of the CFT, as well as how
to assign the remaining eigenstates to conformal towers.
Furthermore, our demonstration included a nonintegrable
model (the ANNNI model), confirming that the so-called
Koo-Saleur formula continues to behave as expected away
from integrability.

To extract accurate conformal data, one must examine
systems of sufficient size, such that nonuniversal finite-size
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corrections (e.g. due to irrelevant perturbations) are man-
ageable. This is often impossible using exact diagonalization
techniques, which we applied to obtain spectra and low-energy
eigenstates for this work, since the computational cost scales
exponentially in the system size. Fortunately, our proposals
for extracting conformal data using the Hamiltonian density
Fourier modes Hn are independent of the method used to
diagonalize H and can also be implemented using more
sophisticated tools, such as periodic matrix product states,
allowing the analysis of critical quantum spin chains with
hundreds of spins [50].

This work contributes toward the overarching goal of,
given a generic critical quantum spin chain Hamiltonian H ,
determining the conformal data that specify the emergent CFT.
Indeed, the identification of the Virasoro primary states within
the low-energy spectrum is an essential part of this task, one
that cannot be accomplished in general using only the spectral
information in (3), but which is made possible by using the
lattice operators Hn. In order to complete this long-standing
research program, a systematic way of determining the OPE
coefficients relating the primary operators to each other is still
missing (although progress can be made in particular cases, see
for example [43,47,65]). As it turns out, however, the methods
discussed in this paper can be combined with other techniques
in order to also estimate the OPE coefficients on the lattice
[49].

Finally, we remark that the action of lattice Virasoro
generators in the low-energy subspace of quantum spin chains
has found applications beyond the extraction of conformal
data. For example, these techniques are used in [50] to study the
RG flow between two CFTs, and in [66] to attach a geometric
meaning to tensor networks that discretize a path integral.
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APPENDIX A: LATTICE MOMENTUM DENSITY

The Virasoro algebra (12) fulfilled by the operators (11)
together with (13) implies

[
H CFT

n ,H CFT
m

] = (n − m)
(
LCFT

n+m − L
CFT
−(n+m)

)
(A1)

so that we may construct lattice analogs of LCFT
n and L

CFT
m as

[9]

Ln ≡ 1

2

(
H+n + 1

n
[H+n,H0]

)
, (A2)

Ln ≡ 1

2

(
H−n + 1

n
[H−n,H0]

)
. (A3)

This is equivalent to defining a momentum density

pj ≡ i[hj ,hj−1] (A4)

which satisfies the lattice energy-momentum conservation law

∂thj = i[H,hj ] = pj+1 − pj , (A5)

and constructing Ln and Lm as

Ln ≡ N

2π

N∑
j=1

e+ijn 2π
N Tj , Ln ≡ N

2π

N∑
j=1

e−ijn 2π
N T j , (A6)

with

Tj ≡ 1
2 (hj + pj ), T j ≡ 1

2 (hj − pj ), (A7)

in analogy with the CFT definition of the Virasoro generators
(11).

We find in practice that Ln and Lm defined for the Ising
model have more severe finite-size corrections than H

Ising
n (see

Sec. V A). In particular, they connect states with the wrong
descendants, although they still do not mix conformal towers.

There is an obvious reason for these additional correc-
tions, which come from finite-size corrections to the energy.
Consider the action of Ln on an energy eigenstate |�〉 of
a lattice Hamiltonian H . We first assume that Hn|�〉 =
a|�− n〉 + b|�+ n〉 such that

H0|�〉 = (� + ε)|�〉, (A8)

H0|�− n〉 = (� − n + ε′)|�− n〉, (A9)

H0|�+ n〉 = (� + n + ε′′)|�+ n〉, (A10)

where ε, ε′, ε′′ represent finite-size corrections to the energy,
which will generally be different for each energy eigenstate.
This scenario is consistent with a|� − n〉 and b|� + n〉 being
the lattice counterparts of the CFT states LCFT

n |�〉CFT and

L
CFT
−n |�〉CFT, respectively. We then find

2Ln|α〉 =
(

1 + � + ε

n

)
(a|�− n〉 + b|�+ n〉) (A11)

−
(

� + ε′

n
− 1

)
a|�− n〉 (A12)

−
(

� + ε′′

n
+ 1

)
b|�+ n〉, (A13)

where in case ε = ε′ = ε′′ almost all terms cancel and we are
left with

Ln|�〉 = a|�− n〉, (A14)

as expected. As noted above, however, generally ε 
=ε′ 
=ε′′
and the cancellation is prevented, leading to an erroneous
matrix element of Ln connecting |�〉 and |�+ n〉.
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APPENDIX B: DEGENERACIES
AND QUASIPRIMARY STATES

In Figs. 6 and 10, we plot the spectra of the Ising and
ANNNI models, respectively, at size N = 14, showing global
conformal towers of the quasiprimary states |T 〉 and |T 〉. We
find in both cases that a linear combination |ϕQ〉 ≡ a|ϕ1〉 +
b|ϕ2〉 of lattice energy eigenstates |ϕ1〉,|ϕ2〉 belonging to the
(Virasoro) conformal tower of I at level � ≈ 4, S = 4, fulfills
the quasiprimary condition (42) to numerical precision:

�ϕQ
(H1 + H−1)|ϕQ〉 ≈ 0, (B1)

where �ϕQ
projects onto states with energy lower than the

energy expectation value of |ϕQ〉. The situation is analogous
for the |T 〉 descendants.

In the CFT, where the states of the I conformal tower at
� = 4, S = 4 are degenerate in energy and momentum (see
Fig. 1), there is also a quasiprimary state in the corresponding
degenerate subspace. We wish to confirm that the lattice state
|ϕQ〉 corresponds to the quasiprimary in the CFT. First, we
note that, from (12) and (25), the CFT quasiprimary may be
built as∣∣ϕCFT

Q

〉 ∝
((

H CFT
−1

)2 − 4�T + 2

3
H CFT

−2

)
|T 〉, (B2)

which can be seen to be annihilated by LCFT
1 . We may construct

an analogous state on the lattice as

|ϕ̃Q〉 ∝
(

(H−1)2 − 4�T + 2

3
H−2

)
|T 〉. (B3)

Doing so we find that, to high precision,

�ϕQ
(H1 + H−1)|ϕ̃Q〉 ≈ 0, (B4)

and that furthermore |ϕ̃Q〉 is approximately equal to |ϕQ〉 of
(B1), with appropriate normalization. This confirms that the
criterion (42) for quasiprimary states on the lattice correctly
distinguishes linear combinations of lattice eigenstates that
correspond to CFT quasiprimary operators.

We remark here on the observation that degenerate quasipri-
mary and global secondary states are mixed by finite-size
corrections to the energy (even when Virasoro conformal
towers are not mixed) so that the quasiprimary lattice state
is formed by a linear combination of energy eigenstates with
different energies (which become degenerate in the limit N →
∞). In the presence of finite-size effects that mix Virasoro
conformal towers, it could also happen that primary states are
mixed with Virasoro descendant states, although we did not
observe this in the models tested in this work.

[1] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
Nucl. Phys. B 241, 333 (1984).

[2] P. Ginsparg, Lecture Notes (1988), arXiv:hep-th/9108028.
[3] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field

Theory (Springer, New York, 2012).
[4] M. Henkel, Conformal Invariance and Critical Phenomena

(Springer, New York, 1999).
[5] J. Cardy, Scaling and Renormalization in Statistical Physics,

1st ed. (Cambridge University Press, Cambridge, 1996).
[6] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
[7] D. Tong, Lecture Notes (2009), arXiv:0908.0333.
[8] J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv. Theor.

Math. Phys. 2, 231 (1998).
[9] W. M. Koo and H. Saleur, Nucl. Phys. B 426, 459 (1994).

[10] J. L. Cardy, J. Phys. A: Math. Gen. 17, L385 (1984).
[11] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev.

Lett. 56, 742 (1986).
[12] J. L. Cardy, Nucl. Phys. B 270, 186 (1986).
[13] J. L. Cardy, J. Phys. A: Math. Gen. 19, L1093 (1986).
[14] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[15] In models with marginal operators, there may also be logarithmic

finite-size corrections [13]. We have successfully tested the
proposals of this paper also on such models, including the
four-state Potts quantum spin chain.

[16] G. von Gehlen, V. Rittenberg, and H. Ruegg, J. Phys. A: Math.
Gen. 19, 107 (1986).

[17] G. von Gehlen and V. Rittenberg, J. Phys. A: Math. Gen. 19,
L625 (1986).

[18] M. Henkel, J. Phys. A: Math. Gen. 20, 995 (1987).
[19] F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, Phys. Rev.

Lett. 58, 771 (1987).

[20] M. Baake, G. von Gehlen, and V. Rittenberg, J. Phys. A: Math.
Gen. 20, L479 (1987).

[21] D. B. Balbao and J. R. D. de Felicio, J. Phys. A: Math. Gen. 20,
L207 (1987).

[22] C. R. Allton and C. J. Hamer, J. Phys. A: Math. Gen. 21, 2417
(1988).

[23] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A:
Math. Gen. 22, 511 (1989).

[24] F. C. Alcaraz, U. Grimm, and V. Rittenberg, Nucl. Phys. B 316,
735 (1989).

[25] H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990).
[26] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[27] C. D. E. Boschi, E. Ercolessi, F. Ortolani, and M. Roncaglia,

Eur. Phys. J. B 35, 465 (2003).
[28] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev,

Z. Wang, and M. H. Freedman, Phys. Rev. Lett. 98, 160409
(2007).

[29] M. Füehringer, S. Rachel, R. Thomale, M. Greiter, and P.
Schmitteckert, Ann. Phys. (Berlin) 17, 922 (2008).

[30] J. C. Xavier, Phys. Rev. B 81, 224404 (2010).
[31] A. Gendiar, M. Daniska, Y. Lee, and T. Nishino, Phys. Rev. A

83, 052118 (2011).
[32] H. Katsura, J. Phys. A: Math. Theor. 45, 115003 (2012).
[33] X. Wen, S. Ryu, and A. W. W. Ludwig, Phys. Rev. B 93, 235119

(2016).
[34] L. P. Kadanoff and H. Ceva, Phys. Rev. B 3, 3918 (1971).
[35] H. Itoyama and H. B. Thacker, Phys. Rev. Lett. 58, 1395 (1987).
[36] A. Y. Volkov, Theor. Math. Phys. 74, 96 (1988).
[37] L. D. Faddeev and L. A. Takhtajan, in Field Theory, Quantum

Gravity and Strings, Lecture Notes in Physics (Springer, Berlin,
1988), pp. 166–179.

245105-12

https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0550-3213(84)90052-X
http://arxiv.org/abs/arXiv:hep-th/9108028
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
http://arxiv.org/abs/arXiv:0908.0333
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/0550-3213(94)90018-3
https://doi.org/10.1016/0550-3213(94)90018-3
https://doi.org/10.1016/0550-3213(94)90018-3
https://doi.org/10.1016/0550-3213(94)90018-3
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1088/0305-4470/19/1/014
https://doi.org/10.1088/0305-4470/19/1/014
https://doi.org/10.1088/0305-4470/19/1/014
https://doi.org/10.1088/0305-4470/19/1/014
https://doi.org/10.1088/0305-4470/19/10/013
https://doi.org/10.1088/0305-4470/19/10/013
https://doi.org/10.1088/0305-4470/19/10/013
https://doi.org/10.1088/0305-4470/19/10/013
https://doi.org/10.1088/0305-4470/20/4/033
https://doi.org/10.1088/0305-4470/20/4/033
https://doi.org/10.1088/0305-4470/20/4/033
https://doi.org/10.1088/0305-4470/20/4/033
https://doi.org/10.1103/PhysRevLett.58.771
https://doi.org/10.1103/PhysRevLett.58.771
https://doi.org/10.1103/PhysRevLett.58.771
https://doi.org/10.1103/PhysRevLett.58.771
https://doi.org/10.1088/0305-4470/20/8/001
https://doi.org/10.1088/0305-4470/20/8/001
https://doi.org/10.1088/0305-4470/20/8/001
https://doi.org/10.1088/0305-4470/20/8/001
https://doi.org/10.1088/0305-4470/20/4/005
https://doi.org/10.1088/0305-4470/20/4/005
https://doi.org/10.1088/0305-4470/20/4/005
https://doi.org/10.1088/0305-4470/20/4/005
https://doi.org/10.1088/0305-4470/21/10/019
https://doi.org/10.1088/0305-4470/21/10/019
https://doi.org/10.1088/0305-4470/21/10/019
https://doi.org/10.1088/0305-4470/21/10/019
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1016/0550-3213(89)90066-7
https://doi.org/10.1016/0550-3213(89)90066-7
https://doi.org/10.1016/0550-3213(89)90066-7
https://doi.org/10.1016/0550-3213(89)90066-7
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1140/epjb/e2003-00299-7
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1002/andp.200810326
https://doi.org/10.1002/andp.200810326
https://doi.org/10.1002/andp.200810326
https://doi.org/10.1002/andp.200810326
https://doi.org/10.1103/PhysRevB.81.224404
https://doi.org/10.1103/PhysRevB.81.224404
https://doi.org/10.1103/PhysRevB.81.224404
https://doi.org/10.1103/PhysRevB.81.224404
https://doi.org/10.1103/PhysRevA.83.052118
https://doi.org/10.1103/PhysRevA.83.052118
https://doi.org/10.1103/PhysRevA.83.052118
https://doi.org/10.1103/PhysRevA.83.052118
https://doi.org/10.1088/1751-8113/45/11/115003
https://doi.org/10.1088/1751-8113/45/11/115003
https://doi.org/10.1088/1751-8113/45/11/115003
https://doi.org/10.1088/1751-8113/45/11/115003
https://doi.org/10.1103/PhysRevB.93.235119
https://doi.org/10.1103/PhysRevB.93.235119
https://doi.org/10.1103/PhysRevB.93.235119
https://doi.org/10.1103/PhysRevB.93.235119
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1103/PhysRevLett.58.1395
https://doi.org/10.1103/PhysRevLett.58.1395
https://doi.org/10.1103/PhysRevLett.58.1395
https://doi.org/10.1103/PhysRevLett.58.1395
https://doi.org/10.1007/BF01018216
https://doi.org/10.1007/BF01018216
https://doi.org/10.1007/BF01018216
https://doi.org/10.1007/BF01018216


EXTRACTION OF CONFORMAL DATA IN CRITICAL . . . PHYSICAL REVIEW B 96, 245105 (2017)

[38] O. Babelon, Phys. Lett. B 238, 234 (1990).
[39] H. Johannesson, J. Math. Phys. 33, 1 (1992).
[40] A. Y. Volkov, Phys. Lett. A 167, 345 (1992).
[41] A. A. Belov and K. D. Chaltikian, Mod. Phys. Lett. A 08, 1233

(1993).
[42] J. Kellendonk and A. Recknagel, Phys. Lett. B 298, 329 (1993).
[43] N. Read and H. Saleur, Nucl. Phys. B 777, 316 (2007).
[44] J. Dubail, J. L. Jacobsen, and H. Saleur, Nucl. Phys. B 834, 399

(2010).
[45] R. Vasseur, A. M. Gainutdinov, J. L. Jacobsen, and H. Saleur,

Phys. Rev. Lett. 108, 161602 (2012).
[46] A. M. Gainutdinov, J. L. Jacobsen, N. Read, H. Saleur, and R.

Vasseur, J. Phys. A: Math. Theor. 46, 494012 (2013).
[47] A. M. Gainutdinov and R. Vasseur, Nucl. Phys. B 868, 223

(2013).
[48] R. Bondesan, J. Dubail, A. Faribault, and Y. Ikhlef, J. Phys. A:

Math. Theor. 48, 065205 (2015).
[49] Y. Zou, A. Milsted, and G. Vidal (unpublished).
[50] Y. Zou, A. Milsted, and G. Vidal, arXiv:1710.05397.
[51] M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).
[52] S. Fubini, A. J. Hanson, and R. Jackiw, Phys. Rev. D 7, 1732

(1973).

[53] D. Friedan, Z. Qiu, and S. Shenker, Phys. Rev. Lett. 52, 1575
(1984).

[54] P. Reinicke, J. Phys. A: Math. Gen. 20, 5325 (1987).
[55] W. E. Arnoldi, Q. Appl. Math. 9, 17 (1951).
[56] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[57] V. A. Fateev and A. B. Zamolodchikov, Phys. Lett. A 92, 37

(1982).
[58] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lind-

ner, and P. Fendley, J. Phys. A: Math. Theor. 47, 452001
(2014).

[59] G. von Gehlen, V. Rittenberg, and T. Vescan, J. Phys. A: Math.
Gen. 20, 2577 (1987).

[60] V. S. Dotsenko, Nucl. Phys. B 235, 54 (1984).
[61] V. A. Fateev and A. B. Zamolodchikov, Nucl. Phys. B 280, 644

(1987).
[62] W. Selke, Phys. Rep. 170, 213 (1988).
[63] A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, and E.

Cobanera, Phys. Rev. B 92, 085139 (2015).
[64] A. Rahmani, X. Zhu, M. Franz, and I. Affleck, Phys. Rev. B 92,

235123 (2015).
[65] N. Read and H. Saleur, Nucl. Phys. B 777, 263 (2007).
[66] A. Milsted and G. Vidal (unpublished).

245105-13

https://doi.org/10.1016/0370-2693(90)91727-S
https://doi.org/10.1016/0370-2693(90)91727-S
https://doi.org/10.1016/0370-2693(90)91727-S
https://doi.org/10.1016/0370-2693(90)91727-S
https://doi.org/10.1063/1.529945
https://doi.org/10.1063/1.529945
https://doi.org/10.1063/1.529945
https://doi.org/10.1063/1.529945
https://doi.org/10.1016/0375-9601(92)90270-V
https://doi.org/10.1016/0375-9601(92)90270-V
https://doi.org/10.1016/0375-9601(92)90270-V
https://doi.org/10.1016/0375-9601(92)90270-V
https://doi.org/10.1142/S0217732393002725
https://doi.org/10.1142/S0217732393002725
https://doi.org/10.1142/S0217732393002725
https://doi.org/10.1142/S0217732393002725
https://doi.org/10.1016/0370-2693(93)91828-B
https://doi.org/10.1016/0370-2693(93)91828-B
https://doi.org/10.1016/0370-2693(93)91828-B
https://doi.org/10.1016/0370-2693(93)91828-B
https://doi.org/10.1016/j.nuclphysb.2007.03.033
https://doi.org/10.1016/j.nuclphysb.2007.03.033
https://doi.org/10.1016/j.nuclphysb.2007.03.033
https://doi.org/10.1016/j.nuclphysb.2007.03.033
https://doi.org/10.1016/j.nuclphysb.2010.02.016
https://doi.org/10.1016/j.nuclphysb.2010.02.016
https://doi.org/10.1016/j.nuclphysb.2010.02.016
https://doi.org/10.1016/j.nuclphysb.2010.02.016
https://doi.org/10.1103/PhysRevLett.108.161602
https://doi.org/10.1103/PhysRevLett.108.161602
https://doi.org/10.1103/PhysRevLett.108.161602
https://doi.org/10.1103/PhysRevLett.108.161602
https://doi.org/10.1088/1751-8113/46/49/494012
https://doi.org/10.1088/1751-8113/46/49/494012
https://doi.org/10.1088/1751-8113/46/49/494012
https://doi.org/10.1088/1751-8113/46/49/494012
https://doi.org/10.1016/j.nuclphysb.2012.11.004
https://doi.org/10.1016/j.nuclphysb.2012.11.004
https://doi.org/10.1016/j.nuclphysb.2012.11.004
https://doi.org/10.1016/j.nuclphysb.2012.11.004
https://doi.org/10.1088/1751-8113/48/6/065205
https://doi.org/10.1088/1751-8113/48/6/065205
https://doi.org/10.1088/1751-8113/48/6/065205
https://doi.org/10.1088/1751-8113/48/6/065205
http://arxiv.org/abs/arXiv:1710.05397
https://doi.org/10.1103/PhysRevD.1.2933
https://doi.org/10.1103/PhysRevD.1.2933
https://doi.org/10.1103/PhysRevD.1.2933
https://doi.org/10.1103/PhysRevD.1.2933
https://doi.org/10.1103/PhysRevD.7.1732
https://doi.org/10.1103/PhysRevD.7.1732
https://doi.org/10.1103/PhysRevD.7.1732
https://doi.org/10.1103/PhysRevD.7.1732
https://doi.org/10.1103/PhysRevLett.52.1575
https://doi.org/10.1103/PhysRevLett.52.1575
https://doi.org/10.1103/PhysRevLett.52.1575
https://doi.org/10.1103/PhysRevLett.52.1575
https://doi.org/10.1088/0305-4470/20/15/044
https://doi.org/10.1088/0305-4470/20/15/044
https://doi.org/10.1088/0305-4470/20/15/044
https://doi.org/10.1088/0305-4470/20/15/044
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1090/qam/42792
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1016/0375-9601(82)90736-8
https://doi.org/10.1016/0375-9601(82)90736-8
https://doi.org/10.1016/0375-9601(82)90736-8
https://doi.org/10.1016/0375-9601(82)90736-8
https://doi.org/10.1088/1751-8113/47/45/452001
https://doi.org/10.1088/1751-8113/47/45/452001
https://doi.org/10.1088/1751-8113/47/45/452001
https://doi.org/10.1088/1751-8113/47/45/452001
https://doi.org/10.1088/0305-4470/20/9/041
https://doi.org/10.1088/0305-4470/20/9/041
https://doi.org/10.1088/0305-4470/20/9/041
https://doi.org/10.1088/0305-4470/20/9/041
https://doi.org/10.1016/0550-3213(84)90148-2
https://doi.org/10.1016/0550-3213(84)90148-2
https://doi.org/10.1016/0550-3213(84)90148-2
https://doi.org/10.1016/0550-3213(84)90148-2
https://doi.org/10.1016/0550-3213(87)90166-0
https://doi.org/10.1016/0550-3213(87)90166-0
https://doi.org/10.1016/0550-3213(87)90166-0
https://doi.org/10.1016/0550-3213(87)90166-0
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1016/j.nuclphysb.2007.03.007
https://doi.org/10.1016/j.nuclphysb.2007.03.007
https://doi.org/10.1016/j.nuclphysb.2007.03.007
https://doi.org/10.1016/j.nuclphysb.2007.03.007



