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The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous
surprising connections between physical systems under the guise of holographic duality, but has also inspired the
development of wavelet theory now widely used in signal processing. Synergizing on these two developments,
we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice
system to a (N + 1)-dimensional holographic dual, with the emergent dimension representing scale. In previous
works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails
to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets,
our new generalized holographic mapping framework is able to preserve the form of a large class of lattice
Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from
those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises.
For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional
to the radius of the dual anti–de Sitter space geometry. We conclude by proposing modifications to the mapping
for systems with generic Fermi pockets.
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I. INTRODUCTION

The theme of holographic duality has fascinated a gener-
ation of physicists in both high energy and condensed matter
circles. Also known as the anti–de Sitter space/conformal
field theory (AdS/CFT) correspondence, it was pioneered by
Witten, Maldacena, Klebanov, and others [1–4] in 1998, when
an equivalence was made between a (D + 1)-dimensional
quantum field theory and a (D + 2)-dimensional gravitational
theory at the partition function level. The canonical exam-
ple of holographic duality is the correspondence between
(3 + 1)-dimensional super–Yang-Mills theory and (4 + 1)-
dimensional supergravity, with the large-N (strongly coupled)
limit of the super–Yang-Mills theory being dual to the classical
(weakly coupled) limit of the gravitational theory. At the core
of holographic duality is the interpretation of a quantum field
theory as a “hologram” of a dual gravitational system with
one higher dimension, with the extra emergent dimension
representing scale. This provides an avenue to understanding
renormalization group (RG) flow dynamics in terms of bulk
gravitational dynamics [5–11]. Inspired by that, holographic
duality has also been used as a tool for understanding the nature
of quantum criticality and high-temperature superconductivity
[12–15], for which the exact role of the underlying strong-
coupling mechanism remains elusive.

In face of evidence for the existence of holographic
duality in various contexts, it will be very desirable to have
a microscopic description of holography. This allows for
a clear, constructive approach for understanding the dual
theory, when it exists. For this purpose, an approach known
as the exact holographic mapping (EHM) was proposed
by Qi [16] for generic lattice systems. Through recursive
applications of local unitary transforms, this mapping maps
a given “boundary” system onto a “bulk” system with a
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unitary equivalent Hilbert space, but having an extra emergent
dimension representing scale [17–19]. Geodesics distances in
the bulk system can be determined from the decay behavior
of their correlators. Although bulk systems obtained in this
way via the EHM are not semiclassical bulk geometries
corresponding to the large-N limit, in the strict sense of AdS-
CFT, they possess geometries agreeing with expectations from
the Ryu-Takayanagi formula [20]. Notable examples include
the AdS bulk geometry from a critical boundary fermion at
zero temperature, and the BTZ (Bañados, Teitelboim, and
Zanelli) [21] black-hole geometry at nonzero temperature. As
shall be elaborated in this paper, these geometric properties
arise due to the fundamental scaling behaviors of the systems
under consideration, and holds even for N = 1 free fermions.
Aside from defining a bulk geometry, the EHM procedure
is also useful in analyzing the RG properties of topological
quantities. For instance, the holographic decomposition of the
Berry curvature of a boundary Chern insulator interestingly
reveals a Z2 topological insulator living in the holographic
bulk, thereby providing a holographic interpretation of the
parity anomaly [22].

Parallel to these developments in holography is the de-
velopment of wavelet transforms in computer science, with
applications ranging from image compression to multiscale
music texture to financial data analysis. In essence, wavelet
transforms are “lossless” RG transforms1 probing details of
different spatial or temporal scales, very analogous to the
objective of holography. As such, there has been a symbiosis
of ideas between these two developments; in fact, the EHM
is mathematically a Haar wavelet transform acting on the
quantum mechanical Hilbert space rather than the space
of signals. Recently, wavelet bases have also been shown

1Usually, renormalization group analysis involves integrating out
small-scale degrees of freedom that are deemed irrelevant, thereby
losing information.
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to provide good approximations [23–25] to certain critical
ground states in the framework of the multiscale entanglement
renormalization ansatz (MERA) [26–41], a tensor network
approach pioneered by Vidal et al. that is closely related to the
EHM [30,42,43]. Described as a quantum circuit, the EHM
has proposed implementations with Gaussian entangled states
in optical networks, circuit QED setups, as well as trapped
cold ions [18,44–47].

In this work, we shall bring this symbiosis further by
extending the exact holographic mapping to arbitrary (discrete)
wavelet transforms.2 This more general framework allows
for a more physically motivated, basis agnostic interpretation
of the bulk geometry, since it explicitly isolates features
associated with the choice of wavelet basis. Just as importantly,
an EHM based on generic wavelet bases can preserve the
functional form of a much larger class of Hamiltonians,
in the spirit of conventional RG procedures. (The existing
EHM based on the Haar wavelet can only preserve linearly
dispersing Hamiltonians.) This will be relevant, amongst
various reasons, for the very interesting holographic analysis
of topological phases protected by symmetries that also create
extra degeneracies in the band structure, such as type-II Dirac
cones and nodal rings and links [48–56].

This paper is structured as follows. In Sec. II, we provide
a pedagogical introduction to the construction of wavelet
bases in a language familiar to physicists, and highlight some
properties that play a crucial role in describing the emergent
geometry of the holographic bulk. Following that, we explain
in Sec. III how Hamiltonians are renormalized under the EHM,
and how to find the appropriate wavelet basis, if it exists, that
keeps a given Hamiltonian invariant. In Sec. IV, we derive the
dependence of the bulk correlators, mutual information, and
hence bulk geometry on the wavelet basis, focusing on how
it arises from the branch-cut topology of the boundary propa-
gator. Finally, in Sec. V we briefly discuss generalizations to
other configurations of Fermi points, and also anisotropy in
the resultant bulk geometry for multidimensional EHM.

II. EXACT HOLOGRAPHIC MAPPING
THROUGH WAVELETS

A. Conceptual overview of the EHM

The EHM was first introduced in Ref. [16] as a special
type of tensor network that implements a lossless RG-type
procedure through a hierarchy of local mappings. It was then
extended to more than one RG dimension in Ref. [57], where
its various mathematical properties were also elaborated.

We start from a given original “boundary” system with 2Nl

sites (Fig. 1). At each iteration, the degrees of freedom (qubits)
on each 2l (l � 1) adjacent site are separated into l small-scale
(ultraviolet or UV) and l large-scale (infrared or IR) degrees
of freedom (DOFs) via a unitary rotation whose form will be
elaborated later. The l IR DOFs will then be used as the input
for the next iteration, while the UV DOFs will be discarded.
This procedure is repeated until we are left with the last set of
l sites.

2Reference [18] extended it to the family of Daubechies wavelets.

IR

UV
UV

IR

FIG. 1. (Left) Illustration of a single EHM iteration with l = 2.
The degrees of freedom of 2l input sites are separated into l UV and
l IR sites via a unitary transform. (Right) An EHM network with two
iteration levels. The IR DOFs from each group of 2l sites of the input
“boundary” system are fed into the next iteration, until only l sites
remain. The collection of the discarded UV (red) DOFs, together with
the last remaining IR sites (blue), form the “bulk” system containing
the same number of DOFs as the original system.

Since degrees of freedom at larger scales will undergo
more iterations before being discarded, the discarded DOFs
from all the iterations collectively form an (N + 1)-level
pyramidlike array arranged hierarchically according to scale.
We shall define these discarded DOFs as the “bulk” system
corresponding to the original “boundary system.” Evidently,
the bulk system contains the same 2Nl DOFs, but are
arranged in levels with 2N−1l, 2N−2l, etc., sites according to
scale.

B. Introduction to wavelets

The above-mentioned EHM procedure is mathematically
a discrete3 wavelet transform. Here, we shall provide a
pedagogical introduction for its concrete implementation.

A one-dimensional wavelet system consists of a set of self-
similar basis functions defined in exact analogy to the bulk
EHM DOFs. It can be described by a scaling function φ(x)
and mother wavelet function w(x) (see Fig. 2) pair obeying
the recursion relations [58]

φ(x) = 2
l∑

r=0

c(r)φ(2x − r), (1)

w(x) = 2
l∑

r=0

d(r)φ(2x − r), (2)

where d(r) and c(r) are the high-pass and low-pass filter
vectors, characterized by spatial fluctuations with shorter and
longer length scales, respectively. Both c and d are length4

l + 1 vectors normalized such that
∑

r |c(r)|2 = |c|2 = |d|2 =
1. In Eq. (1), φ(x) is self-similar in the sense that it is equal
to the convolution of c(r) and a rescaled version of itself.
The mother wavelet w(x), by contrast, is not self-similar, but

3It is a discrete wavelet transform in the sense that the multireso-
lution is realized via discrete levels of scale hierarchies. Continuous
wavelet transforms lead to an overcomplete though invertible basis
description. There also exists an alternative continuous approach to
the EHM known as the cMERA [64–69].

4Wavelet filters with finite length l + 1 are known as finite-impulse
response (FIR) filters.
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FIG. 2. Illustration of the real-space wavelets wn,t=0(x) [Eq. (12)] for various instances with length of unit cell 2l = 4. These wavelets are

based on the ansatz C(z) = (1−a∗)(1−az)+(1+a)(a∗z2+z3)√
2(1+|a|2)

, where a > 0. It is a more general ansatz than Eq. (15), admitting complex a, and can be
shown to be consistent with having an odd P (z) − 1 that is real for |z| = 1, and which also P (z) + P (−z) = 2. Physically, wn,t=0(x) represents
the “orbital shape” of the UV wavelet basis: In the a = 1 Haar case, for instance, the basis contains two rectangular regions of opposite signs,
representing an antisymmetric (short-wavelength) degree of freedom. At other a, these basis wave functions become either more rounded or
jagged. The beauty of wavelet bases is that basis wave functions can possess very detailed internal structures, such that only selected features
will be “zoomed-in” across wavelet levels.

is the convolution of d(r) and φ(2x). In the simplest (l = 1)
case of the Haar wavelet used in Refs. [16,22,57], we have
c = (1,1)/

√
2 and d = (1, − 1)/

√
2.

Through n iterations of Eqs. (1) and (2), one obtains level
n wavelets

wn,t (x) = w(2nt − x) (3)

possessing characteristic length scales of ∝2n. To study the
properties of wn,t (x), it is useful to define the z transforms [59]

C(z) =
l∑

r=0

c(r)zr , (4)

D(z) =
l∑

r=0

d(r)zr , (5)

such that C(z), D(z) with z = eik are the Fourier transforms
of the low-pass and high-pass filters, respectively. (For the
whole of this paper, we shall use the same symbol for
a function whether its argument is given by k or z =
eik .) The RG properties of the EHM are most succinctly
described by the spectral properties of these filters. For
future reference, we shall denote by C∗ and D∗ the poly-
nomial C,D with coefficients (but not the argument z)
conjugated.

The possible choices for filter polynomials C(z) and D(z)
are constrained by biorthogonality, that is, by the requirement
that φ(x) and w(x) should be orthogonal to their translates and
among themselves.

For instance, the constraint (φ(x),w(x + x0)) = 0 where
x0 ∈ Z stipulates that the low- and high-pass filters project
onto orthogonal subspaces. This requires that

0 =
∑

x

φ∗(x)w(x + x0)

∝
∑

x

∑
r,r ′

c∗(r)d(r ′)φ∗(2x − r)w(2x + 2x0 − r ′)

∝
∑
r,r ′

c∗(r)d(r ′)δr,r ′−2x0

=
∑

r

c∗(r)d(r + 2x0), (6)

which implies that

0 =
∑

k

e2ix0kC∗(e−ik)D(eik) = 1

2πi

∮
C∗(z−1)D(z)dz

z1−2x0
.

(7)
By the residue theorem, C∗(z−1)D(z) must hence have no
term with even power, including the constant term. This
can be guaranteed by the alternating-flip construction d(r) =
(−1)rc(l − r), i.e.,

C(z) = zlD

(
−1

z

)
, (8)

where l is the degree of the polynomials C(z) and D(z).
Also, φ(x) and a translated copy of itself φ(x + x0), x0 ∈

Z/{0}, should be orthogonal in order to form a local basis.
This requires that

δx0,0 =
∑

x

φ∗(x)φ(x + x0)

∝
∑

x

∑
r,r ′

c∗(r)c(r ′)φ∗(2x − r)φ(2x + 2x0 − r ′)

∝
∑
r,r ′

c∗(r)c(r ′)δr,r ′−2x0

=
∑

r

c∗(r)c(r + 2x0), (9)

so C∗(z−1)C(z) has a constant term of 1, but no nonconstant
term with even power. An analogous constraint holds for
D(z). Since the latter is a high-pass filter, it should satisfy
the additional constraint that it has zero weight in the
long-wavelength limit k = 0 (or z = 1). As such, D(1) =∑

r d(r)ei0r = ∑
r d(r) = 0 (but, see Sec. V A for a reason

to break this constraint).
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All in all, the wavelet basis is completely determined by the
autocorrelation Laurent polynomial

P (z) = C∗(z−1)C(z) = D(−z−1)D∗(−z)

= 1 +
∑
j=1

[
p2j−1z

2j−1 + p∗
2j−1

z2j−1

]
(10)

whose coefficients p2j−1 take values such that P (z) � 0 for
all |z| = 1 on the unit circle, and normalized such that P (1) =
2. The absence of nontrivial even powers of z also implies
that P (z) + P (−z) = 2. C(z) and D(z), which are related by
Eq. (7), can be obtained via a factorization5 of P (z).

We are now ready to derive specific allowed forms for the
wavelet functions. Since φ(x) is a convolution of c(r) and
φ(2x) [Eq. (1)], its z transform obeys

�(z) = �(
√

z)C(
√

z)

= �(z1/4)C(z1/4)C(z1/2)

= · · · =
∞∏

b=1

C
(
z2−b)

. (11)

This is the explicit expression for the (z transform of the)
scaling function � in terms of its recursive definition. Of
course, the infinite product should terminate finitely when we
are in a discrete system. For that, we can obtain from Eqs. (2)
and (11) wavelet spectral functions Wn(z) corresponding to
the wavelets wn(x) at scale level n:

Wn(z) = 1√
2π

W
(
z2n)

= 1√
2π

D
(√

z2n
)
�

(√
z2n

)

= 1√
2π

D
(
z2n−1) n−2∏

b=0

C
(
z2b)

, (12)

where the additional normalization factor of 1√
2π

is introduced
for future notational consistency. Hence, the construction of
a (one-dimensional) wavelet basis involves these three basic
steps:

(1) Choose a polynomial P (z) = P (eik) with desired
spectral properties [Eq. (10)].

(2) Factorize P (z) into C(z) and D(z).
(3) Construct wavelet spectral functions Wn(z) via

Eq. (12).
As a simplest illustration, the Haar wavelet is characterized

by P (z) = 1 + z+z−1

2 , which factorizes to C(z) = 1+z√
2

, D(z) =
1−z√

2
. From Eq. (12), the Haar wavelet spectral functions

are thus given by Wn(z) = √
2−n(1 − z2b−1

)
∏n−2

b=0 (1 + z2b

) =
2−n/2 (1−z2n−1

)
2

1−z
. This is illustrated by the α = 1 case shown in

Fig. 3.
Finally, one can compute the spectral weight |Wn(z)|2

of each wavelet level directly through the autocorrelation

5This factorization can in general be accomplished by numerical
methods such as the Cepstral method or Wiener-Hopf factorization.
See Chap. 5.4 of Ref. [59] for an introduction.
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FIG. 3. The spectral weights |Wn(eik)|2 for levels n = 1,3,4,5
(top left, top right, bottom left, bottom right). Plotted in each figure
are the spectral weights corresponding to l = 2 wavelets described
by Eq. (15) for α = 1.25,1,0.6,0, − 0.8 (black, red, yellow, green,
and blue). The α = 1 case (red) corresponds to the simplest Haar
wavelet with no z3 dependence. The next lowest Daubechies wavelet
is given by α = 1.25 (black), and has the special property that of
having 2κ − 1 = 3 vanishing derivative orders (moments) of P (w) at
k = 0. Consequently, with contributions away from the peaks most
strongly suppressed, it has the strongest peaks among all the other
α. As α decreases, the IR DOFs become less effectively suppressed,
leading to higher secondary peaks.

function

|Wn(z)|2 = W ∗
n (z−1)Wn(z)

= 1

2π
P

( − z−2n−1) n−2∏
b=0

P
(
z2b)

. (13)

C. Implementation of wavelets in the EHM

The exact holographic mapping is most easily understood in
terms of its wavelets in momentum space. Writing the second
quantized operators of the original (boundary) system as a

†
k =

1√
2N l

∑
x eikxa

†
x , the EHM is just a unitary transform to the

basis of (bulk) states created by

b†nx =
∑

k

W ∗
n (e−ik)e−i2nkxa

†
k, (14)

where n � 1 indexes the level and x = 1,2, . . . ,2N−nl denotes
the position within level n. Hence, the original 2Nl DOFs a

†
x |0〉

are redistributed into a pyramid with 2N−nl sites (DOFs) b
†
nx |0〉

at level n (Fig. 1). Note that k refers to the momentum defined
within each level: on the nth level with 2N−nl sites, k = 2πj

2N−nl

where j ∈ Z. That Eq. (14) represents a unitary transformation
of the Hilbert space can be seen from the biorthogonality of
Wn(z)z2nx , which is proven in Appendix A.

D. Wavelet properties relevant to holography

We have seen that a wavelet basis naturally provides a way
to decompose information into a hierarchy of basis vectors
at various scales. Furthermore, these wavelet bases are local
and thus suitable candidates for describing physical degrees of
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freedom in real space. This should be contrasted with Fourier
transforming into the momentum space basis, where each
momentum mode is periodic and not compactly supported.

Below, we highlight a few properties of the wavelet basis
that play a key role in the EHM. Of most significance is
the smoothness of the IR filter C(z) in the long-wavelength
limit z = 1 (or k = 0). This smoothness is characterized
by an integer κ , which is the order of the first nonzero
derivative (number of vanishing moments) of C(z) at z = 1,
i.e., C(κ)(1) 	= 0 but C(κ ′)(1) = 0 for κ ′ < κ . Equivalently, P (z)
has 2κ − 1 vanishing moments.

The significance of κ is illustrated in Fig. 3, where the
spectral weights |Wn(eik)|2 for levels n = 1, 3, 4, and 5 are
plotted for P (z) of the form

P (z) = 1 + 1 + α

4
(z + z−1) + 1 − α

4
(z3 + z−3). (15)

One readily checks that P (1) = 2, P (z) + P (−z) = 2, and
P (z) � 0 for −1 < α < 5

4 . For the special case of α = 5
4 , P (z)

factorizes to (1 + z+ 1
z

2 )
2
(1 − z+z−1

4 ) = (1 + cos k)2(1 − cos k
2 ),

i.e., P (1) = P ′(1) = P (2)(1) = P (3)(1) = 0, implying that
κ = 2. This case is represented by the black curve in Fig. 3,
which possesses a spectral weight that is strongly suppressed at
k = 0 even for the first level n = 1. This strong suppression is
further magnified in subsequent levels, with the corresponding
D(z2n−1

) factor giving rise to the sharpest IR peaks compared
to the other cases with fewer vanishing moments, i.e., κ = 1.

In general, wavelet mappings with higher κ are more
effective at suppressing DOFs away from the limiting IR point,
and thus have more pronounced spectral peaks at k = ± 2π

2n at
the nth level. In essence, wavelet mappings represent a tradeoff
between locality and sharpness of scale resolution: a sharp
momentum cutoff requires nonlocal (power-law decaying)
real-space components, while the most local mapping (the
Haar wavelet) leads to rounded spectral peaks. With a given
length 2l for the mother wavelet, the maximal κ and hence
best possible spectral resolution is realized by the Daubechies’
wavelet family with P (z) (Fig. 4) given by

PDaub(z) = 2

(
1 + z + z−1

2

)l

×
l−1∑
j=0

(
l + j − 1

j

)(
1 − z + z−1

2

)j/
2l+j

(16)
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FIG. 4. Spectral weight of levels n = 1,2,3,4 of the Daubechies
family of wavelets for κ = 1, 10, and 100. We see extreme smooth-
ness at k = 0 in the large-κ limit since the wavelet filter has a zero
with κ − 1 vanishing moments. In real space, this extreme smoothness
with momentum corresponds to extremely narrow peaks.

which reproduces the above-mentioned α = 5
4 wavelet when

l = 2, and the Haar wavelet when l = 1. That PDaub(z) has
κ = l, the maximum possible value for a given l, can be seen
[58,59] by expressing it in terms of y = 1

2 − z+z−1

4 , which
yields P ′

Daub(y) ∝ yl−1(1 − y)l−1.

III. RENORMALIZATION OF HAMILTONIANS
UNDER THE EHM

Regarded as a lossless renormalization group (RG) proce-
dure, the exact holographic mapping should ideally preserve
the form of the Hamiltonian under renormalization. Below,
we shall discuss when this is possible, and how can the
renormalization scale parameter be determined. This will
greatly generalize the scope of previous literature [16,57],
where the special choice of the Haar wavelet basis preserves the
form of Dirac-type Hamiltonians sin kσ1 + (m + 1 − cos k)σ2

only.
Let hn be the input of the nth EHM iteration of the original

Hamiltonian h. From Eq. (11), hn+1 is related to hn via a
multiplication with the wavelet spectral weight |C|2. Writing
h(w) as h(k/2) (with a slight misuse of notation), such that
w = eik/2, we have

2hn+1(w) = hn(w)C(w)C∗(w−1)

+hn(−w)C(−w)C∗(−w−1)

=
∑
±

hn(±w)P (±w). (17)

The two copies of momenta w = eik/2 and −w = ei(k+π)/2 in
the summation arise due to a folding of the Brillouin zone
since level n has twice as many sites as level n + 1. Hence, we
have hn+1(w) given by the average of h(±w) weighted by the
wavelet autocorrelation function from both ±w.

To find conditions on the wavelet that leaves the Hamilto-
nian invariant, we set hn and hn+1 in Eq. (17) to have the same
functional form h:

λh(w2) = 1

2

∑
±

h(±w)P (±w)

= heven(w) + [P (w) − 1]hodd(w), (18)

where λ is the (constant) scale factor for each RG step,
and heven/odd(w) = 1

2 [h(w) ± h(−w)]. In other words, given a
Hamiltonian h(w) = heven(k) + hodd(k), the wavelet that fixes
it must have the autocorrelation function

P (w) = C∗(z−1)C(z) = 1 + λh(w2) − heven(w)

hodd(w)
. (19)

Here are a few caveats about Eq. (19):
(1) The RG scale factor can only take nontrivial values

of λ 	= 1 if the Hamiltonian is gapless (critical) in the long-
wavelength limit k = 0 (w = 1). This follows immediately by
setting w = 1 and noting that P (1) = 2.

(2) Given h(w) of degree d, the degree of P (w) [or C(w)]
is fixed by comparing the leading powers of Eq. (18) to be
l = 2
 d

2 � + 1.
(3) There may not exist a wavelet that leaves the form of

a given h(w) invariant. Existence of the former is contingent
on the right-hand side of Eq. (19) being factorizable into an
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odd Laurent polynomial P (w) with odd powers −l to l, such
that it is real for |w| = 1, and that P (w) + P (−w) = 2 [i.e., of
the form Eq. (10)]. Further discussion is given in Appendix B;
refer to the next subsection for specific examples of invariant
Hamiltonians and their associated wavelets.

In the critical case h(1) = 0, λ is determined by the
constraint P (1) = 2. Equation (19) gives

λ = lim
w→1

heven(w) + [P (w) − 1]hodd(w)

h(w2)

= lim
w→1

h′
even(w) + [P (w) − 1]h′

odd(w) + P ′(w)hodd(w)

2wh′(w2)

= 1

2
+ lim

w→1

[P (w) − 2]h′
odd(w) + P ′(w)hodd(w)

2wh′(w2)
. (20)

If h′(1) 	= 0, the limit on the last line is easily taken and λ = 1
2 ,

unless P ′(1) and hodd(1) are both nonzero. This can occur only
if P (w) do not have real coefficients, and h(w) is neither odd
nor even. Letting γ be the order of the first nonzero derivative
of the Hamiltonian h(w) at w = 1, we have

λ|γ=1 = 1

2

(
1 + P ′(1)hodd(1)

h′(1)

)
. (21)

Frequently, the Hamiltonian is not linearly dispersive at w = 1,
and to evaluate λ we will need to invoke L’Hôpital’s rule a total
of γ number of times. For γ = 2, we get

λ|γ=2 = 1

4

(
1 + P ′′(1)hodd(1) + 2P ′(1)h′

odd(1)

h′′(1)

)
(22)

and, in general,

λ|γ = 1

2γ

(
1 +

∑γ

j=1 P (j )(1)h(3−j )
odd (1)

h(γ )(1)

)

= 1

2γ

(
1 −

∑γ

j=1 P (j )(1)h(3−j )
even (1)

h(γ )(1)

)
. (23)

As such, an EHM iteration rescales the Hamiltonian by a
factor of 1

2 for each vanishing order of h(w = 1) if it is
either fully even or odd. Otherwise, λ will be more compli-
cated, depending on the derivatives of the resultant wavelet
autocorrelation P (w).

A. Renormalization examples

1. Simplest case: Haar wavelet

With the Haar wavelet basis, C(w) = 1+w√
2

and P (w) =
C(w)C∗(w−1) = 1 + w+w−1

2 . It is easy to verify that
the two linearly independent solutions to Eq. (18)
are h(w) = w−w−1

2i
⇒ h(k) = sin k and h(w) = 2−w−w−1

4 ⇒
h(k) = 1−cos k

2 , both with the RG rescaling λ = 1
2 , consistent

with Eqs. (21) and (22), respectively.

2. Odd Hamiltonians

For generic Hamiltonians odd in w, Eq. (19) nicely
simplifies to

P (w) − 1 = λ
h(w2)

h(w)
= 1

2γ

h(w2)

h(w)
. (24)

This equation can always be satisfied by

h(w) =
∏
j

(
waj − w−aj

2i

)bj

, (25)

i.e., h(k) = ∏
j sinbj (ajk) for

∑
j aj bj ∈ odd. From the fa-

miliar relation sin 2x
2 sin x

= cos x, we see that P (w) is a valid
wavelet autocorrelation polynomial given by P (w) = 1 +∏

j (w
aj +w−aj

2 )
bj

. Two interesting special cases are elaborated
below.

Hamiltonians of the form h(k/2) = sin ak
2 = wa−w−a

2i
, a

odd, are invariant under the IR filter C(w) = 1+wa√
2

or P (w) =
1 + wa+w−a

2 , with λ = 1
2 . We need a to be odd as P (w) can

never have even nontrivial even powers.
The above results are applicable to Hamiltonians even in k

too, as long as they are odd in w = eik/2, i.e., Hamiltonians of
the form

h(k) = cos ak − cos bk ∼ b2 − a2

2

(
k2 + a2 + b2

12
k4

)
(26)

since h(k/2) = wa+w−a

2 − wb+w−b

2 , a,b odd, are invariant un-

der P (w) = C(w)C∗(w−1) = 1 + wa+w−a+wb+w−b

4 , with λ =
1
4 . To find C(w), note that P (w) can always be factorized into
C(w) and C∗(w−1) because it is symmetric in w and w−1, and
its roots hence come in pairs of w and w−1. This factorization
admits no general analytic solution, but for simple cases such
as a = 3, b = 1, we can (with a bit of effort) find the nice
solution C(w) = 1−i(w+w2)+w3

2 . This defines the wavelet basis
for which h(k) = cos 3k − cos k remains invariant.

With odd Hamiltonians, one can directly check from the
form of h(w) if the corresponding wavelet is of κ = 1. Such
bases are characterized by a nonvanishing P ′′(1), which can
be obtained via direct differentiation of Eq. (24):

P ′′(1) = 3h′′(1) + 2h′′′(1)

2h′(1)
− 1

2

(
h′′(1)

h′(1)

)2

. (27)

Evidently, some fine tuning is needed to necessitate a wavelet
with κ > 1 [i.e ., P ′′(1) = P ′′′(1) = 0].

IV. WAVELET DEPENDENCE OF BULK GEOMETRY

One of the most attractive features of the exact holographic
mapping is that it reproduces, for various important cases,
bulk geometries in agreement with the Ryu-Takayanagi (RT)
formula [20]. Specifically, it yields for any number of dimen-
sions the AdS space for critical systems at zero temperature,
and BTZ/Lifshitz black holes for critical linear/nonlinear
dispersing systems at nonzero temperature [16,57].

The RT formula proposes that the entanglement entropy
of a boundary region is proportional to the area of its
corresponding minimal surface in the bulk. Inspired by this
information-theoretic6 definition of area, the EHM framework
proposed [16,57] that geodesic distances in the EHM bulk

6There have also been parallel studies on criticality based on
information theory (cf. Refs. [70–77]).
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are determined by mutual information, i.e., the upper bound
of the correlation functions between two end points. This
is a paradigm shift from the usual conceptual relationship
between correlation and distance: Conventionally, we think
of the correlator decay behavior as a function of separation
distance, but now we invert this relationship by defining the
distance based on the extent of correlator decay.

In this section, we shall focus on the the dependence of the
bulk geometry on the wavelet basis, which is an aspect not
studied in Ref. [57].

A. Definition of the bulk geometry

Consider two points 1 and 2 in the bulk system with
coordinates (�x1,n1,t) and (�x2,n2,t), where �x is the site index
within a level, n the level index, and t the time. These
two points are separated by a spatial coordinate interval of
��x = (2n1x1 − 2n2x2,n1 − n2) sites and temporal coordinate
interval of �t . Recall that each level in the bulk contains ∝2−n

DOFs with spectral weight |Wn(k)|2, such that we approach
the low-energy limit in the limit of large n.

With the EHM, we define the physical distance d12 between
these two points in the bulk by

d12 = −d0

2
log I12 ∼ −d0 log C12, (28)

where I12 is the mutual information between points 1 and 2 and
C12 is the two-point bulk correlation function between them.
The length scale d0 can be interpreted as the inverse mass scale
of the massive field associated with C12 living in the curved
bulk geometry. The asymptotic equality on the right-hand side
was shown in Ref. [57], that I12 behaves asymptotically like
8C2

12. Equation (28) also applies for temporal intervals if we
perform a Wick rotation to imaginary time τ = it , so that
temporal oscillations become exponential decay. With that,
we have

C12(��x,τ ) = 〈
T bn2x2 (τ )b†n1x1

(0)
〉

=
∑

k

W ∗
n1

(e−ik)Wn2 (eik)e−ik(2n1 x1−2n2 x2)Gk(τ )

=
∮

|z|=1

dz

z
W ∗

n1
(z−1)Wn2 (z)z2n2 x2−2n1 x1Gz(τ )

(29)

in terms of the boundary correlation function Gk(τ ) (Gz and
Gk are used interchangeably, depending on the argument used)
given by

Gk(τ ) = eτh(k)

I + eβh(k)
(30)

for the Hamiltonian h(k), with β the inverse temperature. Near
a gapless point z = eik = 1, the energy manifolds [eigenen-
ergy bands of h(z)] generically exhibit branch points.7 As we
see later, the power-law decay of C12 shall depend crucially on
the existence of these complex singularities. In a typical case
without accidental degeneracy, the band crossing involves two

7The energy manifolds are the solutions to the characteristic
polynomial associated with the eigenvalue equation.

bands and Gk possesses a square-root branch cut u ∼ √
z =

eik/2 or u ∼ √
z−1 = e−ik/2. To see this explicitly, consider

the canonical two-band Dirac model h(k) = sin kσ1 + (m +
1 − cos k)σ2, σ1,2 the Pauli matrices, with eigenenergies Ek =
Ez =

√
1 + (m + 1)2 − (m + 1)(z + 1

z
) and gap m. In matrix

form,

h(z) =
(

0 i
[

1
z

− (1 + m)
]

−i[z − (1 + m)] 0

)
(31)

with the correlator Gz given by(
cosh(τEz)I + h(z)

Ez

sinh(τEz)

)(
I − h(z)

Ez

tanh
βEz

2

)
.

(32)

Crucial to the analytic structure of this matrix is the “flattened
Hamiltonian”

h(z)

Ez

=

⎛
⎜⎝ 0

√
m+1

z

√
z− 1

m+1

z−(m+1)√
z

m+1

√
z−(m+1)
z− 1

m+1
0

⎞
⎟⎠

→m=0

(
0 1√

z√
z 0

)
. (33)

Its branch-cut topology crucially affects the bulk correlator
because it dictates the deformation of the contour in Eq. (29).
In the gapped case with nonzero m, h(z)

Ez
has four branch points

(0,∞,m + 1, 1
m+1 ), two within and two outside the unit circle.

Hence, C12 can be evaluated without deforming the unit circle,
giving rise to results [57,60] dependent on the position of the
singularities introduced by either mass or temperature scale,
but independent of the wavelet basis.

In the gapless (m = 0) case which we shall focus on,
the only8 branch cut extends from z = 0 to ∞, which is
unavoidable. In the following, we shall evaluate the bulk
correlator and hence bulk geodesic distances by deforming the
unit circle to a keyholelike contour, from which the dependence
of the correlator decay behavior on the branch cut becomes
apparent. We shall consider the general case where the unitary
transforms (and hence filters Cj and Dj ) at each iteration j

are not necessarily the same.

B. Geodesic distances and bulk geometry for a critical
1D free fermion

1. Intralevel direction

To explicitly demonstrate how the bulk geometry depends
on the choice of wavelet basis, we turn to the simplest case of
critical 1D free fermion described by a Dirac Hamiltonian. We
stress that this choice of Hamiltonian is made purely due to its
analytic tractability; indeed, an EHM generalized to arbitrary
wavelet bases will be able to retain the forms of a far larger
class of Hamiltonians (Sec. III).

8No branch cut can be introduced by wavelet functions W (z) and
W ∗(z−1), which are polynomials.
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We first study the zero-temperature bulk correlator C12 due
to a displacement of x sites in the intralevel direction, so
that level indices n1 = n2 = n are equal and τ = 0, β → ∞.
Physically, this correlator is between degrees of freedom at the
same scale and time.

A nonzero matrix element u of C12 is given by

u = −
∮

|z|=1

dz

z
W ∗

n (z−1)Wn(z)
√

z

2
z2nx

= 1

2

∫ 1

0
W ∗

n (z−1)Wn(z)z2nx(
√

z −
√

e2πiz)
dz

z

=
∫ 1

0
W ∗

n (z−1)Wn(z)z2nx 1√
z
dz

=
∫ 1

0

(
W ∗

n (z−1)Wn(z)zm2n)
z2n(x−m)−1/2dz

=
∫ 1

0
Q(z)zXdz = Q(1)

X + 1
− 1

X + 1

∫ 1

0
Q′(z)zX+1dz

=
∑
j=0

Q(j )(1)X!

(X + j )!
(−1)j ∼ Q(2κ)(1)

X2κ+1
∼ Q(2κ)(1)

2n(2κ+1)x2κ+1
. (34)

In line 4, m is the degree of each factor C or D in
Wn(z) = 1

2π
Dn(z2n−1

)
∏n−1

j=1 Cj (z2j−1
), introduced such that

Q(z) = W ∗
n (z−1)Wn(z)zm2n

does not have negative powers of
z. In line 5, X = 2n(x − m) − 1/2 is large and positive for
fairly large intervals x, so that the j corrections in the third
last line can be dropped. The final expression involves κ ,
the first nonzero derivative of Wn(z) at z = 1 (see Sec. II D).
The integer κ , which characterizes the wavelet moment at the
IR (long-wavelength) point z = 1, shall be a key quantity in
determining how the EHM affects the correlators and hence
bulk geometry.

Let us now evaluate Q(2κ)(1) by an explicit expansion about
z = 1:

Q(2κ)(1)ε2κ

(2κ)!
= Q(1 − ε)

= (1 − ε)2nmW ∗
n ((1 − ε)−1)Wn(1 − ε)

≈ W ∗
n (1 + ε)Wn(1 − ε)

= 1

2π

∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj

(
(1 − ε)2j−1)⎞⎠Dn

(
(1 − ε)2n−1)∣∣∣∣∣∣

2

≈ 1

2π

∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)

⎞
⎠Dn(1 − 2n−1ε)

∣∣∣∣∣∣
2

≈ 1

2π

∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)

⎞
⎠

∣∣∣∣∣∣
2∣∣∣∣D(κ)

n (1)
2κ(n−1)εκ

κ!

∣∣∣∣
2

≈ 1

2π

∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)

⎞
⎠

∣∣∣∣∣∣
2∣∣D(κ)

n (1)
∣∣2 22κ(n−1)ε2κ

κ!2
.

(35)

10.05.02.0 20.03.0 30.01.5 15.07.0
x

5

10

15

20

d12

FIG. 5. The geodesic distances d12 determined from the bulk
correlators via Eq. (28). Plotted are the curves for the Dirac model
with the κ = 1, 2, 3, and 4 Daubechies wavelet filters. Their excellent
numerical agreement with Eq. (40) or (41) (continuous straight lines)
show that the AdS radius is indeed directly proportional to κ , i.e.,
2κ + 1 = 3, 5, 7, and 9, respectively. That d12 exhibits power-law
decay after just a few sites provides a posteriori justification of the
approximations in Eq. (34).

The C factors are evaluated at z = 1 with no need for Taylor
expansion because they are IR filters, which are not supposed
to have vanishing values at z = 1. Comparing coefficients, we
see that

Q(2κ)(1) = 1

2π

∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)

⎞
⎠

∣∣∣∣∣∣
2∣∣D(κ)

n (1)
∣∣2

22κ(n−1)

(
2κ

κ

)
,

(36)

where D(κ)
n (1) is the first nonzero derivative of the UV filter

Dn at the IR point k = 0 or z = 1. Combining Eq. (36) with
(28) and (34), we obtain

I12 ∼ 8u2

=
((

2κ

κ

)∣∣D(κ)
n (1)

∣∣2

22κπ

)2
∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)√
2

⎞
⎠

∣∣∣∣∣∣
2

1

2x4κ+2

=
(

2κ

κ

)2
∣∣D(κ)

n (1)
∣∣4

24κ+1π2

n−1∏
j=1

(
1 − |Cj (−1)|2

2

)
1

x4κ+2
, (37)

which coincides with results from Ref. [18] for bosonic
systems. All in all we have (plotted in Fig. 5)

d12(x) ∼ d0(2κ + 1) log |x| + const. (38)

Explicitly, we see that the mutual information I12 decays with
x with an exponent of 4κ + 2, i.e., that the choice of wavelet
basis affects the coefficient 4κ + 2 of the logarithmic term, but
does not modify its qualitative asymptotic behavior. Physically,
a larger κ leads to faster decay of mutual information because
the additional smoothness of the UV filter Dn at k = 0
extinguishes more DOFs. Notably, there will be no dependence
on n, the level index, only if Cj (−1) = Cj (k = π ) = 0 for
all levels j . In other words, each IR filter Cj will lead to
a suppression of Ixy unless Cj (−1) = 0, i.e., is a perfect IR
filter taking zero value at the UV point k = π . To put the
significance of this observation in context, consider the fitting
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of the geodesic distance d12 ∼ d0 log C12 with that of anti–de
Sitter (AdS) space (Appendix I of Ref. [57]):

dAdS(x) ∼ 2R log
|x|
R

, (39)

where R is the AdS radius. If we want to fit d12(x) of I12 to
dAds(x), which do not depend on the radial coordinate, we will
need each iteration of the EHM to discard all of the largest
scale DOFs, which are at k = π . This can only happen if
Cj (−1) = 0 for all levels j . Merely having all Cj ’s equal is not
sufficient for ensuring that the geodesic distance is independent
of the scale n.

From now, we assume perfect IR filters that have zero
support at k = π . Comparing Eqs. (38) and (39), we obtain

R

d0
= κ + 1

2
(40)

and

R = 1

2

⎛
⎝

√
2
∣∣D(κ)

n (1)
∣∣2(2κ

κ

)
π

⎞
⎠

1
2κ+1

. (41)

We see that R depends only on κ and |D(κ)
n (1)|. In the simplest

case of the Haar wavelet basis, Dn(z) = 1−z
2 , so κ = 1 and

|D(1)
n (1)| = 1√

2
. Equations (40) and (41) then coincide with

numerical results from Ref. [16].

2. Interlevel (radial) direction

We now consider the case with zero intralevel displacement
(x = 0) and temporal displacement (τ = 0), so that the interval
lies in the “adial” direction from level 1 to level n. This is an
interval between different lengths scales at the same space-
time coordinates. A nontrivial matrix element u of the bulk
correlator takes the form

u = −
∮

|z|=1

dz

z
W ∗

1 (z−1)Wn(z)
√

z

2
. (42)

This is a complicated expression that admits no general sim-
plification. However, its asymptotic behavior can be computed
as follows: Define

In = u = −1

2

∮
|z|=1

dz

z
W ∗

1 (z−1)Dn

(
z2n−1) n−1∏

j=1

Cj (z2j−1
)
√

z

(43)
and

Jn−1 = −1

2

∮
|z|=1

dz

z
W ∗

1 (z−1)
n−1∏
j=1

Cj

(
z2j−1)√

z, (44)

which is the unprojected correlator in the (n − 1)th level. For
2n � 1, In and Jn−1 are approximately related by

In = −1

2

∮
|z|=1

dz√
z
W ∗

1 (z−1)
n−1∏
j=1

Cj

(
z2j−1)[

Dn(0) + O
(
z2n−1)]

∼ Dn(0)Jn−1 (45)

since the truncated contributions from monomials of z2n−1

integrate to small quantities 1
2n−1+const that can be discarded for

2n � 1. Hence, In is dominated by the term containing Dn(0),

the constant term in Dn(z). Note that |Dn(0)| = |d(0)| < 1
since

∑
j |d(j )|2 = 1. Similarly, we can also show that Jn ∼

Cn(0)Jn−1. Hence, asymptotically,

|u| ∼ Dn(0)
n−1∏
j=1

Cj (0) ∝ C(0)n−1, (46)

the last expression holding when the IR filters Cj are all the
same. Hence, the radial geodesic distance goes like

d12(1,n) = −d0 log |u| ∼ (n − 1) log
1

C(0)2
+ small const.

(47)
Comparing this with the radial AdS distance [16,57]

dAdS(1,n) ∼ R(n − 1) log 2, (48)

we obtain

R

d0
= −2 log |C(0)|

log 2
(49)

so that R
d0

= 1 in the Haar case with C(z) = 1+z√
2

.
C(0) is the same-site coefficient in the real-space recursion

relation of the IR wavelet filter. As such, a small C(0)
represents a large “spreading” of the EHM tree network, and
should cause the mutual information to decay faster as we
travel down the different hierarchical levels (n) of the tree.

3. Imaginary-time direction

We now focus on the case with ��x = 0, but imaginary-time
interval τ > 0. From Eq. (32), the leading contribution to the
correlator is

C12(τ ) = 1

2

∫ π

−π

dq|Wn(eiq)|2e−τEq . (50)

The simplifying caveat is that we only have to care about
the extreme IR (small-q) contribution to this integral. This is
because e−Eqτ = e−vF |q|τ decays rapidly for moderately large
τ . Hence, we only need to know the IR behavior of Wn(z) =
Dn(z2n−1

)
∏n−1

j=1 Cj (z2j−1
), which is given by Eq. (35):

|Wn(ei�q)|2 ≈ |Wn(1 − i�q)|2

≈
∣∣∣∣∣∣
⎛
⎝n−1∏

j=1

Cj (1)

⎞
⎠

∣∣∣∣∣∣
2∣∣D(κ)

n (1)
∣∣2 22κ(n−1)(�q)2κ

2πκ!2

= 1

2π

∣∣D(κ)
n (1)

∣∣2 2(2κ+1)(n−1)(�q)2κ

κ!2
, (51)

where κ is the order of the first nonzero derivative of Dn(z), as
before. Evaluating Eq. (50) in terms of the incomplete gamma
function

∫
0 qγ e−qτ dq ∼ γ !

τ γ+1 , we obtain

C12(τ ) ∼ 1

2π

∣∣D(κ)
n (1)

∣∣2 2(2κ+1)(n−1)

τ 2κ+1

(
2κ

κ

)
. (52)

Comparing d12(τ ) = −d0 log C12(τ ) with the imaginary-time
geodesic distance of Euclidean AdS space [16,57]

dAdS(τ ) = 2R

(
log

τ

R
− n log 2

)
, (53)
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we obtain
R

d0
= κ + 1

2
(54)

which agrees exactly with the intralevel result [Eq. (40)]. The
corresponding AdS radius R is also given by Eq. (41).

The equivalence of the fitting parameters to AdS space in
the intralevel and imaginary-time directions is not surprising
since there is a global rotation symmetry that relates space and
imaginary time.

V. FURTHER GENERALIZATIONS

A. “Zooming in” onto arbitrary Fermi points

The EHM is essentially a “lossless” RG procedure pro-
ducing a series of bulk layers n that represent the original
system viewed from various energy scales. Mathematically,
that is accomplished by “zooming in” successively closer
to the low-energy regions of the system. In a fermionic
system, the lowest-energy regions are Fermi points in the
case of semimetals, or Fermi surfaces in the case of metals.
It is imperative that we are not just able to probe the long-
wavelength k = 0 limit, but also able to probe the low-energy
limit of a given system. Since the EHM should fundamentally
be a low-energy probe, the resultant bulk geometry should not
be qualitatively affected by the positions of the Fermi points.
That this is true will be evident from the results of this section,
where we show that all that is required is a modification of the
wavelet basis.

So far, the EHM described involve iterations that suc-
cessively “zoom in” onto the long-wavelength limit k = 0
(or z = eik = 1). This is appropriate if the physical system
has a Fermi point at k = 0. However, most real systems
such as graphene [61] or specially design metamaterials
[48–56,62,63] possess interesting and possibly topologically
nontrivial9 critical points (valleys, line nodes, etc.) elsewhere
in the Brillouin zone.

If the critical point is simply shifted to k0 	= 0, we can
trivially modify the EHM via

C(z) → C(ze−ik0 ), D(z) → D(ze−ik0 ) (55)

so that its spectral properties are simply translated by k0. This
modification introduces complex coefficients in the real-space
wavelet functions, which is perfectly permissible for a wavelet
mapping acting in quantum mechanical Hilbert space.

More interestingly, we can also “split” the spectral peaks
such that the EHM “zooms in” onto more than one momentum
point. This is achieved by interchanging the sequence of
UV and IR filters in the tower of C and D filters used
in constructing Wn(z) in Eq. (12): Instead of the original
definition Wn(z) = C(z)C(z2) . . . C(z2n−2

)D(z2n−1
), we shall

define

Wn(z) = B+
n

(
z2n−1) n−1∏

j

B−
j

(
z2j−1)

, (56)

9When there is a continuum of Fermi points that form an extended
Fermi surface, we require a different type of EHM involving
conformal maps (work in progress).
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FIG. 6. (Top left) Illustration of the profiles of C (black) and D

(purple dashed) for the Haar wavelet. The IR filter C(z2n
) strengthens

the (IR) contribution closer to the existing folded IR points at 2π

2n j ,
j ∈ Z. The UV filter D(z2n

) attempts to “split” these contributions
by favoring contributions halfway between the IR points. (Top right)
|W6(z)|2 as defined in the usual case of CCCCCD. Each C filter
strengthens the peak around k = 0, while the last D filter splits it to
support the contributions just around k = 0. (Bottom left) A given D

filter at the second level splits the peaks to ±π/2. (Bottom right) A D

filter at the third level splits the peaks to ±π/4. The secondary peaks
will be much more attenuated if κ > 1 was used.

where each B±
n (z) can be either C(z) or D(z). We define

a vector �v such that vj = 1 if C(z) was used at level j ,
and vj = −1 if D(z) was used. Hence, the usual definition
of Wn(z) will correspond to �v = (1,1,1, . . . ,1, − 1), while
C(z)D(z2)D(z4)C(z8)D(z16), for instance, will correspond to
�v = (1, − 1, − 1,1, − 1).

The effects of interchanging the C and D filters are illus-
trated in Fig. 6. At each level, the IR filter C(z2n

) has vanishing
spectral weight when z2n = −1, i.e., k = π

2n−1 (2j + 1), j ∈ Z.
If the tower of filters take the form C(z)C(z2)C(z4) . . ., i.e.,
consists of all IR filters C, k = 0 eventually survives as the
only peak. In this sense, Wn(z) zooms in onto k = 0.

Now, suppose that C(z2m

) is replaced by D(z2m

), which
suppresses k = 2π

2m−1 j , j ∈ Z. This includes the k = 0 point,
which will thus no longer be “zoomed in” onto. But, at
the same time, the points k = π

2m−1 (2j + 1), j ∈ Z, will be
allowed to survive. Due to the finite envelope of C and
D as shown in Fig. 6, the spectral weights of these new
peaks depend on the distance from the previous IR point.
Consider the example �v = (1, − 1,1,1,1, − 1). At m1 = 2,
C(z2) is replaced by D(z2). This replaces the “default” IR
peak of k = 0 by the “new” IR peaks ±π

2 . At the next
m2 = 6, C(z32) is replaced by D(z32). Of all the k points
k = π

32 (2j + 1), j ∈ Z, that thus do not have to vanish, the
dominant ones are those closest to the incumbent IR points
±π

2 . In general, when C is replaced by D at z2m1
,z2m2

, . . . ,z2mr ,
the dominant pair of IR points eventually zoomed in onto will
be ± π

2m1−1 ± π

2m2−1 ± · · · ± π
2mr −2 , where the j th ± sign (j > 2)

is chosen such that the point to be zoomed in is closer to the
“old” IR point ± π

2m1−1 ± . . . ± π

2mj−2−1 .
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To zoom in onto arbitrary Fermi points, one can combine
translations and splittings of the IR points at various levels via
Eqs. (55) and (56), as well as utilize specific forms of Cj and
Dj to achieve the desired spectral peaks.

B. EHM in higher dimensions: Basis anisotropy

While we have so far focused on one-dimensional EHM,
all the results so far can be directly generalized to a higher-
dimensional EHM relating a (d + 1)-dimensional boundary
system to a (d + 2)-dimensional bulk. This generalization
can be simply accomplished by taking direct products of the
wavelet filters in various dimensions, as described at length
in Sec. V of Ref. [57]. With possibly different κ parameters
κ1, . . . ,κd for the wavelet basis in each direction, one may
naively think that we will arrive at bulk geodesic distances
given by d12,j (xj ) ∼ d0(2κj + 1) log xj with anisotropic AdS
radii Rj = d0(κ + 1

2 ). This is actually not true. To understand
why, note that each factor of |Wn(eik)|2 near k = 0 acts as a
derivative on the (original) boundary correlator

Gx ∝
∫

Gke
ikx ∼ 1

|�x| = 1√
x2

1 + · · · + x2
d

, (57)

so that for a wavelet filter in the direction j ,∫ |Wn(eikj )|2ei2n�k·�xGkdkj ∼ ∂
2κj

j
1
|�x| ∼ 3 cos2 θ−1

|�x|3 where cos θ is
the dth component ratio of �x.

In general, the bulk correlator C12(�x) will be dominated
by terms involving the lowest κj in almost all directions, not
just in the j th direction. To see why, consider the d = 2 case
κ1 = 1 and κ2 = 2. The two leading contributions to C12(�x)
are proportional to

∂2
1

1

|�x| = 3 cos2 θ − 1

|�x|3 (58)

and

∂4
2

1

|�x| = 3(3 cos4 θ − 24 cos2 θ sin2 θ + 8 sin2 θ )

|�x|5 . (59)

In the asymptotic limit of large |�x|, the decay exponent
is always 3 unless 3 cos2 θ − 1 is exactly zero, which
is an interval of measure zero. Hence, in the multidi-
mensional case, the AdS radius is generically given by
d0 min(κ1, . . . ,κd ) + d0/2.

VI. CONCLUSION

Motivated by the desire for a holographic mapping that
preserves the form of a wide class of Hamiltonians, we
generalized the exact holographic mapping to consist of the
most general unitary transformation based on biorthogonal
wavelets. Compared to the original EHM based on the Haar
wavelet, our generalized EHM can preserve Hamiltonians with
various exotic band touchings, and not just those of linear Dirac
type. The precise relationship between the Hamiltonian and the
wavelet mapping that preserves it is summarized in Eq. (19),
which can also be shown to determine the renormalization
scale factor λ.

We also derived the dependence of the bulk geometry on the
wavelet basis, and showed that the latter only affects quantities

arising from branch cuts in the propagator. These include
the correlator decay exponent of a critical system at zero
temperature and hence its dual AdS radius, but not the spatial
event horizon of the dual geometry due to mass or temperature
scale. Of primary significance is the integer κ , which is the
order of the first nonzero derivative of the IR wavelet filter
C(z) in the long-wavelength limit. It is κ , and not the length
2l of the mother wavelet, that controls the bulk geometry.

The generality of the wavelet EHM formulation also
enables us to zoom in onto Fermi points away from the
long-wavelength limit. This can be accomplished, for instance,
by reversing the roles of the UV and IR filters at certain
scale levels n. Finally, we discussed the implications of having
higher-dimensional EHM with anisotropic bases.

We also took this opportunity to provide a pedagogical
introduction to the construction of wavelets, a topic intimately
related to renormalization but rarely covered in detail in the
physics literature.
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APPENDIX A: BIORTHOGONALITY OF WAVELETS

Consider the generic definition with the roles of the C and
D wavelet filters possibly interchanged (Sec. V A). Equation
(12) is generalized to

Wn(z) = B+
n

(
z2n−1) n−1∏

j

B−
j

(
z2j−1)

, (A1)

where B± is the z transform of b±. It is possible to prove the
orthogonality of the Wn’s from Eq. (56). Suppose m > n:

(wn,wm) ∝
∮

|z|=1

dz

z
W ∗

n (z−1)Wm(z)

=
∮

|z|=1

dz

z
B+∗(z−2n−1)

B+(
z2m−1)

×
n−2∏
a=0

B−∗(z−2a ) m−2∏
b=0

B−(
z2b)

=
∮

|z|=1

dz

z

[
B+∗(z−2n−1)

B−(
z2n−1)]

×
n−2∏
a=0

[
B−∗(z−2a )

B−(
z2a )](

1 + O
(
z2n))

=
∮

|z|=1

dz

z
(nonconstant)

= 0. (A2)

The first term in line 3, which is equal to C∗(z−2n−1
)D−(z2n−1

)
or D∗(z−2n−1

)C−(z2n−1
), has no constant term by Eq. (6), and

has a smallest power of ±2n−1r , r an odd positive integer.
This power cannot be canceled by any combination of terms
in the product in the second term since each term is equal to
C∗(z−2a

)C−(z2a

) or D∗(z−2a

)D−(z2a

) and has no even power
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of z±2a

. Explicitly, each positive power term in the product has
the form

z
∑n−2

j=0 2j (2mj +1) = z
∑n−1

j=1 mj−12j +2n−1−1,

where mj is either a non-negative integer or − 1
2 , the latter

corresponding to the case when z2j

is not used. The exponent
is thus odd and unable to cancel the power in z−2n−1r . This
holds for the negative power terms too. The remaining terms
from Wm are either constant or have degree exceeding ±2n−1,
and so cannot form a constant term. Hence, the integral is zero
by the residue theorem.

If wn or wm were to be displaced from each other by a
distance x, there will be an addition factor of z±2mx or z±2nx

in the integral. However, it is clear from the above argument
that such a term also cannot be combined with another term to
produce a constant term. Hence, the displaced wavelet bases
are also orthogonal, as required earlier on.

Note that this above proof does not require C and D to be
the same for each level j , but only that they must all satisfy
the conditions mentioned in Sec. II.

APPENDIX B: DISCUSSION ON FINDING RG-INVARIANT
HAMILTONIANS

Here, we give a matrix approach to solving for the P (z)
of the appropriate wavelet transform that leaves a given
Hamiltonian h(z) invariant. General real Laurent polynomials
h(z) and P (z) for z = eik , k ∈ R, can be written as

h(z) =
l∑

j=0

aj z
j + c.c. = heven(z) + hodd(z), (B1)

P (z) = 1 +
⎛
⎝ l∑

j odd

pjz
j + c.c.

⎞
⎠. (B2)

For h(z) to be invariant under the wavelet transform described
by P (z) [Eq. (18)],

λh(z2) = heven(z) + [P (z) − 1]hodd(z)

must be satisfied. By equating the coefficients of non-negative
powers of z on both sides (there are only even powers, of

course), we obtain the relation⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

al 0 0 . . . 0 0
al−2 al 0 . . . 0 0
al−4 al−2 al . . . 0 0

...
...

...
. . .

...
...

a∗
l−2 a∗

l−4 a∗
l−6 . . . al 0

a∗
l a∗

l−2 a∗
l−4 . . . al−2 al

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pl

pl−2

pl−4
...

p∗
l−2

p∗
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎝

al

al−1

al−2
...
a1

a0

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
a2

a0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B3)

where l is the (odd) degree of P (z), which is also the maximum
possible degree of h(z). In matrix equation form, Eq. (B3)
becomes A �p = λ�a − �ae, where A is the lower triangular
Toeplitz matrix comprising the coefficients of hodd(z) and their
complex conjugates, �p and �a the vectors of coefficients of P (z)
and hodd(z), respectively, and �ae the vector of heven(z).

Fortuitously, the lower triangular matrix A can be in-
verted easily. Writing A = al(I + N ) where N is a nilpotent
Toeplitz matrix, we easily find that A−1 = (I − N + N2 −
. . . + Nl−1)/al . Upon a bit more algebra, we find that⎛
⎜⎜⎜⎜⎜⎜⎝

pl

pl−2

pl−4
...

p∗
l−2
p∗

l

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 0 . . . 0 0 0
b1 b0 . . . 0 0 0
...

...
. . .

...
...

...
bl−2 bl−3 . . . b0 0 0
bl−1 bl−2 . . . b1 b0 0
bl bl−1 . . . b2 b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

λal

λal−1
...

λa2 − a4

λa1 − a2

λa0 − a0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B4)

where bj , j,0, . . . ,l are the coefficients of yj in the expansion
of

1

al + al−2y + al−4y2 + · · · + a∗
l y

l
= 1

yl/2hodd(y−1/2)
. (B5)

Since P (z) + P (−z) = 2, we can fix λ by requiring that∑l
j pl−2j = 1. A solution of Eq. (B4) can only correspond

to a valid choice of P (z) if pl−2j thus found is indeed the
complex conjugate of p2j−l for all j .
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